Effects of Different Rotation Combinations of Cabbage, Kidney Bean and Maize on Soil Fungal Communities and Soil Nutrients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Summary of the Natural Conditions of the Test Area and Test Site
2.2. Experimental Design
2.3. Determination of Items and Methods
2.4. Data Processing and Calculation Methods
3. Results and Analysis
3.1. Soil Chemical Properties
3.2. Data Analysis of Fungal Sequencing
3.3. Distribution of Fungal OTUs
3.4. Analysis of Fungal Diversity
3.5. Analysis of Community Composition at the Phylum Level
3.6. Analysis of Characteristics at the Order Level
3.7. Distribution Heatmap at the Genus Level
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, W.; Wang, J.; Li, X.; Ding, Y.; Huang, S. Research progress of soil microorganisms in alpine ecosystem. J. Southwest Minzu Univ. Nat. Sci. Ed. 2021, 47, 455–461. [Google Scholar]
- Li, H.; Zhang, J.; Yao, T.; Yang, X.; Gao, Y.; Li, C.; Li, Q.; Feng, Y. Soil nutrients, enzyme activities and ecological stoichiometric characteristics in degraded alpine grasslands. J. Soil Water Conserv. 2018, 32, 287–295. [Google Scholar]
- Wang, P.; Wu, Y.; Li, Y.; Fan, J. Research and prospect of plant root exudates and microenvironment. Rural. Sci. Technol. 2021, 12, 96–98. [Google Scholar]
- Nair, A.; Ngouajio, M. Soil microbial biomass, functional microbial diversity, and nematode community structure as affected by cover crops and compost in an organic vegetable production system. Appl. Soil Ecol. 2012, 58, 45–55. [Google Scholar] [CrossRef]
- Xu, L.; Zeng, R.; Gao, S.; Dai, M. Review on the effect of soil fungal communities on soil-borne diseases. Acta Agric. Shanghai 2017, 33, 161–165. [Google Scholar]
- Xing, J.; Tan, J.; Guo, Q. Effects of Bacillus megaterium and Bacillus subtilis on growth physiology of Solanum tuberosum L. and microbial biomass in rhizosphere soil. J. Hunan Agric. Univ. Nat. Sci. 2017, 43, 377–381. [Google Scholar]
- Tan, Y.; Cui, Y.; Li, H.; Kuang, A.; Li, X.; Wei, Y.; Ji, X. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices. Appl. Environ. Microbiol. 2017, 194, 10–19. [Google Scholar] [CrossRef]
- Bao, S. Soil Agrochemical Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Nan, L.; Tan, J.; Guo, Q. Effects of fallow rotation modes on soil fungal communities in semi-arid area of the Loess Plateau, northwest China. Acta Ecol. Sin. 2020, 40, 8582–8592. [Google Scholar]
- Egidi, E.; Delgado-Baquerizo, M.; Plett, J.M.; Wang, J.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh, B.K. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 2019, 10, 2369. [Google Scholar] [CrossRef] [Green Version]
- Taina, K.L.; Miia, R.M.; Kristiina, H. Lignin-modifying enzymes in filamentous basidiomycetes—Ecological, functional and phylogenetic review. J. Basic Microbiol. 2010, 50, 5–20. [Google Scholar]
- Xia, M.; Zhong, W.; Ouyang, L.; Sun, Z.; Zhang, Z. Research status of continuous cropping obstacles in China from 1989 to 2018: Based on bibiometric analysis and knowledge mapping of CNKI. J. Agric. 2021, 11, 46–54. [Google Scholar]
- Wu, F.; Zhu, W. Effect of soil chemical properties on cucumber seedlings grow in different rotation system soils. J. Northeast Agric. Univ. 2020, 51, 1–9. [Google Scholar]
- Ding, G. Green prevention and control technology of root swelling disease of cruciferous vegetables in Shanghai. Shanghai Veg. 2016, 6, 31–32. [Google Scholar]
- Lv, Y.; Wang, R.; Cai, Z. Climate change and its impacts in arid and semi-arid areas of China. J. Arid. Land Resour. Environ. 2009, 23, 65–71. [Google Scholar]
- Shi, X.; Feng, T.; Gao, H.; Liu, F. A brief report on Bean Germplasm Resources in Jilin Province. China Seed Ind. 2009, 11, 26–27. [Google Scholar]
- Feng, G. Research on High-Quality Kidney Bean Germplasm Resources and Breeding Strategies in Heilongjiang Province. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2008; p. 10. [Google Scholar]
- Chai, A.; Yang, H.; Li, X.; Shi, Y.; Xie, X.; Li, L.; Fan, T.; Li, B. Identification of pathogen causing Common bean (Phaseolus vulgaris) wilt in Inner Mongolia Tengfei1, LI Baoju1. Acta Phytopathol. Sin. 2023, 53, 33–136. [Google Scholar]
- Zhang, L.; Tang, L.; Huang, X.; Yang, X.; Wu, W.; Xiang, Y.; Zhou, X.; Liu, Y. Effects of soybean as pre-cropping plant on occurrence of clubroot in oilseed rape. Chin. J. Oil Crop. Sci. 2020, 42, 480–485. [Google Scholar]
- Wang, Y. Discussion on high-yield cultivation techniques of Phaseolus vulgaris in greenhouse in early spring. Contemp. Hortic. 2021, 44, 17–18. [Google Scholar]
- Zou, J.; Zhang, J.; Xu, D.; Sun, Y.; Xiao, W.; Zhou, X.; Xia, X.; Ren, H. Grey correlation analysis of pod weight related agronomic traits of common bean. Heilongjiang Agric. Sci. 2021, 9, 54–58. [Google Scholar]
- Zhao, D. Production and cultivation techniques of fresh waxy Corn. Farmers Consult. 2021, 20, 44–45. [Google Scholar]
- Zhang, L.; Li, S.; Liao, L. Pathogenicity variation and genetic structure differentiation of Fusarium oxysporum f.sp.conglutinans in soil under successive cultivation of Brassica oleracea. Acta Phytopathol. Sin. 2013, 43, 58–68. [Google Scholar]
- Liu, R.; Li, M.; Wang, F. A preliminary survey of diversities of Arbuscular Mycorrhizal fungi on greenhouse vegetables. J. Laiyang Agric. Coll. 2001, 18, 280–283. [Google Scholar]
- Zhang, D.; Song, X.; He, B.; Chen, X. Effects of different cropping patterns on soil fertility and physical and chemical properties of continuous cropping maize. Mod. Agric. Sci. Technol. 2021, 12, 21–23. [Google Scholar]
- Li, X.; Wang, Z.; Hao, M.; Wang, L.; Li, S. Effects of cropping systems on soil water, organic N and mineral N in dryland soil on the loess plateau. Sci. Agric. Sin. 2008, 41, 2686–2692. [Google Scholar]
- Xing, H.; Xiao, Z.; Yan, J.; Ma, J.; Meng, Y. Effects of continuous cropping of maize on soil microbes and main soil nutrients. Pratacultural Sci. 2011, 28, 1777–1780. [Google Scholar]
- Wang, W. Construction of the high-density genetic linkage map and QTL analysis for main agronomic traits in cabbage. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2013; pp. 1–2. [Google Scholar]
- Liu, J.; Wei, Z.; Cheng, Y.; Xu, F.; Wang, Z.; Mou, Z. The effects of rotational cropping with Phaseolus vulgaris L. on the growth of oily beans Cyperus esculentus L. and field soil microorganisms. J. Shanxi Agric. Univ. Nat. Sci. Ed. 2021, 41, 17–24. [Google Scholar]
- Liu, Z. Study on the Characteristics of Microbial Community and Response of Environmental Factors in Bahe River (Chanba eco-Region). Master’s Thesis, Xi’an University of Technology, Xi’an, China, 2021; pp. 39–40. [Google Scholar]
- Ni, M.; Cheng, S.; Han, X.; Wang, L.; Lei, X.; Ju, L.; Wang, Z.; Zhu, P. Effect of rotating different leafy vegetables on soil fertility and soil microbial characteristics of cowpea. China Veg. 2019, 5, 64–69. [Google Scholar]
- Sun, Q.; Wu, H.; Chen, F.; Kang, J. Characteristics of soil nutrients and fungal community composition in crop rhizosphere under different rotation patterns. Environ. Sci. 2020, 41, 4682–4689. [Google Scholar]
- Jiang, B.; Sun, L.; Wang, C.; Gao, Y.; Wang, H. Effect of continuous vegetable cropping on soil nutrient variation in plastic greenhouse. J. Northeast. Agric. Univ. 2014, 45, 85–90. [Google Scholar]
- Kintché, K.; Guibert, H.; Sogbedji, J.; Levêque, J.; Bonfoh, B.; Tittonell, P. Long-term mineral fertiliser use and maize residue incorporation do not compensate for carbon and nutrient losses from a Ferralsol under continuous maize–cotton cropping. Field Crop. Res. 2015, 184, 192–200. [Google Scholar] [CrossRef]
- Zhou, W.; Lv, D.; Qin, S. Research Progress on the interaction between plants and Rhizosphere microorganisms. J. Jilin Agric. Univ. 2016, 38, 253–260. [Google Scholar]
- Takeuchi, N.; Matsuda, Y.; Sakai, A.; Fujita, K. A large amount of biogenic surface dust (Cryoconite) on a glacier in the Oilian Mountains, China. Bull. Glaciol. Res. 2005, 22, 1–8. [Google Scholar]
- Liu, S.; Luo, X.; Wu, M.; Trang, Z.; Wang, C.; Zhang, J. Comparison of cassava yield and soil microbial characteristics under continuous cropping and rotation. Chin. J. Trop. Crop. 2019, 40, 1468–1473. [Google Scholar]
- Yang, D.; Hu, C.; Cheng, Q.; Jia, W.; Zhao, X. Research progress on the interaction between rhizobium androot system and its influencing factors. Chin. Agric. Sci. Bull. 2019, 35, 77–81. [Google Scholar]
- Jiang, Y.; Zhan, Z.; Piao, Z.; Zhang, C. Progresses and prospects of germplasms innovation for clubroot resistance and genetic improvement in Brassica napus. Acta Agron. Sin. 2018, 44, 592–1599. [Google Scholar] [CrossRef]
- Yu, H.; Zeng, G.; Huang, G.; Hu, T.; Chen, Y. Screening of lignin-degrading fungi and their enzyme production. Chin. J. Appl. Environ. Biol. 2004, 5, 639–642. [Google Scholar]
- Bai, L.; Fan, X.; Jie, W.; Cai, B.; Yu, W. Research progress of AM fungi on root rot of leguminosae. China Sci. Technol. Inf. 2004, 13, 33–34. [Google Scholar]
- Yan, W. Identification of Fusarium formae speciales on three vegetablesand the discovery of new diseases in China. Chin. Acad. Agric. Sci. 2019, 16–22. [Google Scholar]
- Zheng, L.; Zhao, Y.; Wang, Y. Soil properties and microbial diversity in the muskmelon fields after continuous cropping for different years. Microbiol. China 2022, 49, 101–114. [Google Scholar]
Treatments | 2018 | 2019 | 2020 |
---|---|---|---|
CMC | cabbage | maize | cabbage |
BMC | kidney bean | maize | cabbage |
CCC | cabbage | cabbage | cabbage |
CMB | cabbage | maize | kidney bean |
BMB | kidney bean | maize | kidney bean |
BBB | kidney bean | kidney bean | kidney bean |
CCM | cabbage | cabbage | maize |
CBM | cabbage | kidney bean | maize |
BBM | kidney bean | kidney bean | maize |
BCM | kidney bean | cabbage | maize |
Treatment | Available Nitrogen (mg/kg) | Available Phosphorus (mg/kg) | Available Potassium (mg/kg) |
---|---|---|---|
CMC | 101.38 ± 1.58 cd | 13.40 ± 0.89 bcd | 166.01 ± 0.91 b |
BMC | 98.88 ± 1.24 d | 10.96 ± 0.81 de | 130.62 ± 14.05 c |
CCC | 100.63 ± 3.71 cd | 10.80 ± 1.64 e | 129.66 ± 4.62 c |
CMB | 111.42 ± 7.07 bcd | 12.42 ± 0.45 cde | 133.36 ± 5.18 c |
BMB | 130.08 ± 10.10 a | 14.91 ± 0.99 b | 213.22 ± 10.74 a |
BBB | 120.75 ± 2.47 ab | 11.22 ± 1.23 cde | 181.30 ± 22.87 b |
CCM | 112.58 ± 7.29 bc | 13.49 ± 1.73 bc | 183.60 ± 8.94 b |
CBM | 104.13 ± 6.19 cd | 17.74 ± 0.26 a | 172.29 ± 9.40 b |
BBM | 106.75 ± 4.63 cd | 15.06 ± 0.89 b | 181.67 ± 2.64 b |
BCM | 106.75 ± 4.63 cd | 11.50 ± 1.30 cde | 182.22 ± 9.18 b |
Treatment | Richness Index | Diversity Index | ||
---|---|---|---|---|
Ace Index | Chao1 Index | Simpson Index | Shannon Index | |
CMC | 718.06 ± 11.11 cde | 744.43 ± 14.68 cd | 0.98 ± 0.01 a | 7.58 ± 0.38 a |
BMC | 767.39 ± 45.01 bcd | 769.34 ± 25.60 bcd | 0.99 ± 0.00 a | 7.73 ± 0.14 a |
CCC | 685.62 ± 20.88 e | 704.03 ± 10.83 d | 0.93 ± 0.06 b | 6.68 ± 0.84 b |
CMB | 725.65 ± 10.20 cde | 748.48 ± 6.05 cd | 0.98 ± 0.01 a | 7.73 ± 0.21 a |
BMB | 701.05 ± 52.46 de | 740.81 ± 51.86 cd | 0.99 ± 0.00 a | 7.65 ± 0.10 a |
BBB | 799.03 ± 17.38 b | 845.64 ± 69.66 b | 0.99 ± 0.00 a | 7.87 ± 0.05 a |
CCM | 785.01 ± 22.87 bc | 823.86 ± 25.13 bc | 0.99 ± 0.01 a | 7.69 ± 0.45 a |
CBM | 931.22 ± 43.45 a | 921.29 ± 72.30 a | 0.99 ± 0.01 a | 7.77 ± 0.32 a |
BBM | 728.79 ± 23.08 cde | 787.51 ± 24.65b cd | 0.99 ± 0.00 a | 7.98 ± 0.05 a |
BCM | 725.78 ± 51.58 cde | 785.33 ± 46.06b cd | 0.99 ± 0.00 a | 7.89 ± 0.13 a |
Treatment | Basidiomycota (%) | Chytridiomycota (%) | Rozellomycota (%) | Neocallimastigomycota (%) |
---|---|---|---|---|
CMC | 12.60 ± 2.83 ab | 1.14 ± 0.72 ab | 1.05 ± 0.09 ab | 0.74 ± 0.20 abc |
BMC | 12.47 ± 1.40 ab | 0.68 ± 0.37 b | 0.99 ± 0.09 ab | 0.88 ± 0.11 ab |
CCC | 9.40 ± 0.28 ab | 0.90 ± 1.06 ab | 0.76 ± 0.01 b | 0.59 ± 0.18 abc |
CMB | 11.08 ± 0.66 ab | 0.41 ± 0.05 b | 1.03 ± 0.07 ab | 0.96 ± 0.29 a |
BMB | 10.84 ± 1.17 ab | 1.17 ± 0.39 ab | 1.15 ± 0.01 a | 0.74 ± 0.14 abc |
BBB | 11.62 ± 1.00 ab | 0.46 ± 0.37 b | 1.15 ± 0.01 a | 0.97 ± 0.09 a |
CCM | 9.27 ± 1.54 b | 2.05 ± 0.38 a | 1.15 ± 0.04 a | 1.06 ± 0.43 a |
CBM | 11.01 ± 0.71 ab | 1.59 ± 1.03 ab | 1.07 ± 0.03 ab | 0.85 ± 0.72 abc |
BBM | 13.13 ± 3.44 a | 1.78 ± 0.80 ab | 1.30 ± 0.05 a | 0.32 ± 0.15 bc |
BCM | 12.25 ± 2.11 ab | 0.87 ± 0.42 ab | 1.22 ± 0.08 a | 0.26 ± 0.11 c |
Treatment | Feature Order |
---|---|
CMC | Phacidiales, Pisorisporiales, Rhizophydiales |
BMC | Botryosphaeriales |
CCC | Erysiphales, Diaporthales, Rhizophlyctidales |
CMB | Erysiphales |
BMB | Kirschsteiniotheliales, Pisorisporiales, Blastocladiales |
BBB | Eremomycetales, Peltigerales, Phacidiales, Diaporthales, Taphrinales, Phallales |
CCM | |
CBM | Pisorisporiales |
BBM | |
BCM | Acrospermales |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Wang, X.; Xie, L. Effects of Different Rotation Combinations of Cabbage, Kidney Bean and Maize on Soil Fungal Communities and Soil Nutrients. Agronomy 2023, 13, 1883. https://doi.org/10.3390/agronomy13071883
Wang T, Wang X, Xie L. Effects of Different Rotation Combinations of Cabbage, Kidney Bean and Maize on Soil Fungal Communities and Soil Nutrients. Agronomy. 2023; 13(7):1883. https://doi.org/10.3390/agronomy13071883
Chicago/Turabian StyleWang, Tianle, Xiaojuan Wang, and Ling Xie. 2023. "Effects of Different Rotation Combinations of Cabbage, Kidney Bean and Maize on Soil Fungal Communities and Soil Nutrients" Agronomy 13, no. 7: 1883. https://doi.org/10.3390/agronomy13071883
APA StyleWang, T., Wang, X., & Xie, L. (2023). Effects of Different Rotation Combinations of Cabbage, Kidney Bean and Maize on Soil Fungal Communities and Soil Nutrients. Agronomy, 13(7), 1883. https://doi.org/10.3390/agronomy13071883