The Roles of Net Photosynthetic Rate and Transpiration Efficiency on Economic Yield of Jerusalem artichoke (Helianthus tuberosus L.) Genotypes under Different Drought Durations during the Terminal Growth Stages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Plant Materials
2.2. Field Conditions, Irrigation System, and Crop Preparation
2.3. Water Management
2.4. Weather Parameters and Soil Conditions
2.5. Soil Moisture Content and Relative Water Content
2.6. Net Photosynthetic Rate, Transpiration Rate, Transpiration Efficiency, SPAD Chlorophyll Meter Reading, and Specific Leaf Area
2.7. Tuber Fresh Weight (Economic Yield) and Reduction of Economic Yield
2.8. Statistical Analysis
3. Results
3.1. Weather, Soil Moisture, and Relative Water Content
3.2. Effect of Different Drought Durations on Net Photosynthetic Rate, Transpiration Rate, and Transpiration Efficiency
3.3. Effect of Different Drought Durations on Tuber Fresh Weight (Economic Yield)
3.4. Relationships between Net Photosynthetic Rate, Transpiration Rate, and Transpiration Efficiency with Economic Yield and Reduction of Economic Yield
3.5. Relationships between Net Photosynthetic Rate, SPAD Chlorophyll Meter Reading, and Specific Leaf Area
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kays, S.J.; Nottingham, S.F. Biology and Chemistry of Jerusalem Artichoke: Helianthus tuberosus L., 1st ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2008; pp. 1–496. [Google Scholar]
- Mensink, M.A.; Frijlink, H.W.; Maarschalk, K.V.; Hinrichs, W.L.J. Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydr. Polym. 2015, 130, 405–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossini, F.; Provenzano, M.E.; Kuzmanović, L.; Ruggeri, R. Jerusalem artichoke (Helianthus tuberosus L.): A versatile and sustainable crop for renewable energy production in Europe. Agronomy 2019, 9, 528. [Google Scholar] [CrossRef] [Green Version]
- Kelly, G. Inulin-type prebiotics—A review: Part 1. Altern. Med. Rev. 2008, 13, 315–329. [Google Scholar] [PubMed]
- Aliasgharzadeh, A.; Khalili, M.; Mirtaheri, E.; Gargari, B.P.; Tavakoli, F.; Farhangi, M.A.; Babaei, H.; Dehghan, P. A combination of prebiotic inulin and oligofructose improve some of cardiovascular disease risk factors in women with type 2 diabetes: A randomized controlled clinical trial. Adv. Pharm. Bull. 2015, 5, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Nair, K.K.; Kharb, S.; Thompkinson, D.K. Inulin dietary fiber with functional and health attributes: A review. Food Rev. Int. 2010, 26, 189–203. [Google Scholar] [CrossRef]
- Liu, Z.X.; Han, L.P.; Yosef, S.; Xie, G.H. Genetic variation and yield performance of Jerusalem artichoke germplasm collected in China. Agric. Sci. China. 2011, 10, 668–678. [Google Scholar] [CrossRef]
- Ruttanaprasert, R.; Banterng, P.; Jogloy, S.; Vorasoot, N.; Kesmala, T.; Kanwar, R.S.; Holbrook, C.C.; Patanothai, A. Genotypic variability for tuber yield, biomass and drought tolerance in Jerusalem artichoke germplasm. Turk. J. Agric. For. 2014, 38, 570–580. [Google Scholar] [CrossRef]
- Ruttanaprasert, R.; Jogloy, S.; Vorasoot, N.; Kesmala, T.; Kanwar, R.S.; Holbrook, C.C.; Patanothai, A. Photoperiod and growing degree days effect on dry matter partitioning in Jerusalem artichoke. Int. J. Plant Prod. 2013, 7, 393–416. [Google Scholar]
- Puangbut, D.; Jogloy, S.; Vorasoot, N.; Patanothai, A. Responses of growth, physiological traits and tuber yield in Helianthus tuberosus to seasonal variations under tropical area. Sci. Hortic. 2015, 195, 108–115. [Google Scholar] [CrossRef]
- Puangbut, D.; Jogloy, S.; Vorasoot, N.; Patanothai, A. Growth and phenology of Jerusalem artichoke (Helianthus tuberosus L.). Pak. J. Bot. 2015, 47, 2207–2214. [Google Scholar]
- Puangbut, D.; Jogloy, S.; Vorasoot, N.; Songsri, P. Photosynthetic and physiological responses to drought of Jerusalem artichoke genotypes differing in drought resistance. Agric. Water Manag. 2022, 259, 107252. [Google Scholar] [CrossRef]
- Ruttanaprasert, R.; Banterng, P.; Jogloy, S.; Vorasoot, N.; Kesmala, T.; Patanothai, A. Diversity of physiological traits in Jerusalem artichoke genotypes under non-stress and drought stress. Pak. J. Bot. 2016, 48, 11–20. [Google Scholar]
- Ruttanaprasert, R.; Jogloy, S.; Vorasoot, N.; Kesmala, T.; Kanwar, R.S.; Holbrook, C.C.; Patanothai, A. Effects of water stress on total biomass, tuber yield, harvest index and water use efficiency in Jerusalem artichoke. Agric. Water Manag. 2016, 166, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Puangbut, D.; Jogloy, S.; Vorasoot, N. Association of photosynthetic traits with water use efficiency and SPAD chlorophyll meter reading of Jerusalem artichoke under drought conditions. Agric. Water Manag. 2017, 188, 29–35. [Google Scholar] [CrossRef]
- Li, J.; Cang, Z.; Jiao, F.; Bai, X.; Zhang, D.; Zhai, R. Influence of drought stress on photosynthetic characteristics and protective enzymes of potato at seedling stage. J. Saudi Soc. Agric. Sci. 2017, 16, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Yordanov, I.; Velikova, V.; Tsonev, T. Plant responses to drought, acclimation, and stress tolerance. Photosynthetica 2000, 38, 171–186. [Google Scholar] [CrossRef]
- Mthembu, S.G.; Magwaza, L.S.; Mashilo, J.; Mditshwa, A.; Odindo, A. Drought tolerance assessment of potato (Solanum tuberosum L.) genotypes at different growth stages, based on morphological and physiological traits. Agric. Water Manag. 2022, 261, 107361. [Google Scholar] [CrossRef]
- Ober, E.S.; Bloa, M.L.; Clark, C.J.A.; Royal, A.; Jaggard, K.W.; Pidgeon, J.D. Evaluation of physiological traits as indirect selection criteria for drought tolerance in sugar beet. Field Crops Res. 2005, 91, 231–249. [Google Scholar] [CrossRef]
- Stagnari, F.; Galieni, A.; Egidio, S.D.; Pagnani, G.; Pisante, M. Responses of radish (Raphanus sativus) to drought stress. Ann. Appl. Biol. 2018, 172, 170–186. [Google Scholar] [CrossRef]
- Carter, M.R.; Gregorich, E.G. Soil Sampling and Methods of Analysis, 2nd ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2006; pp. 1–198. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agriculture Research, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1984; pp. 1–657. [Google Scholar]
- Hoshmand, A.R. Design of Experiments for Agriculture and the Natural Science; Chapman & Hall Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Zou, K.H.; Tuncali, K.; Silverman, S.G. Correlation and simple linear regression. Radiology 2003, 227, 617–628. [Google Scholar] [CrossRef] [Green Version]
- Statistix 8. Statistix 8: Analytical Software User’s Manual; Statistix 8: Tallahassee, FL, USA, 2003. [Google Scholar]
- Monti, A.; Amaducci, M.T.; Venturi, G. Growth response, leaf gas exchange and fructans accumulation of Jerusalem artichoke (Helianthus tuberosus L.) as affected by different water regimes. Eur. J. Agron. 2005, 23, 136–145. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Xie, B.T.; Duan, W.X.; Dong, S.X.; Wang, B.Q.; Zhang, L.M.; Shi, C.Y. Effects of drought stress at different growth stages on photosynthetic efficiency and water consumption characteristics in sweet potato. J. Appl. Ecol. 2018, 29, 1850–1943. [Google Scholar] [CrossRef]
- Kosar, F.; Akram, N.A.; Ashraf, M.; Sadiq, M.; Qurainy, F.A. Trehalose-induced improvement in growth, photosynthetic characteristics and levels of some key osmoprotectants in sunflower (Helianthus annuus L.) under drought stress. Pak. J. Bot. 2018, 50, 955–961. [Google Scholar]
- Henschel, J.M.; De Azevedo, S.V.; Figueiredo, M.C.; Dos Santos, S.K.; Dias, T.J.; Batista, D.S. Radish (Raphanus sativus L.) growth and gas exchange responses to exogenous ascorbic acid and irrigation levels. Vegetos 2023, 36, 566–574. [Google Scholar] [CrossRef]
- Laurie, R.N.; Du Plooy, C.P.; Laurie, S.M. Effect of moisture stress on growth and performance of orange fleshed sweet potato varieties. Afr. Crop Sci. J. 2009, 9, 235–239. [Google Scholar]
- Van Heerden, P.D.R.; Laurie, R. Effects of prolonged restriction in water supply on photosynthesis, shoot development and storage root yield in sweet potato. Physiol. Plant 2008, 134, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Jalal, R.S.; Abulfaraj, A.A. Exogenous application of agmatine improves water stress and salinity stress tolerance in turnip (Brassica rapa L.). Not. Bot. Hortic. Agrobo. 2022, 50, 12601. [Google Scholar] [CrossRef]
- Dahal, K.; Li, X.Q.; Tai, H.; Creelman, A.; Bizimungu, B. Improving potato stress tolerance and tuber yield under a climate change scenario–a current overview. Front. Plant Sci. 2019, 10, 563. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Bian, C.; Liu, J.; Zhang, J.; Jin, L. An efficient greenhouse method to screen potato genotypes for drought tolerance. Sci. Hortic. 2019, 256, 61–69. [Google Scholar] [CrossRef]
- Rolando, J.L.; Ramírez, D.A.; Yactayo, W.; Monneveux, P.; Quiroz, R. Leaf greenness as a drought tolerance related trait in potato (Solanum tuberosum L.). Environ. Exp. Bot. 2015, 110, 27–35. [Google Scholar] [CrossRef]
- Ruttanaprasert, R.; Jogloy, S.; Vorasoot, N.; Kesmala, T.; Kanwar, R.S.; Holbrook, C.C.; Patanothai, A. Relationship between chlorophyll density and SPAD chlorophyll meter reading for Jerusalem artichoke (Helianthus tuberosus L.). SABRAO J. Breed. Genet. 2012, 44, 149–162. [Google Scholar]
- Nasir, M.W.; Toth, Z. Effect of drought stress on morphology, yield, and chlorophyll concentration of hungarian potato genotypes. J. Environ. Agric. Sci. 2021, 23, 8–16. [Google Scholar]
- Deblonde, P.M.K.; Ledent, J.F. Effects of moderate drought conditions on green leaf number, stem height, leaf length and tuber yield of potato cultivars. Eur. J. Agron. 2001, 14, 31–41. [Google Scholar] [CrossRef]
Parameters | 45 DAT | 60 DAT | 75 DAT | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SD0 | SD1 | SD2 | F-Test | SD0 | SD1 | SD2 | F-Test | SD0 | SD1 | SD2 | F-Test | |
Soil moisture content (%) | 2017/18 | |||||||||||
−30 cm | 13.7a | 13.6a | 13.6a | ns | 13.7a | 13.6a | 10.6b | ** | 13.68a | 10.80b | 8.80c | ** |
−60 cm | 12.7a | 12.6a | 12.7a | ns | 12.5a | 12.5a | 11.4b | ** | 12.49a | 11.14b | 10.20c | ** |
RWC (%) | 90.4a | 90.4a | 89.6a | ns | 90.3a | 89.3a | 76.4b | ** | 91.20a | 75.19b | 64.08c | ** |
Soil moisture content (%) | 2018/19 | |||||||||||
−30 cm | 13.6a | 13.6a | 13.5a | ns | 13.5a | 13.6a | 10.8b | ** | 13.54a | 10.66b | 8.69c | ** |
−60 cm | 12.4a | 12.4a | 12.5a | ns | 12.3a | 12.3a | 10.2b | ** | 12.49a | 11.14b | 9.33c | ** |
RWC (%) | 86.9a | 87.2a | 87.1a | ns | 87.4a | 87.8a | 73.1b | ** | 88.46a | 72.88b | 62.91c | ** |
Genotypes | Net Photosynthetic Rate [µmol m−2 s−1] | Transpiration Rate [mmol (H2O) m−2 s−1] | Transpiration Efficiency [mmol (CO2) mol (H2O)] | ||||||
---|---|---|---|---|---|---|---|---|---|
SD0 | SD1 | SD2 | SD0 | SD1 | SD2 | SD0 | SD1 | SD2 | |
2017/18 | |||||||||
HEL256 | 27.4dA | 16.8eB | 11.9eC | 6.9aA | 2.2eB | 2.1eB | 4.0dC | 7.6aA | 5.7aB |
JA37 | 30.6bA | 19.8cB | 7.1fC | 6.6cA | 4.7aB | 1.6fC | 4.6cA | 4.2eC | 4.4bB |
HEL253 | 26.8eA | 15.5fB | 13.6dC | 4.3fA | 2.6dB | 2.5dB | 6.2aA | 6.0bB | 5.4aC |
JA4 | 25.0fA | 22.8aB | 19.3aC | 6.3eA | 4.6bB | 4.3aC | 4.0dC | 4.9dA | 4.5bB |
JA60 | 29.9cA | 18.4dB | 14.9cC | 6.5dA | 3.7cB | 2.8cC | 4.6cC | 5.0dB | 5.3aA |
JA125 | 33.1aA | 20.3bB | 18.6bC | 6.7bA | 3.7cB | 3.5bC | 4.9bB | 5.5cA | 5.3aA |
Mean | 28.8 | 18.9 | 14.2 | 6.2 | 3.6 | 2.8 | 4.7 | 5.5 | 5.1 |
F-test | ** | ** | ** | ** | ** | ** | ** | ** | ** |
2018/19 | |||||||||
HEL256 | 27.0dA | 16.5eB | 11.7eC | 7.1aA | 2.5eB | 2.2eC | 3.8eC | 6.6aA | 5.3aB |
JA37 | 29.9bA | 19.5cB | 7.1fC | 6.7cA | 4.9aB | 1.7fC | 4.5cA | 4.0eB | 4.2eB |
HEL253 | 26.6eA | 15.4fB | 13.3dC | 4.5fA | 2.9dB | 2.6dC | 5.9aA | 5.3bB | 5.1bC |
JA4 | 24.5fA | 22.6aB | 19.1aC | 6.5eA | 4.8aB | 4.3aC | 3.8eC | 4.7dA | 4.4dB |
JA60 | 29.0cA | 18.3dB | 14.7cC | 6.6dA | 3.8cB | 2.9cC | 4.4dB | 4.8cA | 5.1bA |
JA125 | 32.9aA | 20.3bB | 17.1bC | 6.9bA | 3.8bB | 3.6bC | 4.8bB | 5.3bA | 4.7cB |
Mean | 28.3 | 18.8 | 13.8 | 6.4 | 3.8 | 2.9 | 4.5 | 5.1 | 4.8 |
F-test | ** | ** | ** | ** | ** | ** | ** | ** | ** |
Genotypes | Economic Yield (g Plant−1) | Reduction of Economic Yield (%) | |||
---|---|---|---|---|---|
SD0 | SD1 | SD2 | SD1 | SD2 | |
2017/18 | |||||
HEL256 | 279.4aA | 119.7abB | 97.5aC | 57.1ab | 65.1b |
JA37 | 272.9aA | 126.0abB | 46.9cC | 53.8bc | 82.8a |
HEL253 | 253.9aA | 105.9bB | 75.8abC | 58.3a | 70.1ab |
JA4 | 283.8aA | 126.0abB | 71.1bB | 55.6abc | 74.9a |
JA60 | 247.4bA | 111.7bB | 66.9bcC | 54.8abc | 72.9ab |
JA125 | 256.0aA | 132.2aB | 86.3abC | 48.3c | 66.3b |
Mean | 265.6 | 120.2 | 74.1 | 54.6 | 72.0 |
F-test | ** | * | ** | * | * |
2018/19 | |||||
HEL256 | 198.6bcA | 104.3cB | 78.6aC | 47.5ab | 60.4b |
JA37 | 224.9aA | 140.0aB | 51.4cC | 37.7bc | 77.1a |
HEL253 | 191.4cdA | 109.0bB | 74.3abC | 43.0bc | 61.2b |
JA4 | 182.9dA | 142.9aB | 65.7bB | 21.9c | 64.1ab |
JA60 | 212.1bA | 105.7bcB | 75.7abC | 50.2a | 64.3ab |
JA125 | 217.1abA | 132.9aB | 77.1aC | 38.8bc | 64.5ab |
Mean | 204.5 | 122.5 | 70.5 | 39.8 | 65.3 |
F-test | ** | ** | ** | ** | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaimala, A.; Jogloy, S.; Vorasoot, N.; Holbrook, C.C.; Kvien, C.K. The Roles of Net Photosynthetic Rate and Transpiration Efficiency on Economic Yield of Jerusalem artichoke (Helianthus tuberosus L.) Genotypes under Different Drought Durations during the Terminal Growth Stages. Agronomy 2023, 13, 1882. https://doi.org/10.3390/agronomy13071882
Chaimala A, Jogloy S, Vorasoot N, Holbrook CC, Kvien CK. The Roles of Net Photosynthetic Rate and Transpiration Efficiency on Economic Yield of Jerusalem artichoke (Helianthus tuberosus L.) Genotypes under Different Drought Durations during the Terminal Growth Stages. Agronomy. 2023; 13(7):1882. https://doi.org/10.3390/agronomy13071882
Chicago/Turabian StyleChaimala, Aunchana, Sanun Jogloy, Nimitr Vorasoot, Corley C. Holbrook, and Craig K. Kvien. 2023. "The Roles of Net Photosynthetic Rate and Transpiration Efficiency on Economic Yield of Jerusalem artichoke (Helianthus tuberosus L.) Genotypes under Different Drought Durations during the Terminal Growth Stages" Agronomy 13, no. 7: 1882. https://doi.org/10.3390/agronomy13071882
APA StyleChaimala, A., Jogloy, S., Vorasoot, N., Holbrook, C. C., & Kvien, C. K. (2023). The Roles of Net Photosynthetic Rate and Transpiration Efficiency on Economic Yield of Jerusalem artichoke (Helianthus tuberosus L.) Genotypes under Different Drought Durations during the Terminal Growth Stages. Agronomy, 13(7), 1882. https://doi.org/10.3390/agronomy13071882