Ammonium Phytotoxicity and Tolerance: An Insight into Ammonium Nutrition to Improve Crop Productivity
Abstract
:1. Introduction
2. Nitrogen Metabolism and Ammonium Assimilation
3. Signs of Ammonium-Induced Toxicity
4. Postulated Theories of Ammonium Toxicity and Tolerance
5. Signaling Responses Involved in Ammonium Sensing and Tolerance
5.1. AMT-Mediated Extracellular Ammonium Sensing Responses
5.2. CAP1-Mediated Intracellular Ammonium Sensing Responses
5.3. Nitrate, Auxins, NO, and Polyamines-Mediated Signaling of NH4+ Tolerance
6. Ameliorated Crop Quality and Productivity by Ammonium Nutrition
Plant Species | NH4+: NO3- Ratios Investigated | Total N Concentration (mM L−1) | Source of the NH4+ ions | Optimum NH4+: NO3− Ratio | Effect on Growth, Photosynthesis, and Nitrogen Metabolism | Reference |
---|---|---|---|---|---|---|
Chrysanthemum morifolium var. circus | 1:100, 40:60, and 80:20 | 5.0 | (NH4)2SO4 | 80:20 (at pH 7) | Highly vegetative, reproductive, and increased vesicular-arbuscular mycorrhizal (VAM) fungi growth and nutrient content (N, P, K) at pH 7 | [89] |
Triticum durum ‘Barkay’ | 0:100, 25:75, and 50:50 | 1.4, 2.8, and 5.5, respectively | (NH4)2SO4 and NH4NO3 | 25:75 | Increased grain yield and total yield | [90] |
Fragaria × ananassa Duch) cvs. ‘Camarosa’ and ‘Selva’ | 0:100. 25:75, 50:50, and 75:25 | 3.26 | NH4H2PO4 and (NH4)2SO4 | 25:75 | Greater vegetative growth (number of leaves, leaf fresh and weights, chlorophyll index, leaf area, and net photosynthetic and transpiration rates), reproductive growth (number of flowers and fruits, percentage of fruit set, fruit length, fresh weight and dry weights of fruit, and percent total soluble sugars and Ca content of fruit), and overall yield | [91] |
Persea Americana Mill. | 0:4, 1:3, 2:2, 3:1, and 4:0 | 3.0 | (NH4)2SO4 | 1:3 | Increased dry matter accumulation and development of secondary shoots | [92] |
Lycopersicon esculentum Mill. ‘Xinpinbaoguan’ | 0:100, 25:75, and 50:50 | 5.0 | (NH4)2SO4 | 25:75 (both homogenous and heterogenous supply) | Higher shoot and root biomass and total N uptake | [93] |
Lycopersicon esculentum Mill. ‘Xi Nong 2011’ | 0:100, 25:75, 50:50, 75:25, and 100:0 | 8.0 | NH4Cl | 25:75 (unstressed conditions) 50:50 (chilling stress conditions) | Increased biomass, relative growth rate (RGR), net photosynthetic rate, chlorophyll content, contents of soluble protein and free amino acids and higher activities of GS and NADH-GOGAT (under unstressed conditions) | [94] |
Gerbera jamesonii L. | 0:100, 20:80, 40:60, and 60:40 | 11.2 | (NH4)2SO4 | 20:80 | Greater biomass, number of flowers, diameters of flower stalk and flower disk, vase life, fresh and dry weights of inflorescences, and relative water content of petals | [95] |
Phalaenopsis ‘Golden Peoker’ and Dendrobium ‘Valentine’ | 100:0, 75:25, 50:50, 25:75, and 0:100 | 3.0 | (NH4)2SO4 | 60:40 (Phalaenopsis) 50:50 (Dendrobium) | Bigger plants, greater dry matter, diameters of stem and pseudobulb, average number of pseudo bulbs and mineral nutrients | [96] |
Brassica chinensis L. | 0:15, 5:10, 7.5:7.5, and 10:5 | 15.0 | (NH4)2SO4 | 5:10 | Greater biomass, photosynthetic activity, and low nitrate accumulation under water deficit and low light intensity conditions | [97] |
Saccharum officinarum L. | 0:100, 25:75, 50:50, 75:25, and 100:0 | 15.0 | NH4Cl | 0:100 and 25:75 | Greater biomass, leaf surface area, root growth, leaf gas exchange, and nutrient content | [98] |
Brassica oleraceae L. var. acephala | 0:100, 25:75, 50:50, and 75:25 | 10.0 | (NH4)2SO4, NH4NO3, and (NH4)3PO4 | 75:25 | Higher biomass, leaf water content, nutrient content (N, P, K, Fe, Mn, Zn, and Cu), and lower nitrate content | [99] |
Brassica oleracea var. alboglabraCoffea arabica L. | 1:4, 1:8, and 1:12 0:100, 12.5:87.5, 50:50, and 100:0 | 8.0 12.0 | (NH4)2SO4 NH4NO3 | 1:12 50:50 | Increased leaf number, leaf area, and shoot and total fresh weights Highest dry mass yield, greater nutrient absorption, and photosynthetic ability | [100,101] |
Brassica napus L. N-efficient genotype (D4-15) and N-inefficient genotype (D2-1) | 0:100, 25:75, 50:50, 75:25, and 100:0 | 6.0 | NH4NO3 | 0:100 (N-efficient genotype) 75:25 (N-inefficient genotype) | Increased shoot and root biomass, well-developed root system, net photosynthetic rate, transpiration rate, stomatal conductance, nutrient content, better ammonium uptake, upregulation of ammonium transporter genes and greater tolerance to oxidative stress caused by NH4+ toxicity in N-inefficient genotype | [102] |
Vaccinium spp. ‘Emerald’ | 1:1, 2:1, and 4:1 | 7.5 | (NH4)2SO4 | 2:1 | Greater plant height, crown width, chlorophyll content, root activity, and upregulation of nitrate transporter genes (NRT1.5/NPF7.3, NRT2) | [103] |
Lactuca sativa var. longifolia | 100:0, 20:80, 40:60, and 60:40 | 5.3 | (NH4)2SO4 | 20:80 | Increased growth, head weight, and reduced nitrate accumulation in leaves | [104] |
Brassica Pekinensis ‘Jinwa no. 2’ | 0:100, 10:90, 15:85, and 25:75 | 5.0 | (NH4)2SO4 | 15:85 (normal light intensity) 10:90 (low light intensity) | Increased activities of nitrate reductase (NR) and glutamine synthetase (GS), high nitric oxide (NO) levels in leaves, upregulation of NR and GS1 genes, and upregulation of proteins related to photosynthesis, carbon and energy metabolism, stress and defense, and protein folding and degradation responses | [105] |
Brassica alboglabra L. H. Bailey | 0:100, 10:90, 25:75, and 50:50 | 5.0 | NH4Cl | 25:75 | Increased plant height, stem diameter, fresh and dry weights, length, surface area, volume and diameter of root, total N content, and higher NUE | [106] |
Lycopersicon esculentum Mill. | 0:100, 8:92, 15:85, and 20:80 | 12.0 | (NH4)2SO4 | 15:85 (grafted tomato) 8:92 (non-grafted tomato) | Increased biomass production, number of trichomes, epidermal cell density, stomatal density, fruits per plant, fruit size, average fruit weight, and total soluble solids | [107] |
Brassica lee ssp. namai Ssamchoo ‘Chunssamhwang 51’ | 0:100, 16.7:83.3, 33.3:66.7, and 50:50 NH4+:NO3-:Urea 17:83:0, 50:50:0; 25:50:25, and 0:50:50 | 13.0 | (NH4)2SO4 | 16.7:83.3 (NH4+: NO3-) and 25:50:25 (NH4+:NO3-:Urea) (combined with 10.7 mmol L−1 Si) | Increased germination rate, germination energy, mean germination rate, specific leaf weight, fresh weight, root activity, and chlorophyll and vitamin C contents | [108] |
Dracocephalum moldavica L. | 0:100, 25:75, 50:50, 75:25, and 100:0 | 7.7 | (NH4)2SO4 and NH4NO3 | 0:100, 25:75, and 75:25 | 0:100—Highest growth parameters, biomass, and contents of total phenolics, total flavonoids, and carotenoids. 25:75—Highest nutrient (N, Ca, and Mg) and geraniol accumulation 75:25—Highest accumulation of phenolic compounds, viz., p-coumaric acid, rosmarinic acid, caffeic acid, quercetin, gallic acid and rutin and medicinal compounds, viz., geranial and geranyl acetate | [109] |
7. Ameliorated Crop Resilience to Biotic and Abiotic Stresses by Ammonium Nutrition
8. Omics Investigations in Comprehending NUE
9. Strategies to Overcome Ammonium Toxicity
10. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crawford, N.M. Nitrate: Nutrient and Signal for Plant Growth. Plant Cell 1995, 7, 859. [Google Scholar] [PubMed]
- Xu, G.; Fan, X.; Miller, A.J. Plant Nitrogen Assimilation and Use Efficiency. Annu. Rev. Plant Biol. 2012, 63, 153–182. [Google Scholar] [CrossRef] [PubMed]
- Atkins, C.A.; Pate, J.S.; Peoples, M.B.; Joy, K.W. Amino Acid Transport and Metabolism in Relation to the Nitrogen Economy of a Legume Leaf. Plant Physiol. 1983, 71, 841–848. [Google Scholar] [CrossRef]
- Santi, C.; Bogusz, D.; Franche, C. Biological Nitrogen Fixation in Non-Legume Plants. Ann. Bot. 2013, 111, 743–767. [Google Scholar] [CrossRef] [PubMed]
- Menegat, S.; Ledo, A.; Tirado, R. Greenhouse Gas Emissions from Global Production and Use of Nitrogen Synthetic Fertilisers in Agriculture. Sci. Rep. 2022, 12, 14490. [Google Scholar] [CrossRef]
- Bindraban, P.S.; Dimkpa, C.O.; White, J.C.; Franklin, F.A.; Melse-Boonstra, A.; Koele, N.; Pandey, R.; Rodenburg, J.; Senthilkumar, K.; Demokritou, P. Safeguarding Human and Planetary Health Demands a Fertilizer Sector Transformation. Plants People Planet 2020, 2, 302–309. [Google Scholar] [CrossRef]
- Coskun, D.; Britto, D.T.; Shi, W.; Kronzucker, H.J. Nitrogen Transformations in Modern Agriculture and the Role of Biological Nitrification Inhibition. Nat. Plants 2017, 3, 17074. [Google Scholar] [CrossRef]
- Godlewski, M.; Adamczyk, B. The Ability of Plants to Secrete Proteases by Roots. Plant Physiol. Biochem. 2007, 45, 657–664. [Google Scholar] [CrossRef]
- Britto, D.T.; Kronzucker, H.J. Ecological Significance and Complexity of N-Source Preference in Plants. Ann. Bot. 2013, 112, 957–963. [Google Scholar] [CrossRef]
- Britto, D.T.; Kronzucker, H.J. NH4+ Toxicity in Higher Plants: A Critical Review. J. Plant Physiol. 2002, 159, 567–584. [Google Scholar] [CrossRef]
- Rosales, E.P.; Iannone, M.F.; Groppa, M.D.; Benavides, M.P. Nitric Oxide Inhibits Nitrate Reductase Activity in Wheat Leaves. Plant Physiol. Biochem. 2011, 49, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Lea, P.J.; Miflin, B.J. Glutamate Synthase and the Synthesis of Glutamate in Plants. Plant Physiol. Biochem. 2003, 41, 555–564. [Google Scholar] [CrossRef]
- Esposito, S.; Guerriero, G.; Vona, V.; Di Martino Rigano, V.; Carfagna, S.; Rigano, C. Glutamate Synthase Activities and Protein Changes in Relation to Nitrogen Nutrition in Barley: The Dependence on Different Plastidic Glucose-6P Dehydrogenase Isoforms. J. Exp. Bot. 2005, 56, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Guan, M.; de Bang, T.C.; Pedersen, C.; Schjoerring, J.K. Cytosolic Glutamine Synthetase Gln1; 2 Is the Main Isozyme Contributing to GS1 Activity and Can Be Up-Regulated to Relieve Ammonium Toxicity. Plant Physiol. 2016, 171, 1921–1933. [Google Scholar] [CrossRef]
- Konishi, N.; Ishiyama, K.; Matsuoka, K.; Maru, I.; Hayakawa, T.; Yamaya, T.; Kojima, S. NADH-dependent Glutamate Synthase Plays a Crucial Role in Assimilating Ammonium in the Arabidopsis Root. Physiol. Plant. 2014, 152, 138–151. [Google Scholar] [CrossRef]
- Labboun, S.; Tercé-Laforgue, T.; Roscher, A.; Bedu, M.; Restivo, F.M.; Velanis, C.N.; Skopelitis, D.S.; Moshou, P.N.; Roubelakis-Angelakis, K.A.; Suzuki, A. Resolving the Role of Plant Glutamate Dehydrogenase. I. in Vivo Real Time Nuclear Magnetic Resonance Spectroscopy Experiments. Plant Cell Physiol. 2009, 50, 1761–1773. [Google Scholar] [CrossRef]
- Skopelitis, D.S.; Paranychianakis, N.V.; Paschalidis, K.A.; Pliakonis, E.D.; Delis, I.D.; Yakoumakis, D.I.; Kouvarakis, A.; Papadakis, A.K.; Stephanou, E.G.; Roubelakis-Angelakis, K.A. Abiotic Stress Generates ROS That Signal Expression of Anionic Glutamate Dehydrogenases to Form Glutamate for Proline Synthesis in Tobacco and Grapevine. Plant Cell 2006, 18, 2767–2781. [Google Scholar] [CrossRef]
- Tercé-Laforgue, T.; Dubois, F.; Ferrario-Méry, S.; Pou de Crecenzo, M.-A.; Sangwan, R.; Hirel, B. Glutamate Dehydrogenase of Tobacco Is Mainly Induced in the Cytosol of Phloem Companion Cells When Ammonia Is Provided Either Externally or Released during Photorespiration. Plant Physiol. 2004, 136, 4308–4317. [Google Scholar] [CrossRef]
- Coskun, D.; Britto, D.T.; Li, M.; Becker, A.; Kronzucker, H.J. Rapid Ammonia Gas Transport Accounts for Futile Transmembrane Cycling under NH3/NH4+ Toxicity in Plant Roots. Plant Physiol. 2013, 163, 1859–1867. [Google Scholar] [CrossRef]
- Van Katwijk, M.M.; Vergeer, L.H.T.; Schmitz, G.H.W.; Roelofs, J.G.M. Ammonium Toxicity in Eelgrass Zostera marina. Mar. Ecol. Prog. Ser. 1997, 157, 159–173. [Google Scholar] [CrossRef]
- Barreto, R.F.; Prado, R.M.; Leal, A.J.F.; Troleis, M.J.B.; Junior, G.B.S.; Monteiro, C.C.; Santos, L.C.N.; Carvalho, R.F. Mitigation of Ammonium Toxicity by Silicon in Tomato Depends on the Ammonium Concentration. Acta Agric. Scand. Sect. B Soil Plant Sci. 2016, 66, 483–488. [Google Scholar] [CrossRef]
- Roosta, H.R.; Schjoerring, J.K. Effects of Ammonium Toxicity on Nitrogen Metabolism and Elemental Profile of Cucumber Plants. J. Plant Nutr. 2007, 30, 1933–1951. [Google Scholar] [CrossRef]
- Silva, B.S.; Prado, R.D.M.; Hurtado, A.C.; de Andrade, R.A.; da Silva, G.P. Ammonia Toxicity Affects Cations Uptake and Growth in Papaya Plants Inclusive with Silicon Addition. Acta Biológica Colomb. 2020, 25, 345–353. [Google Scholar] [CrossRef]
- Bonomelli, C.; de Freitas, S.T.; Aguilera, C.; Palma, C.; Garay, R.; Dides, M.; Brossard, N.; O’Brien, J.A. Ammonium Excess Leads to Ca Restrictions, Morphological Changes, and Nutritional Imbalances in Tomato Plants, Which Can Be Monitored by the N/Ca Ratio. Agronomy 2021, 11, 1437. [Google Scholar] [CrossRef]
- De la Peña, M.; Marín-Peña, A.J.; Urmeneta, L.; Coleto, I.; Castillo-González, J.; van Liempd, S.M.; Falcón-Pérez, J.M.; Álvarez-Fernández, A.; González-Moro, M.B.; Marino, D. Ammonium Nutrition Interacts with Iron Homeostasis in Brachypodium distachyon. J. Exp. Bot. 2022, 73, 263–274. [Google Scholar] [CrossRef]
- Li, B.; Li, G.; Kronzucker, H.J.; Baluška, F.; Shi, W. Ammonium Stress in Arabidopsis: Signaling, Genetic Loci, and Physiological Targets. Trends Plant Sci. 2014, 19, 107–114. [Google Scholar] [CrossRef]
- Rogato, A.; D’Apuzzo, E.; Barbulova, A.; Omrane, S.; Parlati, A.; Carfagna, S.; Costa, A.; Schiavo, F.L.; Esposito, S.; Chiurazzi, M. Characterization of a Developmental Root Response Caused by External Ammonium Supply in Lotus japonicus. Plant Physiol. 2010, 154, 784–795. [Google Scholar] [CrossRef]
- Lima, J.E.; Kojima, S.; Takahashi, H.; von Wirén, N. Ammonium Triggers Lateral Root Branching in Arabidopsis in an AMMONIUM TRANSPORTER1; 3-Dependent Manner. Plant Cell 2010, 22, 3621–3633. [Google Scholar] [CrossRef]
- Zou, N.; Li, B.; Chen, H.; Su, Y.; Kronzucker, H.J.; Xiong, L.; Baluška, F.; Shi, W. GSA-1/ARG 1 Protects Root Gravitropism in Arabidopsis under Ammonium Stress. New Phytol. 2013, 200, 97–111. [Google Scholar] [CrossRef]
- Domínguez-Valdivia, M.D.; Aparicio-Tejo, P.M.; Lamsfus, C.; Cruz, C.; Martins-Loução, M.A.; Moran, J.F. Nitrogen Nutrition and Antioxidant Metabolism in Ammonium-tolerant And-sensitive Plants. Physiol. Plant. 2008, 132, 359–369. [Google Scholar] [CrossRef]
- Drath, M.; Kloft, N.; Batschauer, A.; Marin, K.; Novak, J.; Forchhammer, K. Ammonia Triggers Photodamage of Photosystem II in the Cyanobacterium Synechocystis sp. Strain PCC 6803. Plant Physiol. 2008, 147, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Podgorska, A.; Gieczewska, K.; Łukawska-kuzma, K.; Rasmusson, A.G.; Gardeström, P.; Szal, B. Long-Term Ammonium Nutrition of Arabidopsis Increases the Extrachloroplastic NAD (P) H. Plant Cell Environ. 2013, 36, 2038–2049. [Google Scholar]
- Zhu, Z.; Gerendas, J.; Bendixen, R.; Schinner, K.; Tabrizi, H.; Sattelmacher, B.; Hansen, U.-P. Different Tolerance to Light Stress in NO3−-and NH4+-Grown Phaseolus vulgaris L. Plant Biol. 2000, 2, 558–570. [Google Scholar] [CrossRef]
- Patterson, K.; Cakmak, T.; Cooper, A.; Lager, I.D.A.; Rasmusson, A.G.; Escobar, M.A. Distinct Signalling Pathways and Transcriptome Response Signatures Differentiate Ammonium-and Nitrate-supplied Plants. Plant. Cell Environ. 2010, 33, 1486–1501. [Google Scholar] [CrossRef]
- Zhu, Y.; Di, T.; Xu, G.; Chen, X.I.; Zeng, H.; Yan, F.; Shen, Q. Adaptation of Plasma Membrane H+-ATPase of Rice Roots to Low PH as Related to Ammonium Nutrition. Plant. Cell Environ. 2009, 32, 1428–1440. [Google Scholar] [CrossRef]
- Khademi, S.; O’Connell, J., III; Remis, J.; Robles-Colmenares, Y.; Miercke, L.J.W.; Stroud, R.M. Mechanism of Ammonia Transport by Amt/MEP/Rh: Structure of AmtB at 1.35 A. Science 2004, 305, 1587–1594. [Google Scholar] [CrossRef]
- Pantoja, O. High Affinity Ammonium Transporters: Molecular Mechanism of Action. Front. Plant Sci. 2012, 3, 34. [Google Scholar] [CrossRef] [PubMed]
- Balkos, K.D.; Britto, D.T.; Kronzucker, H.J. Optimization of Ammonium Acquisition and Metabolism by Potassium in Rice (Oryza sativa L. Cv. IR-72). Plant. Cell Environ. 2010, 33, 23–34. [Google Scholar]
- Szczerba, M.W.; Britto, D.T.; Balkos, K.D.; Kronzucker, H.J. Alleviation of Rapid, Futile Ammonium Cycling at the Plasma Membrane by Potassium Reveals K+-Sensitive and-Insensitive Components of NH4+ Transport. J. Exp. Bot. 2008, 59, 303–313. [Google Scholar] [CrossRef]
- Coskun, D.; Britto, D.T.; Kronzucker, H.J. The Nitrogen–Potassium Intersection: Membranes, Metabolism, and Mechanism. Plant. Cell Environ. 2017, 40, 2029–2041. [Google Scholar] [CrossRef]
- Liu, Y.; von Wirén, N. Ammonium as a Signal for Physiological and Morphological Responses in Plants. J. Exp. Bot. 2017, 68, 2581–2592. [Google Scholar] [CrossRef] [PubMed]
- Lanquar, V.; Loqué, D.; Hormann, F.; Yuan, L.; Bohner, A.; Engelsberger, W.R.; Lalonde, S.; Schulze, W.X.; von Wirén, N.; Frommer, W.B. Feedback Inhibition of Ammonium Uptake by a Phospho-Dependent Allosteric Mechanism in Arabidopsis. Plant Cell 2009, 21, 3610–3622. [Google Scholar] [CrossRef] [PubMed]
- Neuhauser, B.; Dynowski, M.; Mayer, M.; Ludewig, U. Regulation of NH4+ Transport by Essential Cross Talk between AMT Monomers through the Carboxyl Tails. Plant Physiol. 2007, 143, 1651–1659. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Gu, R.; Xuan, Y.; Smith-Valle, E.; Loqué, D.; Frommer, W.B.; von Wirén, N. Allosteric Regulation of Transport Activity by Heterotrimerization of Arabidopsis Ammonium Transporter Complexes in Vivo. Plant Cell 2013, 25, 974–984. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Y.; Luo, W.; Li, R.; He, Q.; Fang, X.; Michele, R.D.; Ast, C.; von Wirén, N.; Lin, J. Single-Particle Analysis Reveals Shutoff Control of the Arabidopsis Ammonium Transporter AMT1; 3 by Clustering and Internalization. Proc. Natl. Acad. Sci. USA 2013, 110, 13204–13209. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Ma, X.; Zhang, G.; Song, S.; Zhou, Y.; Gao, L.; Miao, Y.; Song, C.-P. A Receptor-like Kinase Mediates Ammonium Homeostasis and Is Important for the Polar Growth of Root Hairs in Arabidopsis. Plant Cell 2014, 26, 1497–1511. [Google Scholar] [CrossRef]
- Engelsberger, W.R.; Schulze, W.X. Nitrate and Ammonium Lead to Distinct Global Dynamic Phosphorylation Patterns When Resupplied to Nitrogen-starved Arabidopsis Seedlings. Plant J. 2012, 69, 978–995. [Google Scholar] [CrossRef]
- Bai, L.; Zhou, Y.; Ma, X.; Gao, L.; Song, C.-P. Arabidopsis CAP1-Mediated Ammonium Sensing Required Reactive Oxygen Species in Plant Cell Growth. Plant Signal. Behav. 2014, 9, e29582. [Google Scholar] [CrossRef]
- Esteban, R.; Royo, B.; Urarte, E.; Zamarreño, A.M.; Garcia-Mina, J.M.; Moran, J.F. Both Free Indole-3-Acetic Acid and the Photosynthetic Efficiency Play a Relevant Role in the Response of Medicago truncatula to Urea and Ammonium Nutrition under Axenic Conditions. Front. Plant Sci 2016, 7, 140. [Google Scholar] [CrossRef]
- Yang, H.; von der Fecht-Bartenbach, J.; Friml, J.; Lohmann, J.U.; Neuhäuser, B.; Ludewig, U. Auxin-Modulated Root Growth Inhibition in Arabidopsis thaliana Seedlings with Ammonium as the Sole Nitrogen Source. Funct. Plant Biol. 2014, 42, 239–251. [Google Scholar] [CrossRef]
- Geiger, D.; Maierhofer, T.; Al-Rasheid, K.A.S.; Scherzer, S.; Mumm, P.; Liese, A.; Ache, P.; Wellmann, C.; Marten, I.; Grill, E. Stomatal Closure by Fast Abscisic Acid Signaling Is Mediated by the Guard Cell Anion Channel SLAH3 and the Receptor RCAR1. Sci. Signal. 2011, 4, ra32. [Google Scholar] [CrossRef] [PubMed]
- Flores, T.; Todd, C.D.; Tovar-Mendez, A.; Dhanoa, P.K.; Correa-Aragunde, N.; Hoyos, M.E.; Brownfield, D.M.; Mullen, R.T.; Lamattina, L.; Polacco, J.C. Arginase-Negative Mutants of Arabidopsis Exhibit Increased Nitric Oxide Signaling in Root Development. Plant Physiol. 2008, 147, 1936–1946. [Google Scholar] [CrossRef] [PubMed]
- Wimalasekera, R.; Villar, C.; Begum, T.; Scherer, G.F.E. COPPER AMINE OXIDASE1 (CuAO1) of Arabidopsis Thaliana Contributes to Abscisic Acid-and Polyamine-Induced Nitric Oxide Biosynthesis and Abscisic Acid Signal Transduction. Mol. Plant 2011, 4, 663–678. [Google Scholar] [CrossRef] [PubMed]
- Ariz, I.; Asensio, A.C.; Zamarreño, A.M.; García-Mina, J.M.; Aparicio-Tejo, P.M.; Moran, J.F. Changes in the C/N Balance Caused by Increasing External Ammonium Concentrations Are Driven by Carbon and Energy Availabilities during Ammonium Nutrition in Pea Plants: The Key Roles of Asparagine Synthetase and Anaplerotic Enzymes. Physiol. Plant. 2013, 148, 522–537. [Google Scholar] [CrossRef] [PubMed]
- Jeong, B.R. Ammonium and Nitrate Nutrition of Selected Bedding Plants. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 1991. [Google Scholar]
- Jeong, B.R.; Lee, C.W.; Daley, L.S. Use of Non-destructive In vivo Spectroscopic Analyses in Determining Leaf Chlorophyll Contents and Light Absorption Characteristics of Bedding Plants Grown with Different N Source. HortScience 1990, 25, 1098G–1098. [Google Scholar] [CrossRef]
- Jeong, B.R.; Lee, C.W. Influence of Ammonium, Nitrate, and Chloride on Solution PH and Ion Uptake by Ageratum and Salvia in Hydroponic Culture. J. Plant Nutr. 1996, 19, 1343–1360. [Google Scholar] [CrossRef]
- M’rah Helali, S.; Nebli, H.; Kaddour, R.; Mahmoudi, H.; Lachaâl, M.; Ouerghi, Z. Influence of Nitrate—Ammonium Ratio on Growth and Nutrition of Arabidopsis thaliana. Plant Soil 2010, 336, 65–74. [Google Scholar] [CrossRef]
- Masakapalli, S.K.; Kruger, N.J.; Ratcliffe, R.G. The Metabolic Flux Phenotype of Heterotrophic Arabidopsis Cells Reveals a Complex Response to Changes in Nitrogen Supply. Plant J. 2013, 74, 569–582. [Google Scholar] [CrossRef]
- Marino, D.; Ariz, I.; Lasa, B.; Santamaría, E.; Fernández-Irigoyen, J.; González-Murua, C.; Aparicio Tejo, P.M. Quantitative Proteomics Reveals the Importance of Nitrogen Source to Control Glucosinolate Metabolism in Arabidopsis thaliana and Brassica oleracea. J. Exp. Bot. 2016, 67, 3313–3323. [Google Scholar] [CrossRef]
- Fuertes-Mendizábal, T.; González-Torralba, J.; Arregui, L.M.; González-Murua, C.; González-Moro, M.B.; Estavillo, J.M. Ammonium as Sole N Source Improves Grain Quality in Wheat. J. Sci. Food Agric. 2013, 93, 2162–2171. [Google Scholar] [CrossRef]
- Cramer, M.D.; Lewis, O.A.M. The Influence of Nitrate and Ammonium Nutrition on the Growth of Wheat (Triticum aestivum) and Maize (Zea mays) Plants. Ann. Bot. 1993, 72, 359–365. [Google Scholar] [CrossRef]
- Raab, T.K.; Terry, N. Nitrogen Source Regulation of Growth and Photosynthesis in Beta vulgaris L. Plant Physiol. 1994, 105, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.X.; Li, C.J.; Zhang, F.S. Transpiration, Potassium Uptake and Flow in Tobacco as Affected by Nitrogen Forms and Nutrient Levels. Ann. Bot. 2005, 95, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Kaldenhoff, R.; Uehlein, N.; Sattelmacher, B.; Brueck, H. Relationship between Water and Nitrogen Uptake in Nitrate-and Ammonium-supplied Phaseolus vulgaris L. Plants. J. Plant Nutr. Soil Sci. 2007, 170, 73–80. [Google Scholar] [CrossRef]
- Gao, L.; Liu, M.; Wang, M.; Shen, Q.; Guo, S. Enhanced Salt Tolerance under Nitrate Nutrition Is Associated with Apoplast Na+ Content in Canola (Brassica napus L.) and Rice (Oryza sativa L.) Plants. Plant Cell Physiol. 2016, 57, 2323–2333. [Google Scholar] [CrossRef]
- Malagoli, M.; Dal Canal, A.; Quaggiotti, S.; Pegoraro, P.; Bottacin, A. Differences in Nitrate and Ammonium Uptake between Scots Pine and European Larch. Plant Soil 2000, 221, 1–3. [Google Scholar] [CrossRef]
- Horchani, F.; Hajri, R.; Aschi-Smiti, S. Effect of Ammonium or Nitrate Nutrition on Photosynthesis, Growth, and Nitrogen Assimilation in Tomato Plants. J. Plant Nutr. Soil Sci. 2010, 173, 610–617. [Google Scholar] [CrossRef]
- Guo, S.; Chen, G.; Zhou, Y.; Shen, Q. Ammonium Nutrition Increases Photosynthesis Rate under Water Stress at Early Development Stage of Rice (Oryza sativa L.). Plant Soil 2007, 296, 115–124. [Google Scholar] [CrossRef]
- Barber, S.A. Soil Nutrient Bioavailability: A Mechanistic Approach; John Wiley & Sons: Hoboken, NJ, USA, 1995. [Google Scholar]
- Ahmed, M.; Rauf, M.; Akhtar, M.; Mukhtar, Z.; Saeed, N.A. Hazards of Nitrogen Fertilizers and Ways to Reduce Nitrate Accumulation in Crop Plants. Environ. Sci. Pollut. Res. 2020, 27, 17661–17670. [Google Scholar] [CrossRef]
- Jeong, B.; Lee, C.W. Optimum Concentrations of NH4+, NO3−, and NH4++ NO3− for Petunia hybrida Grown in Peat-Lite and Rockwool Media. Hortic. Environ. Biotechnol. 2007, 48, 325–331. [Google Scholar]
- Zhang, Y.; Lv, H.; Wang, D.; Deng, J.; Song, W.; Makeen, K.; Shen, Q.; Xu, G. Partial Nitrate Nutrition Amends Photosynthetic Characteristics in Rice (Oryza sativa L. var. Japonica) Differing in Nitrogen Use Efficiency. Plant Growth Regul. 2011, 63, 235–242. [Google Scholar] [CrossRef]
- Zhang, F.; Kang, S.; Li, F.; Zhang, J. Growth and Major Nutrient Concentrations in Brassica campestris Supplied with Different NH4+/NO3− Ratios. J. Integr. Plant Biol. 2007, 49, 455–462. [Google Scholar] [CrossRef]
- Jesus, G.L.D.; Pauletti, V.; Zawadneak, M.A.C.; Cuquel, F.L. Strawberry Quality Affected by the Nitrate: Ammonium Ratio in the Nutrient Solution. Rev. Mex. Cienc. Agrícolas 2021, 12, 753–763. [Google Scholar]
- Zhang, J.; Lv, J.; Dawuda, M.M.; Xie, J.; Yu, J.; Li, J.; Zhang, X.; Tang, C.; Wang, C.; Gan, Y. Appropriate Ammonium-Nitrate Ratio Improves Nutrient Accumulation and Fruit Quality in Pepper (Capsicum annuum L.). Agronomy 2019, 9, 683. [Google Scholar] [CrossRef]
- Zhu, Y.; Qi, B.; Hao, Y.; Liu, H.; Sun, G.; Chen, R.; Song, S. Appropriate NH4+/NO3–Ratio Triggers Plant Growth and Nutrient Uptake of Flowering Chinese Cabbage by Optimizing the PH Value of Nutrient Solution. Front. Plant Sci. 2021, 12, 656144. [Google Scholar] [CrossRef]
- Song, J.; Yang, J.; Jeong, B.R. Decreased Solution PH and Increased K+ Uptake Are Related to Ammonium Tolerance in Hydroponically Cultured Plants. Horticulturae 2022, 8, 228. [Google Scholar] [CrossRef]
- Song, J.; Yang, J.; Jeong, B.R. Growth, Quality, and Nitrogen Assimilation in Response to High Ammonium or Nitrate Supply in Cabbage (Brassica campestris L.) and Lettuce (Lactuca sativa L.). Agronomy 2021, 11, 2556. [Google Scholar] [CrossRef]
- Narayan, O.P.; Kumar, P.; Yadav, B.; Dua, M.; Johri, A.K. Sulfur Nutrition and Its Role in Plant Growth and Development. Plant Signal. Behav. 2022, 2030082. [Google Scholar] [CrossRef] [PubMed]
- Chien, S.H.; Gearhart, M.M.; Villagarcía, S. Comparison of Ammonium Sulfate with Other Nitrogen and Sulfur Fertilizers in Increasing Crop Production and Minimizing Environmental Impact: A Review. Soil Sci. 2011, 176, 327–335. [Google Scholar] [CrossRef]
- Megda, M.X.V.; Mariano, E.; Leite, J.M.; Megda, M.M.; Trivelin, P.C.O. Ammonium Chloride as an Alternative Source of Nitrogen for Sugarcane during Two Consecutive Cycles. Pesqui. Agropecuária Bras. 2019, 54, e00329. [Google Scholar] [CrossRef]
- Ishikawa, N.; Ishioka, G.; Yanaka, M.; Takata, K.; Murakami, M. Effects of Ammonium Chloride Fertilizer and Its Application Stage on Cadmium Concentrations in Wheat (Triticum aestivum L.) Grain. Plant Prod. Sci. 2015, 18, 137–145. [Google Scholar] [CrossRef]
- Wang, X.-X.; Liu, S.; Zhang, S.; Li, H.; Maimaitiaili, B.; Feng, G.; Rengel, Z. Localized Ammonium and Phosphorus Fertilization Can Improve Cotton Lint Yield by Decreasing Rhizosphere Soil PH and Salinity. Field Crops Res. 2018, 217, 75–81. [Google Scholar] [CrossRef]
- Eid, M.A.M.; Abdel-Salam, A.A.; Salem, H.M.; Mahrous, S.E.; Seleiman, M.F.; Alsadon, A.A.; Solieman, T.H.I.; Ibrahim, A.A. Interaction Effects of Nitrogen Source and Irrigation Regime on Tuber Quality, Yield, and Water Use Efficiency of Solanum tuberosum L. Plants 2020, 9, 110. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elrahman, S.; Fahim, M.; El-Morshedy, R.; Abdrabbo, M.; Hashem, F. Appropriate Ammonium-Nitrate Ratio Improves Vegetative Growth and Yield of Eggplant under Water Stress Conditions. Middle East J. Agric. Res. 2022, 11, 89–102. [Google Scholar]
- Sanz-Cobena, A.; Lassaletta, L.; Aguilera, E.; del Prado, A.; Garnier, J.; Billen, G.; Iglesias, A.; Sanchez, B.; Guardia, G.; Abalos, D. Strategies for Greenhouse Gas Emissions Mitigation in Mediterranean Agriculture: A Review. Agric. Ecosyst. Environ. 2017, 238, 5–24. [Google Scholar] [CrossRef]
- Cui, L.; Li, D.; Wu, Z.; Xue, Y.; Xiao, F.; Zhang, L.; Song, Y.; Li, Y.; Zheng, Y.; Zhang, J. Effects of Nitrification Inhibitors on Soil Nitrification and Ammonia Volatilization in Three Soils with Different PH. Agronomy 2021, 11, 1674. [Google Scholar] [CrossRef]
- Johnson, C.R.; Jarrell, W.M.; Menge, J.A. Influence of Ammonium: Nitrate Ratio and Solution PH on Mycorrhizal Infection, Growth and Nutrient Composition of Chrysanthemum morifolium var. Circus. Plant Soil 1984, 77, 151–157. [Google Scholar] [CrossRef]
- Shaviv, A.; Hagin, J. Interaction of Ammonium and Nitrate Nutrition with Potassium in Wheat. Fertil. Res. 1988, 17, 137–146. [Google Scholar] [CrossRef]
- Tabatabaei, S.J.; Fatemi, L.S.; Fallahi, E. Effect of Ammonium: Nitrate Ratio on Yield, Calcium Concentration, and Photosynthesis Rate in Strawberry. J. Plant Nutr. 2006, 29, 1273–1285. [Google Scholar] [CrossRef]
- Lobit, P.; López-Pérez, L.; Cárdenas-Navarro, R.; Castellanos-Morales, V.C.; Ruiz-Corro, R. Effect of Ammonium/Nitrate Ratio on Growth and Development of Avocado Plants under Hydroponic Conditions. Can. J. Plant Sci. 2007, 87, 99–103. [Google Scholar] [CrossRef]
- Dong, C.; Lu, Y.; Zhu, Y.; Zhou, Y.; Xu, Y.; Shen, Q. Effect of Homogeneous and Heterogeneous Supply of Nitrate and Ammonium on Nitrogen Uptake and Distribution in Tomato Seedlings. Plant Growth Regul. 2012, 68, 271–280. [Google Scholar] [CrossRef]
- Liu, G.; Du, Q.; Li, J. Interactive Effects of Nitrate-Ammonium Ratios and Temperatures on Growth, Photosynthesis, and Nitrogen Metabolism of Tomato Seedlings. Sci. Hortic. 2017, 214, 41–50. [Google Scholar] [CrossRef]
- Khalaj, M.A.; Kiani, S.; Khoshgoftarmanesh, A.H.; Amoaghaie, R. Growth, Quality, and Physiological Characteristics of Gerbera (Gerbera jamesonii L.) Cut Flowers in Response to Different NO3−: NH4+ Ratios. Hortic. Environ. Biotechnol. 2017, 58, 313–323. [Google Scholar] [CrossRef]
- Mantovani, C.; Prado, R.M.; Pivetta, K.F.L. Impact of Nitrate and Ammonium Ratio on Nutrition and Growth of Two Epiphytic Orchids. An. Acad. Bras. Ciências 2018, 90, 3423–3431. [Google Scholar] [CrossRef]
- Shang, H.Q.; Shen, G.M. Effect of Ammonium/Nitrate Ratio on Pak Choi (Brassica chinensis L.) Photosynthetic Capacity and Biomass Accumulation under Low Light Intensity and Water Deficit. Photosynthetica 2018, 56, 1039–1046. [Google Scholar] [CrossRef]
- Boschiero, B.N.; Mariano, E.; Azevedo, R.A.; Trivelin, P.C.O. Influence of Nitrate-Ammonium Ratio on the Growth, Nutrition, and Metabolism of Sugarcane. Plant Physiol. Biochem. 2019, 139, 246–255. [Google Scholar] [CrossRef]
- Assimakopoulou, A.; Salmas, I.; Kounavis, N.; Bastas, A.I.; Michopoulou, V.; Michail, E. The Impact of Ammonium to Nitrate Ratio on the Growth and Nutritional Status of Kale. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 848–859. [Google Scholar] [CrossRef]
- BDR, M.F.; Widiayani, N.; Anshori, M.F. Ratio of Ammonium and Nitrate to Response of Chinese Broccoli Variety (Brassica oleracea var. Alboglabra) in Hydroponic Culture. IOP Conf. Ser. Earth Environ. Sci. 2020, 575, 12124. [Google Scholar]
- Carr, N.F.; Boaretto, R.M.; Mattos Jr, D. Coffee Seedlings Growth under Varied NO3−: NH4+ Ratio: Consequences for Nitrogen Metabolism, Amino Acids Profile, and Regulation of Plasma Membrane H+-ATPase. Plant Physiol. Biochem. 2020, 154, 11–20. [Google Scholar] [CrossRef]
- Li, S.; Zhang, H.; Wang, S.; Shi, L.; Xu, F.; Wang, C.; Cai, H.; Ding, G. The Rapeseed Genotypes with Contrasting NUE Response Discrepantly to Varied Provision of Ammonium and Nitrate by Regulating Photosynthesis, Root Morphology, Nutritional Status, and Oxidative Stress Response. Plant Physiol. Biochem. 2021, 166, 348–360. [Google Scholar] [CrossRef]
- Xu, J.; Fang, Y.; Tavakkoli, E.; Pan, X.; Liao, F.; Chen, W.; Guo, W. Preferential Ammonium: Nitrate Ratio of Blueberry Is Regulated by Nitrogen Transport and Reduction Systems. Sci. Hortic. 2021, 288, 110345. [Google Scholar] [CrossRef]
- Söylemez, S. The Impact of Different Growth Media and Ammonium-Nitrate Ratio on Yield and Nitrate Accumulation in Lettuce (Lactuca sativa var. longifolia). Not. Bot. Horti Agrobot. Cluj Napoca 2021, 49, 12540. [Google Scholar] [CrossRef]
- Hu, L.; Wu, Y.; Dawuda, M.M.; Liao, W.; Lv, J.; Li, Y.; Yu, J.; Xie, J.; Feng, Z.; Zhang, G. Appropriate Ammonium/Nitrate Mitigates Low Light Stress in Brassica pekinensis by Regulating the Nitrogen Metabolism and Expression Levels of Key Proteins. J. Plant Growth Regul. 2021, 40, 574–593. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Liu, H.; Sun, G.; Song, S.; Chen, R. High NH4+/NO3− Ratio Inhibits the Growth and Nitrogen Uptake of Chinese Kale at the Late Growth Stage by Ammonia Toxicity. Horticulturae 2021, 8, 8. [Google Scholar] [CrossRef]
- Pérez, A.H.; Santiago, J.C.G.; Torres, V.R.; López, A.M.; Rangel, A.S.; Montejo, N.C. Nitrate/Ammonium Ratio Effect on the Growth, Yield and Foliar Anatomy of Grafted Tomato Plants. Hortic. Sci. 2021, 48, 80–89. [Google Scholar] [CrossRef]
- Noh, K.; Jeong, B.R. Silicon Supplementation Alleviates Adverse Effects of Ammonium on Ssamchoo Grown in Home Cultivation System. Plants 2022, 11, 2882. [Google Scholar] [CrossRef] [PubMed]
- Naseri, A.; Alirezalu, A.; Noruzi, P.; Alirezalu, K. The Effect of Different Ammonium to Nitrate Ratios on Antioxidant Activity, Morpho-Physiological and Phytochemical Traits of Moldavian Balm (Dracocephalum moldavica). Sci. Rep. 2022, 12, 16841. [Google Scholar] [CrossRef]
- Santana, M.M.; Gonzalez, J.M.; Cruz, C. Nitric Oxide Accumulation: The Evolutionary Trigger for Phytopathogenesis. Front. Microbiol. 2017, 8, 1947. [Google Scholar] [CrossRef]
- Gupta, K.J.; Brotman, Y.; Segu, S.; Zeier, T.; Zeier, J.; Persijn, S.T.; Cristescu, S.M.; Harren, F.J.M.; Bauwe, H.; Fernie, A.R. The Form of Nitrogen Nutrition Affects Resistance against Pseudomonas syringae pv. phaseolicola in Tobacco. J. Exp. Bot. 2013, 64, 553–568. [Google Scholar] [CrossRef]
- Wang, M.; Sun, Y.; Gu, Z.; Wang, R.; Sun, G.; Zhu, C.; Guo, S.; Shen, Q. Nitrate Protects Cucumber Plants against Fusarium oxysporum by Regulating Citrate Exudation. Plant Cell Physiol. 2016, 57, 2001–2012. [Google Scholar] [CrossRef]
- López-Berges, M.S.; Rispail, N.; Prados-Rosales, R.C.; Di Pietro, A. A Nitrogen Response Pathway Regulates Virulence Functions in Fusarium oxysporum via the Protein Kinase TOR and the BZIP Protein MeaB. Plant Cell 2010, 22, 2459–2475. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Crespo, E. NH4 Protects Tomato Plants against Pseudomonas syringae by Activation of Systemic Acquired Acclimation. J. Exp. Bot. 2015, 66, 6777–6790. [Google Scholar] [CrossRef] [PubMed]
- González-Hernández, A.I.; Fernández-Crespo, E.; Scalschi, L.; Hajirezaei, M.-R.; von Wirén, N.; García-Agustín, P.; Camañes, G. Ammonium Mediated Changes in Carbon and Nitrogen Metabolisms Induce Resistance against Pseudomonas syringae in Tomato Plants. J. Plant Physiol. 2019, 239, 28–37. [Google Scholar] [CrossRef]
- Chi, W.J.; Wang, Z.Y.; Liu, J.M.; Zhang, C.; Wu, Y.H.; Bai, Y.J. Ammonium Uptake and Assimilation Are Required for Rice Defense against Sheath Blight Disease. Cereal Res. Commun. 2019, 47, 98–110. [Google Scholar] [CrossRef]
- Evans, J.; Scott, B.J.; Lill, W.J. Manganese Tolerance in Subterranean Clover (Trifolium subterraneum L.) Genotypes Grown with Ammonium Nitrate or Symbiotic Nitrogen. Plant Soil 1987, 97, 207–215. [Google Scholar] [CrossRef]
- Klotz, F.; Horst, W.J. Effect of Ammonium-and Nitrate-Nitrogen Nutrition on Aluminium Tolerance of Soybean (Glycine max L.). Plant Soil 1988, 111, 59–65. [Google Scholar] [CrossRef]
- Zhao, X.Q.; Shen, R.F.; Sun, Q. Bin Ammonium under Solution Culture Alleviates Aluminum Toxicity in Rice and Reduces Aluminum Accumulation in Roots Compared with Nitrate. Plant Soil 2009, 315, 107–121. [Google Scholar] [CrossRef]
- Chen, Z.C.; Zhao, X.Q.; Shen, R.F. The Alleviating Effect of Ammonium on Aluminum Toxicity in Lespedeza bicolor Results in Decreased Aluminum-Induced Malate Secretion from Roots Compared with Nitrate. Plant Soil 2010, 337, 389–398. [Google Scholar] [CrossRef]
- Wu, Z.; Jiang, Q.; Yan, T.; Zhang, X.; Xu, S.; Shi, H.; Li, F.; Du, Y.; Du, R.; Hu, C. Ammonium Nutrition Mitigates Cadmium Toxicity in Rice (Oryza sativa L.) through Improving Antioxidase System and the Glutathione-Ascorbate Cycle Efficiency. Ecotoxicol. Environ. Saf. 2020, 189, 110010. [Google Scholar] [CrossRef]
- Zhang, L.-D.; Liu, X.; Wei, M.-Y.; Guo, Z.-J.; Zhao, Z.-Z.; Gao, C.-H.; Li, J.; Xu, J.-X.; Shen, Z.-J.; Zheng, H.-L. Ammonium Has Stronger Cd Detoxification Ability than Nitrate by Reducing Cd Influx and Increasing Cd Fixation in Solanum nigrum L. J. Hazard. Mater. 2022, 425, 127947. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Wang, Z.; Li, M.; Liang, C.; Yang, Y.; Li, D.; Wang, R. Alleviation of Iron Deficiency in Pear by Ammonium Nitrate and Nitric Oxide. BMC Plant Biol. 2022, 22, 434. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Crespo, E. NH4 Inducesantioxidant Cellular Machinery and Provides Resistance to Salt Stress in Citrus Plants. Trees 2014, 28, 1693–1704. [Google Scholar] [CrossRef]
- Miranda, R.D.S.; Mesquita, R.O.; Costa, J.H.; Alvarez-Pizarro, J.C.; Prisco, J.T.; Gomes-Filho, E. Integrative Control between Proton Pumps and SOS1 Antiporters in Roots Is Crucial for Maintaining Low Na+ Accumulation and Salt Tolerance in Ammonium-Supplied Sorghum Bicolor. Plant Cell Physiol. 2017, 58, 522–536. [Google Scholar] [CrossRef] [PubMed]
- Hessini, K.; Issaoui, K.; Ferchichi, S.; Saif, T.; Abdelly, C.; Siddique, K.H.M.; Cruz, C. Interactive Effects of Salinity and Nitrogen Forms on Plant Growth, Photosynthesis and Osmotic Adjustment in Maize. Plant Physiol. Biochem. 2019, 139, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Tzortzakis, N.; Pitsikoulaki, G.; Stamatakis, A.; Chrysargyris, A. Ammonium to Total Nitrogen Ratio Interactive Effects with Salinity Application on Solanum lycopersicum Growth, Physiology, and Fruit Storage in a Closed Hydroponic System. Agronomy 2022, 12, 386. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Y.; Yang, X.; Li, H.; Shen, Q.; Guo, S. Ammonium Nutrition Increases Water Absorption in Rice Seedlings (Oryza sativa L.) under Water Stress. Plant Soil 2010, 331, 193–201. [Google Scholar] [CrossRef]
- Cao, X.; Zhong, C.; Zhu, C.; Zhu, L.; Zhang, J.; Wu, L.; Jin, Q. Ammonium Uptake and Metabolism Alleviate PEG-Induced Water Stress in Rice Seedlings. Plant Physiol. Biochem. 2018, 132, 128–137. [Google Scholar] [CrossRef]
- Liu, Y.; Bai, L.; Sun, M.; Wang, J.; Li, S.; Miao, L.; Yan, Y.; He, C.; Yu, X.; Li, Y. Adaptation of Cucumber Seedlings to Low Temperature Stress by Reducing Nitrate to Ammonium during It’s Transportation. BMC Plant Biol. 2021, 21, 189. [Google Scholar] [CrossRef]
- Collado-González, J.; Piñero, M.C.; Otalora, G.; López-Marín, J.; Del Amor, F.M. Assessing Optimal Nitrate/Ammonium-Ratios in Baby-Leaf Lettuce to Enhance the Heat Stress Tolerance under Elevated CO2 Conditions. PLoS ONE 2022, 17, e0278309. [Google Scholar] [CrossRef]
- Kumar, P.; Eriksen, R.L.; Simko, I.; Shi, A.; Mou, B. Insights into Nitrogen Metabolism in the Wild and Cultivated Lettuce as Revealed by Transcriptome and Weighted Gene Co-Expression Network Analysis. Sci. Rep. 2022, 12, 9852. [Google Scholar] [CrossRef]
- Li, Y.; Wang, M.; Teng, K.; Dong, D.; Liu, Z.; Zhang, T.; Han, L. Transcriptome Profiling Revealed Candidate Genes, Pathways and Transcription Factors Related to Nitrogen Utilization and Excessive Nitrogen Stress in Perennial Ryegrass. Sci. Rep. 2022, 12, 3353. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, B.; Liu, F.; Luo, P.; Wang, Y.; Liu, D.; Wu, X.; Zhang, Z.; Wu, J. Transcriptomic and Physiological Analysis Revealed the Ammonium Tolerance Mechanisms of Myriophyllum aquaticum. Environ. Exp. Bot. 2021, 187, 104462. [Google Scholar] [CrossRef]
- Goel, P.; Sharma, N.K.; Bhuria, M.; Sharma, V.; Chauhan, R.; Pathania, S.; Swarnkar, M.K.; Chawla, V.; Acharya, V.; Shankar, R. Transcriptome and Co-Expression Network Analyses Identify Key Genes Regulating Nitrogen Use Efficiency in Brassica juncea L. Sci. Rep. 2018, 8, 7451. [Google Scholar] [CrossRef]
- Wang, W.; Li, R.; Zhu, Q.; Tang, X.; Zhao, Q. Transcriptomic and Physiological Analysis of Common Duckweed Lemna minor Responses to NH4+ Toxicity. BMC Plant Biol. 2016, 16, 92. [Google Scholar] [CrossRef]
- Li, W.; Xiang, F.; Zhong, M.; Zhou, L.; Liu, H.; Li, S.; Wang, X. Transcriptome and Metabolite Analysis Identifies Nitrogen Utilization Genes in Tea Plant (Camellia sinensis). Sci. Rep. 2017, 7, 1693. [Google Scholar] [CrossRef]
- Díaz-Silva, M.; Maldonado, J.; Veloso, P.; Delgado, N.; Silva, H.; Gallardo, J.A. RNA-Seq Analysis and Transcriptome Assembly of Salicornia neei Reveals a Powerful System for Ammonium Detoxification. Electron. J. Biotechnol. 2022, 58, 70–81. [Google Scholar] [CrossRef]
- Tschoep, H.; Gibon, Y.; Carillo, P.; Armengaud, P.; Szecowka, M.; Nunes-Nesi, A.; Fernie, A.R.; Koehl, K.; Stitt, M. Adjustment of Growth and Central Metabolism to a Mild but Sustained Nitrogen-limitation in Arabidopsis. Plant. Cell Environ. 2009, 32, 300–318. [Google Scholar] [CrossRef]
- Lin, Z.-H.; Chen, C.-S.; Zhong, Q.-S.; Ruan, Q.-C.; Chen, Z.-H.; You, X.-M.; Shan, R.-Y.; Li, X.-L. The GC-TOF/MS-Based Metabolomic Analysis Reveals Altered Metabolic Profiles in Nitrogen-Deficient Leaves and Roots of Tea Plants (Camellia sinensis). BMC Plant Biol. 2021, 21, 506. [Google Scholar] [CrossRef]
- González-Moro, M.B.; González-Moro, I.; De la Peña, M.; Estavillo, J.M.; Aparicio-Tejo, P.M.; Marino, D.; González-Murua, C.; Vega-Mas, I. A Multi-Species Analysis Defines Anaplerotic Enzymes and Amides as Metabolic Markers for Ammonium Nutrition. Front. Plant Sci. 2021, 11, 632285. [Google Scholar] [CrossRef]
- Buoso, S.; Tomasi, N.; Arkoun, M.; Maillard, A.; Jing, L.; Marroni, F.; Pluchon, S.; Pinton, R.; Zanin, L. Transcriptomic and Metabolomic Profiles of Zea mays Fed with Urea and Ammonium. Physiol. Plant. 2021, 173, 935–953. [Google Scholar] [CrossRef]
- Xun, Z.; Guo, X.; Li, Y.; Wen, X.; Wang, C.; Wang, Y. Quantitative Proteomics Analysis of Tomato Growth Inhibition by Ammonium Nitrogen. Plant Physiol. Biochem. 2020, 154, 129–141. [Google Scholar] [CrossRef]
- Setién, I.; Fuertes-Mendizabal, T.; González, A.; Aparicio-Tejo, P.M.; González-Murua, C.; González-Moro, M.B.; Estavillo, J.M. High Irradiance Improves Ammonium Tolerance in Wheat Plants by Increasing N Assimilation. J. Plant Physiol. 2013, 170, 758–771. [Google Scholar] [CrossRef]
- Vega-Mas, I.; Marino, D.; Sanchez-Zabala, J.; Gonzalez-Murua, C.; Estavillo, J.M.; González-Moro, M.B. CO2 Enrichment Modulates Ammonium Nutrition in Tomato Adjusting Carbon and Nitrogen Metabolism to Stomatal Conductance. Plant Sci. 2015, 241, 32–44. [Google Scholar] [CrossRef]
- Zheng, X.; He, K.; Kleist, T.; Chen, F.; Luan, S. Anion Channel SLAH3 Functions in Nitrate-dependent Alleviation of Ammonium Toxicity in Arabidopsis. Plant. Cell Environ. 2015, 38, 474–486. [Google Scholar] [CrossRef]
- Etesami, H.; Jeong, B.R. Silicon (Si): Review and Future Prospects on the Action Mechanisms in Alleviating Biotic and Abiotic Stresses in Plants. Ecotoxicol. Environ. Saf. 2018, 147, 881–896. [Google Scholar] [CrossRef]
- Campos, C.N.S.; Silva Júnior, G.B.D.; Prado, R.D.M.; David, C.H.O.D.; Souza Junior, J.P.D.; Teodoro, P.E. Silicon Mitigates Ammonium Toxicity in Plants. Agron. J. 2020, 112, 635–647. [Google Scholar] [CrossRef]
- Bittsánszky, A.; Pilinszky, K.; Gyulai, G.; Komives, T. Overcoming Ammonium Toxicity. Plant Sci. 2015, 231, 184–190. [Google Scholar] [CrossRef]
- Campos, C.N.S.; de Mello Prado, R.; Roque, C.G.; de Lima Neto, A.J.; Marques, L.J.P.; Chaves, A.P.; Cruz, C.A. Use of Silicon in Mitigating Ammonium Toxicity in Maize Plants. Am. J. Plant Sci. 2015, 6, 1780. [Google Scholar] [CrossRef]
- Campos, C.N.S.; de Mello Prado, R.; Caione, G. Silicon and Excess Ammonium and Nitrate in Cucumber Plants. African J. Agric. Res. 2016, 11, 276–283. [Google Scholar]
- Barreto, R.F.; Júnior, A.A.S.; Maggio, M.A.; de Mello Prado, R. Silicon Alleviates Ammonium Toxicity in Cauliflower and in Broccoli. Sci. Hortic. 2017, 225, 743–750. [Google Scholar] [CrossRef]
- Silva Júnior, G.B.D.; Prado, R.M.; Campos, C.; Agostinho, F.B.; Silva, S.L.O.; Santos, L.C.N.; González, L.C. Silicon Mitigates Ammonium Toxicity in Yellow Passionfruit Seedlings. Chil. J. Agric. Res. 2019, 79, 425–434. [Google Scholar] [CrossRef]
- Viciedo, D.O.; de Mello Prado, R.; Lizcano Toledo, R.; dos Santos, L.C.N.; Calero Hurtado, A.; Nedd, L.L.T.; Castellanos Gonzalez, L. Silicon Supplementation Alleviates Ammonium Toxicity in Sugar Beet (Beta vulgaris L.). J. Soil Sci. Plant Nutr. 2019, 19, 413–419. [Google Scholar] [CrossRef]
- Viciedo, D.O.; de Mello Prado, R.; Lizcano Toledo, R.; Salas Aguilar, D.; Dos Santos, L.C.N.; Calero Hurtado, A.; Peña Calzada, K.; Betancourt Aguilar, C. Physiological Role of Silicon in Radish Seedlings under Ammonium Toxicity. J. Sci. Food Agric. 2020, 100, 5637–5644. [Google Scholar] [CrossRef] [PubMed]
- De Souza Junior, J.P.; Prado, R.D.M.; de Morais, T.; Chagas, B.; Frazão, J.J.; dos Santos Sarah, M.M.; de Oliveira, K.R.; de Paula, R.C. Silicon Fertigation and Salicylic Acid Foliar Spraying Mitigate Ammonium Deficiency and Toxicity in Eucalyptus spp. Clonal Seedlings. PLoS ONE 2021, 16, e0250436. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Yang, J.; Jeong, B.R. Silicon Mitigates Ammonium Toxicity in Cabbage (Brassica campestris L. ssp. Pekinensis) ‘Ssamchu.’. Front. Sustain. Food Syst. 2022, 6, 922666. [Google Scholar] [CrossRef]
- Song, J.; Yang, J.; Jeong, B.R. Alleviation of Ammonium Toxicity in Salvia splendens ‘Vista Red’with Silicon Supplementation. Toxics 2022, 10, 446. [Google Scholar] [CrossRef] [PubMed]
PLANT SPECIES | Mode of Si Application in the Cultivation System | Form and Concentration of Si Used | Mitigating Effects of Si under Ammonium Toxicity | Reference |
---|---|---|---|---|
Zea mays L. | In the nutrient solution of the hydroponics system | 10 mmol L−1 K2SiO3 | Increased N accumulation, shoot, and root dry mass production | [150] |
Lycopersicon esculentum Mill. | In the nutrient solution of the hydroponics system | 1 mmol L−1 monosilicic acid | Improved N and Si use efficiency, increased leaf area, root area, dry biomass, total chlorophyll, carotenoids, and reduced oxidative stress | [22] |
Cucumis sativus L. var. Hokushin and Tsubasa | In the nutrient solution of the hydroponics system | 0, 1, and 10 mmol L−1 K2SiO3 | Greater dry mass, N accumulation, green color index (GCI), and increased nitrate reductase activity | [151] |
Brassica oleracea var. Botrytis cv Barcelona and Brassica oleracea var. Italica) cv BRO 68 | In the nutrient solution of the hydroponics system | 2 mmol L−1 silicon using stabilized sodium and potassium silicate (114.9 g L−1 Si and 18.9 g L−1 K2O). | Increased growth characteristics, physical integrity, total chlorophyll content, stomatal conductance, water use efficiency, accumulation of ions (N, K, Ca, Mg, and Si), and reduced electrolyte leakage | [152] |
Passiflora edulis Sims f. flavicarpa O. Deg. | In the nutrient solution of the vermiculate cultivation | 2 mmol L−1 K2SiO3 | Greater stem and root diameter, root length, dry matter, leaf green color index (GCI), increased accumulation of ions (N, Si, K, Ca, and Mg), improved NUE, and reduced electrolyte leakage | [153] |
Beta vulgaris L. | In the nutrient solution of the vermiculate cultivation in growth chamber | 28.5 g L−1 H4SiO4 | Improved photosynthesis, stomatal conductance, transpiration, dry mass production, and accumulation of N and Si in roots | [154] |
Raphanus sativus L. | In the nutrient solution of the hydroponics system | 2 mmol L−1 K2SiO3 | Improved photosynthesis, transpiration, stomatal conductance, water-use efficiency, and higher total dry biomass | [155] |
Eucalyptus urophylla x Eucalyptus grandis | Fertigation of Si in vermiculate cultivation | 2 mmol L−1 K2SiO3 | Increased dry mass production and improved the photosynthetic apparatus by decreasing fluorescence, and improving the quantum efficiency of photosystem II | [156] |
Brassica campestris L. ssp. pekinensis | In the nutrient solution of the hydroponics system | 0.0 and 1.0 me·L−1 K2SiO3 | Improved growth parameters, photosynthesis, stomatal conductance, cation accumulation (Ca, Mg, K, and Si) antioxidant enzyme activities, and N assimilation enzyme activities | [157] |
Salvia splendens ‘Vista Red’ | In the nutrient solution of the hydroponics substrate system | 0.0 and 1.0 me·L−1 K2SiO3 | Improved growth parameters, photosynthesis, stomatal conductance, cation accumulation (Ca, Mg, K, and Si) antioxidant enzyme activities, and N assimilation enzyme activities as well as reduced accumulation of ROS, and malondialdehyde (MDA) | [158] |
Brassica lee ssp. namai Ssamchoo ‘Chunssamhwang51’ | In the nutrient solution of the hydroponics system | 0.0 and 10.7 me·L−1 K2SiO3 | Increased shoot fresh weight, chlorophyll content, leaf area, vitamin C, and antioxidant enzyme activities | [108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shilpha, J.; Song, J.; Jeong, B.R. Ammonium Phytotoxicity and Tolerance: An Insight into Ammonium Nutrition to Improve Crop Productivity. Agronomy 2023, 13, 1487. https://doi.org/10.3390/agronomy13061487
Shilpha J, Song J, Jeong BR. Ammonium Phytotoxicity and Tolerance: An Insight into Ammonium Nutrition to Improve Crop Productivity. Agronomy. 2023; 13(6):1487. https://doi.org/10.3390/agronomy13061487
Chicago/Turabian StyleShilpha, Jayabalan, Jinnan Song, and Byoung Ryong Jeong. 2023. "Ammonium Phytotoxicity and Tolerance: An Insight into Ammonium Nutrition to Improve Crop Productivity" Agronomy 13, no. 6: 1487. https://doi.org/10.3390/agronomy13061487
APA StyleShilpha, J., Song, J., & Jeong, B. R. (2023). Ammonium Phytotoxicity and Tolerance: An Insight into Ammonium Nutrition to Improve Crop Productivity. Agronomy, 13(6), 1487. https://doi.org/10.3390/agronomy13061487