Spatial Distribution of Leymus chinensis Is Not Determined by Its Ecological Stoichiometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Sample Collection and Element Analyses
2.4. Statistical Analyses
3. Results
3.1. Variation in Foliar Stoichiometric Characteristics of L. chinensis along a Latitudinal Gradient
3.2. Relationships between the Foliar N:P Ratio and Soil Stoichiometry in Different Soil Layers
3.3. Stoichiometric Homeostasis among Different Latitudes
4. Discussion
4.1. Variation in Nitrogen and Phosphorus in Leymus chinensis
4.2. Stoichiometric Homeostasis and Determinants of the N:P Ratio in Leymus chinensis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, H.M.; Wu, Y.L.; Li, Y.X.; Lv, S.J.; Wei, Z.J.; Chen, B.R.; Xu, L.J.; Yang, G.X.; Xin, X.P.; Yan, R.R. Free-Grazing versus enclosure lead to an increase in the germination of the Leymus chinensis seed bank in the Hulunbuir grassland. Agronomy 2023, 13, 22. [Google Scholar] [CrossRef]
- Liu, G.S.; Li, X.X.; Zhang, Q.F. Sheepgrass (Leymus chinensis): An Environmentally Friendly Native Grass for Animals; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–51. [Google Scholar] [CrossRef]
- Li, J.D. A study on the basic life style of herbaceous plant in the northeast China grassland. J. Northeast Norm. Univ. 1979, 2, 143–155. [Google Scholar]
- Drake, J.E.; Aspinwall, M.J.; Pfautsch, S.; Rymer, P.D.; Reich, P.B.; Smith, R.A.; Crous, K.Y.; Tissue, D.T.; Ghannoum, O.; Tjoelker, M.G. The capacity to cope with climate warming declines from temperate to tropical latitudes in two widely distributed Eucalyptusspecies. Glob. Chang. Biol. 2014, 21, 459–472. [Google Scholar] [CrossRef] [PubMed]
- Simonsen, A.K. Environmental stress leads to genome streamlining in a widely distributed species of soil bacteria. ISME J. 2021, 2, 16. [Google Scholar] [CrossRef]
- Darren, W. Modelling the potential geographic distribution of invasive ant species in New Zealand. Biol. Invasions 2007, 9, 723–735. [Google Scholar] [CrossRef]
- Steven, J.P.; Miroslav, D.; Robert, E.S. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning (ICML ‘04), Banff, AB, Canada, 4–8 July 2004; Association for Computing Machinery: New York, NY, USA, 2004; p. 83. [Google Scholar]
- Chen, J.S.; Liu, J.L.; Zhu, R.F.; Li, J.K.; Di, G.L.; Zhang, Q.; Mao, D.J.; Kong, X.L. Analysis of Suitable Biolimatic Characteristics of Leymus chinensis Using MaxEnt Model. Acta Ecol. Sin. 2019, 27, 35–42. [Google Scholar] [CrossRef]
- Zeng, D.H.; Chen, G.S. Ecologycal stoichiometry: A science to explore the complexity of living systems. Acta Phytoecol. Sin. 2005, 29, 1007–1019. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Wilcox, K.; Pierre, K.L.; Knapp, A.K.; Han, X.G.; Smith, M.D. Stoichiometric homeostasis predicts species dominance, stability and response to global change. Ecology 2015, 96, 2328–2335. [Google Scholar] [CrossRef]
- Sabine, G. N:P ratios in terrestrial plants: Variation and functional significance. New Phytol. 2010, 164, 243–266. [Google Scholar] [CrossRef]
- Harris, G. Ecological Stoichiometry: Biology of Elements from Molecules to the Biosphere. Sterner, R. W. and Elser, J. J. (2002) Princeton University Press, Princeton, NJ, USA. J. Plankton Res. 2003, 25, 1183. [Google Scholar] [CrossRef]
- Zhang, L.X.; Bai, Y.F.; Han, X.G. Differential responses of N:P stoichiometry of Leymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol. Acta Bot. Sin. 2004, 46, 12. [Google Scholar] [CrossRef]
- Gao, L. Soil Carbon and Nitrogenmineralization in the Eastern Eurasia Steppe Transect and Its Response to Grazing. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2020. [Google Scholar] [CrossRef]
- Zhao, N.X.; Gao, Y.B.; Wang, J.L.; Ren, A.Z.; Ruan, W.B.; Chen, L.; Liu, H.F. An analysis of genetic differentiation between Stipa grandis populations in middle and eastern Inner Mongolia stepper. Acta Ecol. Sin. 2004, 19, 2178–2185. [Google Scholar] [CrossRef]
- Konrad, H. Das Halbmikro-Kjeldahl-Verfahren als Standard-Bezugsmethode für die Eiweißbestimmung in Milch. Nahrung 1969, 13, 143–149. [Google Scholar] [CrossRef]
- Jordan, L.P.; John, B.B. An antimony-phosphomolybdate microassay of ATPase activity through the detection of inorganic phosphate. Anal. Biochem. 2021, 623, 0003–2697. [Google Scholar] [CrossRef]
- Stagge, J.H.; Tallaksen, L.M.; Gudmundsson, L.; Van Loon, A.F.; Stahl, K. Candidate Distributions for Climatological Drought Indices (SPI and SPEI). Int. J. Climatol. 2015, 35, 4027–4040. [Google Scholar] [CrossRef]
- Delacre, M.; Lakens, D.; Leys, C. Why Psychologists Should by Default Use Welch’s t-test Instead of Student’s t-test. Int. Rev. Soc. Psychol. 2017, 30, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Aleksandrova, O.; Zhmykhova, T.; Värnik, R.; Viira, A.H. The One-Way Analysis of Variance of Heat-Storage Materials Used in Building of Poultry Houses. Processes 2023, 11, 104. [Google Scholar] [CrossRef]
- Syafrudin, S.; Ramadan, B.S.; Budihardjo, M.A.; Munawir, M.; Khair, H.; Rosmalina, R.T.; Ardiansyah, S.Y. Analysis of Factors Influencing Illegal Waste Dumping Generation Using GIS Spatial Regression Methods. Sustainability 2023, 15, 1926. [Google Scholar] [CrossRef]
- Sterner, R.W.; Elser, J.J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere; Princeton University Press: Princeton, NJ, USA, 2002. [Google Scholar] [CrossRef] [Green Version]
- Persson, J.; Fink, P.; Goto, A.; Hood, J.M.; Jonas, J.; Kato, S. To be or not to be what you eat: Regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos 2010, 119, 741–751. [Google Scholar] [CrossRef]
- Tian, D.; Yan, Z.B.; Fang, Z.B. Review on characteristics and main hypotheses of plant ecological stoichiometry. Chin. J. Plant Ecol. 2021, 45, 682–713. [Google Scholar] [CrossRef]
- Peñuelas, J.; Sardans, J.; Llusià, J.; Owen, S.M.; Carnicer, J.; Giambelluca, T.W.; Rezende, E.L.; Waite, M.N. Faster returns on “leaf economics” and different biogeochemical niche in invasive compared with native plant species. Glob. Chang. Biol. 2010, 16, 2171–2185. [Google Scholar] [CrossRef] [Green Version]
- Reich, P.B.; Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. USA 2004, 101, 11001–11006. [Google Scholar] [CrossRef]
- Tang, Z.Y.; Xu, W.T.; Zhou, G.Y.; Bai, Y.F.; Li, J.X.; Tang, X.L.; Chen, D.M.; Liu, Q.; Ma, W.H.; Xiong, G.M.; et al. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proc. Natl. Acad. Sci. USA 2018, 115, 4033–4038. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.J.; Yu, G.R.; Tao, B.; Wang, S.Q. Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC. Environ. Sci. 2007, 28, 2665–2673. [Google Scholar] [CrossRef]
- Han, W.X.; Wu, Y.; Tang, L.Y.; Chen, Y.H.; Li, L.P.; He, J.S.; Fang, J.S. Leaf carbon, nitrogen and phosphorus stoichiometry across plant species in Beijing and its periphery. Acta Sci. Nat. Univ. Pekin. 2009, 45, 855–860. [Google Scholar] [CrossRef]
- Von Liebig, J.F.; Playfair, L.P. Organic Chemistry in Its Application to Agriculture and Physiology; Verlag Viehweg: Braunschweig, Germany, 1843. [Google Scholar] [CrossRef] [Green Version]
- Koerselman, W.; Meuleman, A.F.M. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 1996, 33, 1441–1450. [Google Scholar] [CrossRef]
- Braakhekke, W.G.; Hooftman, D.A.P.; Braakhekke, W.G.; Hooftman, D.A.P. The resource balance hypothesis of plant species diversity in grassland. J. Veg. Sci. 1999, 10, 187–200. [Google Scholar] [CrossRef]
- Bai, X.; Cheng, J.H.; Zheng, S.X.; Zhan, S.X.; Bai, Y.F. Ecophysiological responses of Leymus chinensis to nitrogen and phosphorus additions in a typical steppe. Chin. J. Plant Ecol. 2014, 38, 103–115. [Google Scholar] [CrossRef]
- Koojiman, S.A.L.M. The stoichiometry of animal energetics. J. Theor. Biol. 1995, 177, 139–149. [Google Scholar] [CrossRef]
- Yu, Q.; Elser, J.J.; He, N.P.; Wu, H.H.; Chen, Q.S.; Zhang, G.M.; Han, X.G. Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia 2011, 166, 1–10. [Google Scholar] [CrossRef]
- Zhao, J. Nitrogen-Phosphorus Stoichiometry in Potentilla fruticose Linn. In Gannan Sub-Alpine Meadow; Lanzhou University: Lanzhou, China, 2011. [Google Scholar]
- Yu, Q.; Chen, Q.; Elser, J.J.; He, N.; Wu, H.; Zhang, G.; Wu, J.; Bai, Y.; Han, X. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecol. Lett. 2010, 13, 1390–1399. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.W.; Zhang, L.X.; Zhang, W.Y.; Zhong, H.P. Plant root N and P leves and their relationship to geographical and climate factors in a Chinese grassland transect. Acta Prataculturae Sci. 2014, 23, 69–76. [Google Scholar] [CrossRef]
- Bao, Y.J.; Cao, M.; Li, Z.H.; Guo, P.; Zhang, J.; Qin, J. A comparative study of the response of Leymus chinensis and Stipa grandis root characteristics to moisture gradients. Acta Ecol. Sin. 2004, 39, 1063–1070. [Google Scholar] [CrossRef]
- Bai, W.Y. Intraspecific Differentiation of Clonal Growth Characteristics of Leymus chinensis Rhizome and Its Relationship with Geographical and Climatic Factors of Original Habitat. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2021. [Google Scholar] [CrossRef]
Latitudinal Gradient Number | Latitudinal Region Division | Latitudinal Range of Plots | Sample Size of Plots | Sample Size |
---|---|---|---|---|
L1 | L1 ≤ 43°0′00″ | 42°00′00″ ≤ L1 ≤ 42°51′00″ | 22 | 110 |
L2 | 43°0′00″ < L2 ≤ 44°0′00″ | 43°01′01″ ≤ L2 ≤ 43°58′01″ | 15 | 75 |
L3 | 44°0′00″ < L3 ≤ 45°0′00″ | 44°04′01″ ≤ L3 ≤ 44°58′01″ | 16 | 80 |
L4 | 45°0′00″ < L4 ≤ 46°0′00″ | 45°04′59″ ≤ L4 ≤ 45°19′01″ | 15 | 75 |
TN | TP | N:P | |||||||
---|---|---|---|---|---|---|---|---|---|
Regression Equation | p Value | R2 | Regression Equation | p Value | R2 | Regression Equation | p Value | R2 | |
0–10 cm | y = 0.2539x − 1.808 | 0.107 | 0.797 | y = 0.0002x + 0.495 | 0.996 | 3 × 10−5 | y = 0.5257x − 3.213 | 0.170 | 0.688 |
10–20 cm | y = 0.218x − 1.593 | 0.040 | 0.923 | y = −0.0336x + 0.848 | 0.399 | 0.361 | y = 0.0162x + 3.219 | 0.972 | 0.001 |
20–30 cm | y = 0.1601x − 1.083 | 0.035 | 0.931 | y = −0.0208x + 0.642 | 0.446 | 0.307 | y = 0.5288x − 3.576 | 0.091 | 0.826 |
0–30 cm | y = 0.632x − 4.485 | 0.038 | 0.925 | y = −0.0542x + 1.985 | 0.585 | 0.172 | y = 0.6041x − 4.301 | 0.044 | 0.913 |
2012 | 2013 | 2014 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
W1 | W2 | W3 | W4 | W1 | W2 | W3 | W4 | W1 | W2 | W3 | W4 | |
1/HN | 0.159 | 0.821 | 0.514 | 0.608 | 0.471 | 0.203 | 0.387 | 0.109 | 0.421 | 0.301 | 0.042 | 0.526 |
p-value | 0.419 | 0.253 | 0.33 | 0.19 | 0.063 | 0.451 | 0.519 | 0.935 | 0.344 | 0.292 | 0.881 | 0.118 |
1/HP | 0.273 | 0.294 | 0.103 | 0.231 | 0.06 | 0.15 | 0.362 | 1.033 | 0.146 | 0.58 | 0.601 | 0.057 |
p-value | 0.186 | 0.362 | 0.667 | 0.637 | 0.96 | 0.807 | 0.127 | 0.164 | 0.717 | 0.052 | 0.195 | 0.974 |
1/HN:P | 1.966 | 0.141 | 0.107 | 0.379 | 0.611 | 0.154 | 0.436 | 0.025 | 0.533 | 0.348 | 1.649 | 0.342 |
p-value | 0.378 | 0.616 | 0.488 | 0.35 | 0.109 | 0.504 | 0.378 | 0.957 | 0.436 | 0.217 | 0.305 | 0.648 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Li, M.; Yang, J.; Yang, Y.; Lv, S.; Liu, H.; Tian, S.; Yun, X.; Yang, X. Spatial Distribution of Leymus chinensis Is Not Determined by Its Ecological Stoichiometry. Agronomy 2023, 13, 1821. https://doi.org/10.3390/agronomy13071821
Wu J, Li M, Yang J, Yang Y, Lv S, Liu H, Tian S, Yun X, Yang X. Spatial Distribution of Leymus chinensis Is Not Determined by Its Ecological Stoichiometry. Agronomy. 2023; 13(7):1821. https://doi.org/10.3390/agronomy13071821
Chicago/Turabian StyleWu, Jinrui, Mengzhen Li, Junyi Yang, Yong Yang, Shijie Lv, Hongmei Liu, Shichao Tian, Xiangjun Yun, and Xia Yang. 2023. "Spatial Distribution of Leymus chinensis Is Not Determined by Its Ecological Stoichiometry" Agronomy 13, no. 7: 1821. https://doi.org/10.3390/agronomy13071821
APA StyleWu, J., Li, M., Yang, J., Yang, Y., Lv, S., Liu, H., Tian, S., Yun, X., & Yang, X. (2023). Spatial Distribution of Leymus chinensis Is Not Determined by Its Ecological Stoichiometry. Agronomy, 13(7), 1821. https://doi.org/10.3390/agronomy13071821