Optimal Straw Retention Strategies for Low-Carbon Rice Production: 5 Year Results of an In Situ Trial in Eastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Field Experiment Design
2.3. In Situ Gas Sampling
2.4. Soil Physicochemical Properties Determination
2.5. Methane Emission and Greenhouse Gas Intensity Determination
2.6. Statistical Analyses
3. Results
3.1. Methane Emissions
3.2. Soil Carbon Properties
3.3. Rice Grain Yields and Greenhouse Gas Intensities
3.4. Environmental Factors
4. Discussion
4.1. CH4 Emissions
4.2. Rice Paddy Soil Carbon Sequestration
4.3. Greenhouse Gas Intensity and Influencing Factors of CH4 Emission
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Chen, Y., Goldfard, L., Gomis, M., Matthew, J.B.R., Berger, S., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; 2391p. [Google Scholar]
- Le Mer, J.; Roger, P. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil Biol. 2001, 37, 25–50. [Google Scholar] [CrossRef]
- Conrad, R. Microbial Ecology of Methanogens and Methanotrophs. Adv. Agron. 2007, 96, 1–63. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, S.; Bi, J.; Sun, H.; Wang, C.; Zhang, J. Drought-resistance rice variety with water-saving management reduces greenhouse gas emissions from paddies while maintaining rice yields. Agric. Ecosyst. Environ. 2021, 320, 107592. [Google Scholar] [CrossRef]
- Zhan, M.; Cao, C.; Wang, J.; Jiang, Y.; Cai, M.; Yue, L.; Shahrear, A. Dynamics of methane emission, active soil organic carbon and their relationships in wetland integrated rice-duck systems in Southern China. Nutr. Cycl. Agroecosyst. 2011, 89, 1–13. [Google Scholar] [CrossRef]
- Han, X.; Xu, C.; Dungait, J.A.J.; Bol, R.; Wang, X.; Wu, W.; Meng, F. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: A system analysis. Biogeosciences 2018, 15, 1933–1946. [Google Scholar] [CrossRef]
- Ji, X.; Wu, J.; Peng, H.; Shi, L.; Zhang, Z.; Liu, Z.; Tian, F.; Huo, L.; Zhu, J. The effect of rice straw incorporation into paddy soil on carbon sequestration and emissions in the double cropping rice system. J. Sci. Food Agric. 2012, 92, 1038–1045. [Google Scholar]
- Song, H.J.; Lee, J.H.; Jeong, H.-C.; Choi, E.-J.; Oh, T.-K.; Hong, C.-O.; Kim, P.J. Effect of straw incorporation on methane emission in rice paddy: Conversion factor and smart straw management. Appl. Biol. Chem. 2019, 62, 70. [Google Scholar] [CrossRef]
- Takakai, F.; Hatakeyama, K.; Nishida, M.; Nagata, O.; Sato, T.; Kaneta, Y. Effect of the long-term application of organic matter on soil carbon accumulation and GHG emissions from a rice paddy field in a cool-temperate region, Japan-II. Effect of different compost applications. Soil Sci. Plant Nutr. 2019, 66, 96–105. [Google Scholar] [CrossRef]
- Xia, L.; Wang, S.; Yan, X. Effects of Long-Term Straw Incorporation on the Net Global Warming Potential and the Net Economic Benefit in a rice–wheat Cropping System in China. Agric. Ecosyst. Environ. 2014, 197, 118–127. [Google Scholar] [CrossRef]
- Naser, H.M.; Nagata, O.; Tamura, S.; Hatano, R. Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido, Japan. Soil Sci. Plant Nutr. 2007, 53, 95–101. [Google Scholar] [CrossRef]
- Han, W.; Shen, S.; Xie, Z.; Li, B.; Li, Y.; Liu, Q. Effects of biochar and straw on both the organic carbon in different density fractions and the microbial biomass in paddy soil. Acta Ecol. Sin. 2016, 36, 5838–5846. (In Chinese) [Google Scholar]
- Subhash, C.; Jayanta, B. Influence of temperature and duration of pyrolysis on the property heterogeneity of rice straw biochar and optimization of pyrolysis conditions for its application in soils. J. Clean. Prod. 2019, 215, 1123–1139. [Google Scholar]
- Mohammadi, A.; Cowie, A.L.; Anh, M.L.; Kristiansen, P.E.; Anaya de la Rosa, R.; Brandão, M.; Joseph, S.D. Biochar use for climate-change mitigation in rice cropping systems. J. Clean. Prod. 2016, 116, 61–70. [Google Scholar] [CrossRef]
- Zimmerman, A.R.; Gao, B.; Ahn, M.-Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, M.; Wang, J.; Liu, X.; Guo, W.; Zheng, J.; Bian, R.; Wang, G.; Zhang, X.; Cheng, K.; et al. The responses of soil organic carbon mineralization and microbial communities to fresh and aged biochar soil amendments. GCB Bioenergy 2019, 11, 1408–1420. [Google Scholar] [CrossRef]
- Yi, Q.; Liang, B.; Nan, Q.; Wang, H.; Zhang, W.; Wu, W. Temporal physicochemical changes and transformation of biochar in a rice paddy: Insights from a 9-year field experiment. Sci. Total. Environ. 2020, 721, 137670. [Google Scholar] [CrossRef]
- Sun, H.; Zhou, S.; Fu, Z.; Chen, G.; Zou, G.; Song, X. A two-year field measurement of methane and nitrous oxide fluxes from rice paddies under contrasting climate conditions. Sci. Rep. 2016, 6, 28255. [Google Scholar] [CrossRef]
- Zou, J.; Huang, Y.; Jiang, J.; Zheng, X.; Sass, R.L. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application. Glob. Biogeochem. Cycles 2005, 19, GB2021. [Google Scholar] [CrossRef]
- Huang, T.; Gao, B.; Christie, P.; Ju, X. Net global warming potential and greenhouse gas intensity in a double-cropping cereal rotation as affected by nitrogen and straw management. Biogeosciences 2013, 10, 7897–7911. [Google Scholar] [CrossRef]
- Zou, J.; Liu, S.; Qin, Y.; Pan, G.; Zhu, D. Sewage irrigation increased methane and nitrous oxide emissions from rice paddies in southeast China. Agric. Ecosyst. Environ. 2009, 129, 516–522. [Google Scholar] [CrossRef]
- Hu, N.; Wang, B.; Gu, Z.; Tao, B.; Zhang, Z.; Hu, S.; Zhu, L.; Meng, Y. Effects of Different Straw Returning Modes on Greenhouse Gas Emissions and Crop Yields in a rice–wheat Rotation System. Agric. Ecosyst. Environ. 2016, 223, 115–122. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, J.; Chen, L.; Shen, M.; Zhang, X.; Zhang, M.; Bian, X.; Zhang, J.; Zhang, W. Integrative effects of soil tillage and straw management on crop yields and greenhouse gas emissions in a rice–wheat cropping system. Eur. J. Agron. 2015, 63, 47–54. [Google Scholar] [CrossRef]
- Malyan, S.K.; Bhatia, A.; Kumar, A.; Gupta, D.K.; Singh, R.; Kumar, S.S.; Tomer, R.; Kumar, O.; Jain, N. Methane production, oxidation and mitigation: A mechanistic understanding and comprehensive evaluation of influencing factors. Sci. Total Environ. 2012, 572, 874–896. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Majumdar, D.; Wassmann, R. Methane production and emission in surface and subsurface rice soils and their blends. Agric. Ecosyst. Environ. 2012, 158, 94–102. [Google Scholar] [CrossRef]
- Qin, X.; Li, Y.; Wang, H.; Liu, C.; Li, J.; Wan, Y.; Gao, Q.; Fan, F.; Liao, Y. Long-term effect of biochar application on yield-scaled greenhouse gas emissions in a rice paddy cropping system: A four-year case study in south China. Sci. Total Environ. 2016, 569–570, 1390–1401. [Google Scholar] [CrossRef]
- Nan, Q.; Wang, C.; Wang, H.; Yi, Q.; Wu, W. Mitigating methane emission via annual biochar amendment pyrolyzed with rice straw from the same paddy field. Sci. Total Environ. 2020, 746, 141351. [Google Scholar] [CrossRef] [PubMed]
- Nan, Q.; Wang, C.; Yi, Q.; Zhang, L.; Ping, F.; Thies, J.E.; Wu, W. Biochar amendment pyrolysed with rice straw increases rice production and mitigates methane emission over successive three years. Waste Manag. 2020, 118, 1–8. [Google Scholar] [CrossRef]
- Sriphirom, P.; Towprayoon, S.; Yagi, K.; Rossopa, B.; Chidthaisong, A. Changes in methane production and oxidation in rice paddy soils induced by biochar addition. Appl. Soil Ecol. 2022, 179, 104585. [Google Scholar] [CrossRef]
- Lee, X.J.; Lee, L.Y.; Gan, S.; Thangalazhy-Gopakumar, S.; Ng, H.K. Biochar potential evaluation of palm oil wastes through slow pyrolysis: Thermochemical characterization and pyrolytic kinetic studies. Bioresour. Technol. 2017, 236, 155–163. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Bio/Technol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Van Der Gon, H.A.C.D.; Neue, H.-U. Methane emission from a wetland rice field as affected by salinity. Plant Soil 1995, 170, 307–313. [Google Scholar] [CrossRef]
- Wassmann, R.; Neue, H.U.; Bueno, C.; Bueno, C.; Lantin, R.S.; Alberto, M.C.R.; Buendia, L.V.; Bronson, K.; Papen, H.; Rennenberg, H. Methane production capacities of different rice soils derived from inheret and exogenous substrate. Plant Soil Plant Soil 1998, 203, 227–237. [Google Scholar] [CrossRef]
- Lin, D.; Cheng, Y.; Liu, M.; Qin, J.; Jiao, J.; Hu, F. Relationship Between Methane Emission and the Community Structure and Abundance of Methanogens Under Double Rice Cropping System. J. Agro-Environ. Sci. 2013, 323, 866–873. (In Chinese) [Google Scholar]
- Whitman, W.B.; Ankwanda, E.; Wolfe, R.S. Nutrition and carbon metabolism of Methanococcus voltae. J. Bacteriol. 1982, 149, 852–863. [Google Scholar] [CrossRef] [PubMed]
- Leadbetter, J.R.; Breznak, J.A. Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl. Environ. Microbiol. 1996, 62, 3620–3631. [Google Scholar] [CrossRef] [PubMed]
- Bao, Q.-L.; Xiao, K.-Q.; Chen, Z.; Yao, H.-Y.; Zhu, Y.-G. Methane production and methanogenic archaeal communities in two types of paddy soil amended with different amounts of rice straw. FEMS Microbiol. Ecol. 2014, 88, 372–385. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, Z.; Kuzyakov, Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects. GCB Bioenergy 2015, 8, 512–523. [Google Scholar] [CrossRef]
- Sander, B.O.; Samson, M.; Buresh, R.J. Methane and nitrous oxide emissions from flooded rice fields as affected by water and straw management between rice crops. Geoderma 2014, 235–236, 355–362. [Google Scholar] [CrossRef]
- Oo, A.Z.; Win, K.T.; Kimura, S.D. Within field spatial variation in methane emissions from lowland rice in Myanmar. SpringerPlus 2015, 4, 145. [Google Scholar] [CrossRef]
- Kim, D.; Cho, K.; Won, T.; Bak, I.-T.; Yoo, G. Changes in Crop Yield and CH4 Emission from Rice Paddy Soils Applied with Biochar and Slow-release Fertilizer. Environ. Biol. Res. 2014, 32, 327–334. [Google Scholar] [CrossRef]
- Kim, J.; Yoo, G.; Kim, D.; Ding, W.; Kang, H. Combined application of biochar and slow-release fertilizer reduces methane emission but enhances rice yield by different mechanisms. Appl. Soil Ecol. 2017, 117–118, 57–62. [Google Scholar] [CrossRef]
- Hu, A.; Lu, Y. The differential effects of ammonium and nitrate on methanotrophs in rice field soil. Soil Biol. Biochem. 2015, 85, 31–38. [Google Scholar] [CrossRef]
- Kong, D.; Li, S.; Jin, Y.; Wu, S.; Chen, J.; Hu, T.; Wang, H.; Liu, S.; Zou, J. Linking methane emissions to methanogenic and methanotrophic communities under different fertilization strategies in rice paddies. Geoderma 2019, 347, 233–243. [Google Scholar] [CrossRef]
- Dong, D.; Li, J.; Ying, S.; Wu, J.; Han, X.; Teng, Y.; Zhou, M.; Ren, Y.; Jiang, P. Mitigation of methane emission in a rice paddy field amended with biochar-based slow-release fertilizer. Sci. Total. Environ. 2021, 792, 148460. [Google Scholar] [CrossRef]
- Sun, H.; Zhou, S.; Zhang, J.; Zhang, X.; Wang, C. Effects of controlled-release fertilizer on rice grain yield, nitrogen use efficiency, and greenhouse gas emissions in a paddy field with straw incorporation. Field Crop. Res. 2020, 253, 107814. [Google Scholar] [CrossRef]
- Mandal, S.; Kunhikrishnan, A.; Bolan, N.S.; Wijesekara, H.; Naidu, R. Application of biochar produced from biowaste materials for environmental protection and sustainable agriculture production. In Environmental Materials and Waste; Prasad, M.N.V., Shih, K., Eds.; Academic Press: New York, NY, USA, 2016. [Google Scholar]
- Leng, L.; Huang, H.; Li, H.; Li, J.; Zhou, W. Biochar stability assessment methods: A review. Sci. Total. Environ. 2018, 647, 210–222. [Google Scholar] [CrossRef]
- Dhanushkodi, V.; Priyadharshini, T.B.; Baskar, M.; Meena, S.; Senthil, K.; Maheshwari, T.U. Slow and Controlled Release Nitrogen Fertilizers: Options for Improving Rice Productivity: A Review. Int. J. Plant Soil Sci. 2022, 34, 970–981. [Google Scholar] [CrossRef]
- Panchal, P.; Preece, C.; Peñuelas, J.; Giri, J. Soil carbon sequestration by root exudates. Trends Plant Sci. 2022, 27, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Rahman, F.; Rahman, M.; Rahman, G.M.; Saleque, M.; Hossain, A.S.; Miah, G. Effect of organic and inorganic fertilizers and rice straw on carbon sequestration and soil fertility under a rice–rice cropping pattern. Carbon Manag. 2016, 7, 41–53. [Google Scholar] [CrossRef]
- Dinakaran, J.D.J.; Abbas, N.S.A.N.S.; Bhardwaj, S.; Kaula, B.C. Soil Carbon Sequestration Potential of Terrestrial Ecosystems: Trends and Soil Priming Effects. Curr. World Environ. J. 2022, 17, 161–170. [Google Scholar] [CrossRef]
- Wang, Y.-M.; Li, M.; Jiang, C.-Y.; Wu, M.; Liu, P.; Li, Z.-P.; Uchimiya, M.; Yuan, X.-Y. Soil microbiome-induced changes in the priming effects of 13C-labelled substrates from rice residues. Sci. Total. Environ. 2020, 726, 138562. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Qiu, J.; Frolking, S.; Xiao, X.; Salas, W.; Moore, B.; Boles, S.; Huang, Y.; Sass, R. Reduced methane emissions from large-scale changes in water management of China’s rice paddies during 1980–2000. Geophys. Res. Lett. 2002, 29, 33-1–33-4. [Google Scholar] [CrossRef]
- Liu, D.Y.; Ding, W.X.; Jia, Z.J.; Cai, Z.C. Relation between methanogenic archaea and methane production potential in selected natural wetland ecosystems across China. Biogeosciences 2011, 8, 329–338. [Google Scholar] [CrossRef]
- Zhang, H.; Li, W.; Cai, Z.; Zhang, Y.; Feng, Y.; Zhang, H.; He, F. Landfill CH4 oxidation and N2O emissions by aged refuse: Effects of wastewater NH4+−N incubation, heavy metals and pH. Ecol. Eng. 2013, 53, 243–249. [Google Scholar] [CrossRef]
- Wang, C.; Jin, Y.; Ji, C.; Zhang, N.; Song, M.; Kong, D.; Liu, S.; Zhang, X.; Liu, X.; Zou, J.; et al. An additive effect of elevated atmospheric CO2 and rising temperature on methane emissions related to methanogenic community in rice paddies. Agric. Ecosyst. Environ. 2018, 257, 165–174. [Google Scholar] [CrossRef]
- Watanabe, A.; Takeda, T.; Kimura, M. Evaluation of origins of CH4 carbon emitted from rice paddies. J. Geophys. Res. Atmos. 1999, 104, 23623–23629. [Google Scholar] [CrossRef]
- Tokida, T.; Adachi, M.; Cheng, W.; Nakajima, Y.; Fumoto, T.; Matsushima, M.; Nakamura, H.; Okada, M.; Sameshima, R.; Hasegawa, T. Methane and soil CO2 production from current-season photosynthates in a rice paddy exposed to elevated CO2 concentration and soil temperature. Glob. Chang. Biol. 2011, 17, 3327–3337. [Google Scholar] [CrossRef]
- Yuan, Q.; Pump, J.; Conrad, R. Partitioning of CH4 and CO2 Production Originating from Rice Straw, Soil and Root Organic Carbon in Rice Microcosms. PLoS ONE 2012, 7, e49073. [Google Scholar] [CrossRef]
- Corton, T.M.; Bajita, J.B.; Grospe, F.S.; Pamplona, R.R.; Wassmann, R.; Lantin, R.; Buendia, L.V. Methane Emission from Irrigated and Intensively Managed Rice Fields in Central Luzon (Philippines). Nutr. Cycl. Agroecosysts. 2000, 58, 37–53. [Google Scholar] [CrossRef]
Treatments | Applied Synthetic Fertilizer Properties | Incorporated Straw Properties | |||
---|---|---|---|---|---|
Fertilizer Types | Application Rates | Straw Forms | Application Rates | Chemical Composition | |
Fertilizer blank + non-straw (Control) | -- | 0 | -- | 0 | -- |
Conventional fertilization + non-straw (CF) | bulk blended fertilizer | 225 kgN·hm−2 112.5 kgP2O5·hm−2 255 kgK2O·hm−2 | -- | 0 | -- |
Conventional fertilization + straw (FS) | bulk blended fertilizer | 215 kgN·hm−2 107 kgP2O5·hm−2 215 kgK2O·hm−2 | raw wheat straw | 3 t·hm−2 | C = 44% N = 0.33% P2O5 = 0.19% K2O = 1.35% |
Slow-release fertilizer + straw (SFS) | slow-release fertilizer | 215 kgN·hm−2 107 kgP2O5·hm−2 215 kgK2O·hm−2 | raw wheat straw | 3 t·hm−2 | C = 44% N = 0.33% P2O5 = 0.19% K2O = 1.35% |
Conventional fertilization + straw-derived biochar (FB) | bulk blended fertilizer | 215 kgN·hm−2 107 kgP2O5·hm−2 215 kgK2O·hm−2 | wheat-straw-derived biochar (pyrolysis at 300–400 °C) | 1 t·hm−2 | C = 53% N = 0.84% P2O5 = 0.52% K2O = 5.30% |
Treatments | Year (%) | ||||
---|---|---|---|---|---|
2012 | 2013 | 2014 | 2015 | 2016 | |
Control | 0.88 ± 0.01 a * | 1.01 ± 0.01 b | 0.96 ± 0.03 b | 0.99 ± 0.01 c | 0.96 ± 0.05 b |
CF | 0.90 ± 0.01 a | 1.07 ± 0.03 b | 1.01 ± 0.04 ab | 1.08 ± 0.01 b | 1.07 ± 0.05 b |
FS | 0.92 ± 0.01 a | 1.11 ± 0.03 ab | 1.06 ± 0.01 ab | 1.13 ± 0.03 b | 1.15 ± 0.08 ab |
SFS | 0.91 ± 0.01 a | 1.16 ± 0.01 a | 1.06 ± 0.03 ab | 1.21 ± 0.03 a | 1.17 ± 0.03 ab |
FB | 0.90 ± 0.01 a | 1.18 ± 0.06 a | 1.12 ± 0.04 a | 1.24 ± 0.03 a | 1.33 ± 0.10 a |
Factors | df | F | Sig. | ||
---|---|---|---|---|---|
Time | 3 | 29.753 | <0.01 ** | ||
Time × Treatment | 12 | 1.577 | 0.15 | ||
Treatment | 4 | 8.396 | <0.01 ** | ||
Post hoc comparison | Control | CF | FS | SFS | FB |
Control | -- | ||||
CF | ns | -- | |||
FS | 0.01 * | ns | -- | ||
SFS | <0.01 ** | ns | ns | -- | |
FB | <0.01 ** | <0.01 ** | 0.04 * | ns | -- |
Treatments | Year (kg CO2-eq kg−1 Rice Grain Yield) | |||
---|---|---|---|---|
2013 | 2014 | 2015 | 2016 | |
Control | 0.33 ± 0.04 b * | 0.15 ± 0.02 b | 0.12 ± 0.01 c | 0.24 ± 0.10 abc |
CF | 0.36 ± 0.09 b | 0.09 ± 0.02 b | 0.19 ± 0.10 a | 0.08 ± 0.01 c |
FS | 0.98 ± 0.19 a | 0.40 ± 0.06 a | 0.57 ± 0.21 a | 0.34 ± 0.02 a |
SFS | 0.83 ± 0.17 a | 0.37 ± 0.10 a | 0.52 ± 0.16 ab | 0.27 ± 0.01 ab |
FB | 0.36 ± 0.04 b | 0.12 ± 0.01 b | 0.14 ± 0.02 bc | 0.15 ± 0.06 bc |
Factors | df | F | Sig. | ||
---|---|---|---|---|---|
Time | 3 | 17.631 | <0.01 ** | ||
Time × Treatment | 12 | 1.383 | 0.23 | ||
Treatment | 4 | 11.23 | <0.01 ** | ||
Post hoc comparison | Control | CF | FS | SFS | FB |
Control | -- | ||||
CF | ns | -- | |||
FS | <0.01 ** | <0.01 ** | -- | ||
SFS | <0.01 ** | <0.01 ** | ns | -- | |
FB | ns | ns | <0.01 ** | <0.01 ** | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Sun, H.; Zhang, X.; Zhang, J.; Zhou, S. Optimal Straw Retention Strategies for Low-Carbon Rice Production: 5 Year Results of an In Situ Trial in Eastern China. Agronomy 2023, 13, 1456. https://doi.org/10.3390/agronomy13061456
Wang C, Sun H, Zhang X, Zhang J, Zhou S. Optimal Straw Retention Strategies for Low-Carbon Rice Production: 5 Year Results of an In Situ Trial in Eastern China. Agronomy. 2023; 13(6):1456. https://doi.org/10.3390/agronomy13061456
Chicago/Turabian StyleWang, Cong, Huifeng Sun, Xianxian Zhang, Jining Zhang, and Sheng Zhou. 2023. "Optimal Straw Retention Strategies for Low-Carbon Rice Production: 5 Year Results of an In Situ Trial in Eastern China" Agronomy 13, no. 6: 1456. https://doi.org/10.3390/agronomy13061456
APA StyleWang, C., Sun, H., Zhang, X., Zhang, J., & Zhou, S. (2023). Optimal Straw Retention Strategies for Low-Carbon Rice Production: 5 Year Results of an In Situ Trial in Eastern China. Agronomy, 13(6), 1456. https://doi.org/10.3390/agronomy13061456