The Responses of a Grapevine Rhizosphere System to Mulching Using Amplicon Sequencing and Transcriptomic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Design
2.2. Plant and Soil Sampling
2.3. 16S rRNA and Intergenic Spacer (ITS) rRNA Amplicon Sequencing and Data Processing
2.4. Root RNA Extraction and High-Through Sequencing
2.5. Root Transcriptomic Data Analysis
2.6. Statistical Analysis
3. Results
3.1. Rhizosphere Soil Physicochemical Properties and Enzyme
3.2. Amplicon-Sequencing Results
3.3. Composition and Function of Rhizosphere Soil Bacteria after Mulch Treatment
3.4. Composition and Function of RhizosphereSoil Fungi after Mulch Treatment
3.5. Microbial Co-Occurrence Networks in Rhizosphere Soil
3.6. Transcriptome Analysis of Root Tissues after Mulch Treatment
3.7. Variations in Root Transcriptome Relationships with Bacterial and Fungal Communities
3.8. Grapevine Growth Status and Phenological Date
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, J.; Savin, M.C.; Rom, C.R.; Gbur, E. Denitrifier community response to seven years of ground cover and nutrient management in an organic fruit tree orchard soil. Appl. Soil Ecol. 2017, 112, 60–70. [Google Scholar] [CrossRef] [Green Version]
- El-Beltagi, H.S.; Basit, A.; Mohamed, H.I.; Ali, I.; Ullah, S.; Kamel, E.A.R.; Shalaby, T.A.; Ramadan, K.M.A.; Alkhateeb, A.A.; Ghazzawy, H.S. Mulching as a sustainable water and soil saving practice in agriculture: A review. Agronomy 2022, 12, 1881. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Luo, Y.; Awasthi, M.K.; Yang, J.; Duan, Y.; Li, H.; Zhao, Z. Mulching practices alter the bacterial-fungal community and network in favor of soil quality in a semiarid orchard system. Sci. Total Environ. 2020, 725, 138527. [Google Scholar] [CrossRef]
- Li, B.; Chen, X.; Shi, X.; Liu, J.; Wei, Y.; Xiong, F. Effects of ridge tillage and straw mulching on cultivation the fresh faba beans. Agronomy 2021, 11, 1054. [Google Scholar] [CrossRef]
- Shirzadi, M.H.; Arvin, M.J.; Abootalebi, A.; Hasandokht, M.R. Effect of nylon mulch and some plant growth regulators on water use efficiency and some quantitative traits in onion (Allium cepa cv.) under water deficit stress. Cogent Food Agric. 2020, 6, 1779562. [Google Scholar] [CrossRef]
- Li, Y.; Li, T.; Wang, Z.; Wang, S.; Qin, X.; Liao, Y. Plastic film mulch changes the microbial community in maize root-associated compartments. Plant Soil 2022, 470, 5–20. [Google Scholar] [CrossRef]
- Shen, J.; Li, C.; Mi, G.; Li, L.; Yuan, L.; Jiang, R.; Zhang, F. Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. J. Exp. Bot. 2013, 64, 1181–1192. [Google Scholar] [CrossRef]
- Moran, J.; McGrath, C. Comparison of methods for mapping rhizosphere processes in the context of their surrounding root and soil environments. Biotechniques 2021, 71, 604–614. [Google Scholar] [CrossRef]
- Aparicio, M.A.; Lucena, C.; Garcia, M.J.; Ruiz-Castilla, F.J.; Jimenez-Adrian, P.; Lopez-Berges, M.S.; Prieto, P.; Alcantara, E.; Perez-Vicente, R.; Ramos, J.; et al. The nonpathogenic strain of Fusarium oxysporum FO12 induces Fe deficiency responses in cucumber (Cucumis sativus L.) plants. Planta 2023, 257, 50. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Gao, J.; Wang, S.; Li, W.; Wang, A. Community differentiation of rhizosphere microorganisms and their responses to environmental factors at different development stages of medicinal plant Glehnia littoralis. PeerJ 2023, 11, e14988. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, X.; Wang, Z.; Zhu, K.; Wu, W. Comparative metagenomic analysis reveals rhizosphere microbial community composition and functions help protect grapevines against salt stress. Front. Microbiol. 2023, 14, 1102547. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, D.; Sankar, A.; Devika, O.S.; Singh, S.; Shikha; Parihar, M.; Rakshit, A.; Sayyed, R.Z.; Gafur, A.; Ansari, M.J.; et al. Optimizing nutrient use efficiency, productivity, energetics, and economics of red cabbage following mineral fertilization and biopriming with compatible rhizosphere microbes. Sci. Rep. 2021, 11, 15680. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, C.J.; McMinn, R.; Weinig, C. Rhizosphere microbes influence host circadian clock function. Phytobiomes J. 2021, 5, 368–372. [Google Scholar] [CrossRef]
- Juhos, K.; Papdi, E.; Kovács, F.; Vasileiadis, V.P.; Veres, A. The effect of wool mulch on plant development in the context of the physical and biological conditions in soil. Plants 2023, 12, 684. [Google Scholar] [CrossRef]
- Xu, D.; Ling, J.; Qiao, F.; Xi, P.; Zeng, Y.; Zhang, J.; Lan, C.; Jiang, Z.; Peng, A.; Li, P. Organic mulch can suppress litchi downy blight through modification of soil microbial community structure and functional potentials. BMC Microbiol. 2022, 22, 155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, Y.; Sun, L.; Qiu, C.; Ding, Y.; Gu, H.; Wang, L.; Wang, Z.; Ding, Z. Organic mulching positively regulates the soil microbial communities and ecosystem functions in tea plantation. BMC Microbiol. 2020, 20, 103. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.; Zhang, W.; Dai, Z.L.; Li, J.B.; Mao, W.W.; Yu, F.W.; Ma, J.J.; Wang, S.Y.; Zeng, X.P. Comparative analysis of the effects of plastic mulch films on soil nutrient, yields and soil microbiome in three vegetable fields. Agronomy 2022, 12, 506. [Google Scholar] [CrossRef]
- Zhang, W.; Li, S.Q.; Shen, Y.F.; Yue, S.C. Film mulching affects root growth and function in dryland maize-soybean intercropping. Field Crops Res. 2021, 271, 108240. [Google Scholar] [CrossRef]
- Lee, O.N.; Park, H.Y. Effects of different colored film mulches on the growth and bolting time of radish (Raphanus sativus L.). Sci. Hortic. 2020, 266, 109271. [Google Scholar] [CrossRef]
- Yan, F.J.; Sun, Y.J.; Xu, H.; Yin, Y.Z.; Wang, H.Y.; Wang, C.Y.; Guo, C.C.; Yang, Z.Y.; Sun, Y.Y.; Ma, J. Effects of wheat straw mulch application and nitrogen management on rice root growth, dry matter accumulation and rice quality in soils of different fertility. Paddy Water Environ. 2018, 16, 507–518. [Google Scholar] [CrossRef]
- Burg, P.; Cizkova, A.; Masan, V.; Sedlar, A.; Matwijczuk, A.; Soucek, J. The effect of mulch materials on selected soil properties, yield and grape quality in vineyards under central european conditions. Agronomy 2022, 12, 1862. [Google Scholar] [CrossRef]
- Hu, J.G.; Bai, S.J.; Zhao, R.H.; Chen, G.; Cai, J.S. Effects of black geotextile mulch and grass mulch on the microclimate, fruit quality and anthocyanin components of ‘Xinyu’ table grape. N. Z. J. Crop Hort. 2022, 2108066. [Google Scholar] [CrossRef]
- Fraga, H.; Santos, J.A. Vineyard mulching as a climate change adaptation measure:fFuture simulations for Alentejo, Portugal. Agric. Sys. 2018, 164, 107–115. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, T.; Li, K.; Guo, X.W.; Guo, Y.S.; Liu, Z.D.; Xie, H.G. Bacterial communities that metabolize 4-Hydroxybenzoic acid in grape (Vitis vinifera L.) rhizosphere soil. Allelopath. J. 2019, 46, 41–53. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Meth. 2016, 13, 581. [Google Scholar] [CrossRef] [Green Version]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Caporaso, J.G. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2′s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef]
- Grillakis, M.G.; Koutroulis, A.G.; Papadimitriou, L.V.; Daliakopoulos, I.N.; Tsanis, I.K. Climate-induced shifts in global soil temperature regimes. Soil Sci. 2016, 181, 264–272. [Google Scholar] [CrossRef]
- Arai-Sanoh, Y.; Ishimaru, T.; Ohsumi, A.; Kondo, M. Effects of soil temperature on growth and root function in rice. Plant Prod. Sci. 2010, 13, 235–242. [Google Scholar] [CrossRef]
- Goel, L.; Shankar, V.; Sharma, R.K. Influence of different organic mulches on soil hydrothermal and plant growth parameters in potato crop (Solanum tuberosum L.). J. Agrometeorol. 2020, 22, 56–59. [Google Scholar] [CrossRef]
- Zhang, X.; You, S.; Tian, Y.; Li, J. Comparison of plastic film, biodegradable paper and bio-based film mulching for summer tomato production: Soil properties, plant growth, fruit yield and fruit quality. Sci. Hortic. 2019, 249, 38–48. [Google Scholar] [CrossRef]
- Chen, S.Y.; Zhang, X.Y.; Pei, D.; Sun, H.Y.; Chen, S.L. Effects of straw mulching on soil temperature, evaporation and yield of winter wheat: Field experiments on the North China Plain. Ann. Appl. Biol. 2007, 150, 261–268. [Google Scholar] [CrossRef]
- Javed, A.; Iqbal, M.; Farooq, M.; Lal, R.; Shehzadi, R. Plastic film and straw mulch effects on maize yield and water use efficiency under different irrigation levels in Punjab, Pakistan. Int. J. Agric. Biol. 2019, 21, 767–774. [Google Scholar]
- Han, W.; Cao, P.; Sun, Y.; Dang, G.; Xue, S.; America, L. Mechanized mulching practices with plastic filmand wheat straw in dryland wheat planting. AMA Agric. Mech. Asia Afr. Lat. Am. 2015, 46, 82–88. [Google Scholar]
- Sas-Paszt, L.; Pruski, K.; Zurawicz, E.; Sumorok, B.; Derkowska, E.; Gluszek, A. The effect of organic mulches and mycorrhizal substrate on growth, yield and quality of Gold Milenium apples on M.9 rootstock. Can. J. Plant Sci. 2014, 94, 281–291. [Google Scholar] [CrossRef]
- Tang, W.Z.; Yang, H.S.; Wang, W.E.; Wang, C.X.; Pang, Y.Y.; Chen, D.Y.; Hu, X.T. Effects of living grass mulch on soil properties and assessment of soil quality in Chinese apple orchards: A meta-analysis. Agronomy 2022, 12, 1974. [Google Scholar] [CrossRef]
- Saikia, R.; Sharma, S.; Thind, H.S.; Sidhu, H.S.; Yadvinder, S. Temporal changes in biochemical indicators of soil quality in response to tillage, crop residue and green manure management in a rice-wheat system. Ecol. Indic. 2019, 103, 383–394. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, G.; Li, Y.; Wang, Q.; Dang, P.; Qin, X.; Zou, Y.; Chen, Y.; Siddique, K.H.M. Straw incorporation with ridge–furrow plastic film mulch alters soil fungal community and increases maize yield in a semiarid region of China. Appl. Soil Ecol. 2021, 167, 104038. [Google Scholar] [CrossRef]
- Shi, M.F.; Kang, Y.C.; Zhang, W.N.; Yang, X.Y.; Fan, Y.L.; Yu, H.F.; Zhang, R.Y.; Guo, A.X.; Qin, S.H. Plastic film mulching with ridge planting alters soil chemical and biological properties to increase potato yields in semiarid Northwest China. Chem. Biol. Technol. Agri. 2022, 9, 16. [Google Scholar] [CrossRef]
- Wang, Y.P.; Li, X.G.; Hai, L.; Siddique, K.H.M.; Gan, Y.T.; Li, F.M. Film fully-mulched ridge-furrow cropping affects soil biochemical properties and maize nutrient uptake in a rainfed semi-arid environment. Soil Sci. Plant Nutr. 2014, 60, 486–498. [Google Scholar] [CrossRef]
- Wei, Y.J.; Wu, Y.; Yan, Y.Z.; Zou, W.; Xue, J.; Ma, W.R.; Wang, W.; Tian, G.; Wang, L.Y. High-throughput sequencing of microbial community diversity in soil, grapes, leaves, grape juice and wine of grapevine from China. PLoS ONE 2018, 13, e0193097. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wang, N.; Guo, X.Y.; Zhang, Y.; Ye, B.P. Comparative analysis of bacterial community structure in the rhizosphere of maize by high-throughput pyrosequencing. PLoS ONE 2017, 12, e0178425. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Wu, J.; Liu, X.; Chen, X.; Wu, Y.; Yu, S. Inorganic phosphorus fertilizer ameliorates maize growth by reducing metal uptake, improving soil enzyme activity and microbial community structure. Ecotoxicol. Environ. Saf. 2017, 143, 322–329. [Google Scholar] [CrossRef]
- Lin, L.; Xu, K.; Shen, D.; Chou, S.H.; Gomelsky, M.; Qian, G. Antifungal weapons of Lysobacter, a mighty biocontrol agent. Environ. Microbiol. 2021, 23, 5704–5715. [Google Scholar] [CrossRef]
- Yang, B.; Zheng, M.; Dong, W.; Xu, P.; Zheng, Y.; Yang, W.; Luo, Y.; Guo, J.; Niu, D.; Yu, Y.; et al. Plant disease resistance-related pathways recruit beneficial bacteria by remodeling root exudates upon Bacillus cereus AR156 treatment. Microbiol. Spectr. 2023, 11, e0361122. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhao, Y.; Yao, X.; Wang, J.; Zheng, P.; Xi, C.; Hu, B. Dominance of comammox Nitrospira in soil nitrification. Sci. Total Environ. 2021, 780, 146558. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Yang, H.; Chu, M.; Niu, X.; Wang, N.; Lin, Q.; Lou, K.; Zuo, C.; Wang, J.; Zou, Q.; et al. Differentiation and variability in the rhizosphere and endosphere microbiomes of healthy and diseased cotton (Gossypium sp.). Front. Microbiol. 2021, 12, 765269. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Elrys, A.S.; Liu, L.; Iqbal, M.; Zhao, J.; Huang, X.; Cai, Z. Cover plants-mediated suppression of Fusarium Wilt and root-knot incidence of cucumber is associated with the changes of rhizosphere fungal microbiome structure-under plastic shed system of North China. Front. Microbiol. 2022, 13, 697815. [Google Scholar] [CrossRef] [PubMed]
- Cao, P.; Wei, X.; Wang, G.; Chen, X.; Han, J.; Li, Y. Microbial inoculants and garbage fermentation liquid reduced root-knot nematode disease and as uptake in Panax quinquefolium cultivation by modulating rhizosphere microbiota community. Chin. Herb. Med. 2022, 14, 58–69. [Google Scholar] [CrossRef]
- Fotso, S.; Graupner, P.; Xiong, Q.; Gilbert, J.R.; Hahn, D.; Avila-Adame, C.; Davis, G.; Sumiyoshi, K. Alveolarides: Antifungal peptides from Microascus alveolaris active against phytopathogenic fungi. J. Nat. Prod. 2018, 81, 10–15. [Google Scholar] [CrossRef]
- Song, X.; Pan, Y.; Li, L.; Wu, X.; Wang, Y. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. continuous cropping fields. PLoS ONE 2018, 13, e0193811. [Google Scholar] [CrossRef] [Green Version]
- Kebede, A.Z.; Johnston, A.; Schneiderman, D.; Bosnich, W.; Harris, L.J. Transcriptome profiling of two maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes. BMC Genom. 2018, 19, 131. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Zhang, L.; Wang, L.; Wu, Q.; Li, K.; Guo, X. Autotoxin affects the rhizosphere microbial community structure by influencing the secretory characteristics of grapevine roots. Front. Microbiol. 2022, 13, 953424. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Zhao, K.; Lv, X.; Su, W.; Dai, Z.; Gilbert, J.A.; Brookes, P.C.; Faust, K.; Xu, J. Genetic correlation network prediction of forest soil microbial functional organization. ISME J. 2018, 12, 2492–2505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, S.; Kirkby, C.A.; Schmutter, D.; Bissett, A.; Kirkegaard, J.A.; Richardson, A.E. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 2016, 97, 188–198. [Google Scholar] [CrossRef]
- Hao, M.; Hu, H.; Liu, Z.; Dong, Q.; Sun, K.; Feng, Y.; Li, G.; Ning, T. Shifts in microbial community and carbon sequestration in farmland soil under long-term conservation tillage and straw returning. Appl. Soil Ecol. 2019, 136, 43–54. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Yue, S.; Tian, J.; Chen, H.; Jiang, H.; Siddique, K.H.M.; Zhan, A.; Fang, Q.; Yu, Q. Soil microbial community and network changes after long-term use of plastic mulch and nitrogen fertilization on semiarid farmland. Geoderma 2021, 396, 115086. [Google Scholar] [CrossRef]
- Luo, S.S.; Wang, S.J.; Yao, P.W.; Guo, D.; Li, X.J.; Li, S.Q.; Tian, C.J. Soil microbial communities under film mulching and N fertilization in semiarid farmland. Nutr. Cycl. Agroecosyst. 2019, 114, 157–170. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Maestre, F.T.; Reich, P.B.; Jeffries, T.C.; Gaitan, J.J.; Encinar, D.; Berdugo, M.; Campbell, C.D.; Singh, B.K. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 2016, 7, 10541. [Google Scholar] [CrossRef] [Green Version]
- de Vries, F.T.; Griffiths, R.I.; Bailey, M.; Craig, H.; Girlanda, M.; Gweon, H.S.; Hallin, S.; Kaisermann, A.; Keith, A.M.; Kretzschmar, M.; et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 2018, 9, 3033. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Sun, Q.; Xing, X. Root transcriptome reveals responses to plastic film mulching and grass cover in wine grape ‘Cabernet Sauvignon’ root and berry. Vitis 2020, 59, 1–8. [Google Scholar] [CrossRef]
- Dong, N.Q.; Lin, H.X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J. Integr. Plant Biol. 2021, 63, 180–209. [Google Scholar] [CrossRef] [PubMed]
- Naoumkina, M.A.; Zhao, Q.A.; Gallego-Giraldo, L.; Dai, X.B.; Zhao, P.X.; Dixon, R.A. Genome-wide analysis of phenylpropanoid defence pathways. Mol. Plant Pathol. 2010, 11, 829–846. [Google Scholar] [CrossRef]
- Xoca-Orozco, L.; Aguilera-Aguirre, S.; Vega-Arreguín, J.; Acevedo-Hernández, G.; Tovar-Pérez, E.; Stoll, A.; Herrera-Estrella, L.; Chacón-López, A. Activation of the phenylpropanoid biosynthesis pathway reveals a novel action mechanism of the elicitor effect of chitosan on avocado fruit epicarp. Food Res. Int. 2019, 121, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Cheng, L.; Nian, H.; Jin, J.; Lian, T. Linking plant functional genes to rhizosphere microbes: A review. Plant Biotechnol. J. 2023, 21, 902–917. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, R.L.; Vismans, G.; Yu, K.; Song, Y.; de Jonge, R.; Burgman, W.P.; Burmølle, M.; Herschend, J.; Bakker, P.; Pieterse, C.M.J. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 2018, 12, 1496–1507. [Google Scholar] [CrossRef] [Green Version]
- Hacquard, S.; Spaepen, S.; Garrido-Oter, R.; Schulze-Lefert, P. Interplay between innate immunity and the plant microbiota. Annu. Rev. Phytopathol. 2017, 55, 565–589. [Google Scholar] [CrossRef]
- Netzker, T.; Shepherdson, E.M.F.; Zambri, M.P.; Elliot, M.A. Bacterial volatile compounds: Functions in communication, cooperation, and competition. Annu. Rev. Microbiol. 2020, 74, 409–430. [Google Scholar] [CrossRef]
- Inoue, K.; Araki, T.; Endo, M. Circadian clock during plant development. J. Plant Res. 2018, 131, 59–66. [Google Scholar] [CrossRef] [Green Version]
- McClung, C.R. Plant circadian rhythms. Plant Cell 2006, 18, 792–803. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Wang, X.-C.; Wang, Z.-W.; Chen, Z.-X.; Wu, W.-M. The Responses of a Grapevine Rhizosphere System to Mulching Using Amplicon Sequencing and Transcriptomic Analysis. Agronomy 2023, 13, 1656. https://doi.org/10.3390/agronomy13061656
Wang B, Wang X-C, Wang Z-W, Chen Z-X, Wu W-M. The Responses of a Grapevine Rhizosphere System to Mulching Using Amplicon Sequencing and Transcriptomic Analysis. Agronomy. 2023; 13(6):1656. https://doi.org/10.3390/agronomy13061656
Chicago/Turabian StyleWang, Bo, Xi-Cheng Wang, Zhuang-Wei Wang, Zhen-Xiao Chen, and Wei-Min Wu. 2023. "The Responses of a Grapevine Rhizosphere System to Mulching Using Amplicon Sequencing and Transcriptomic Analysis" Agronomy 13, no. 6: 1656. https://doi.org/10.3390/agronomy13061656
APA StyleWang, B., Wang, X.-C., Wang, Z.-W., Chen, Z.-X., & Wu, W.-M. (2023). The Responses of a Grapevine Rhizosphere System to Mulching Using Amplicon Sequencing and Transcriptomic Analysis. Agronomy, 13(6), 1656. https://doi.org/10.3390/agronomy13061656