Effects of Different Types of Soil Management on Organic Carbon and Nitrogen Contents and the Stability Index of a Durum Wheat–Faba Bean Rotation under a Mediterranean Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design and Crop Management
- Conventional tillage (CT): ploughing at an average depth of 35–40 cm and a subsequent complementary operation for the seed-bed preparation.
- Reduced tillage (RT): minimum disturbance of the soil, using a sub-soiler for a vertical cut of the soil until 30 cm depth. The main tillage operation was also followed by a complementary operation for seed-bed preparation.
- Conservation/no tillage (NT): crops were directly sown in the soil to obtain appropriate seed coverage using a sod-seeder.
2.3. Sampling and Soil Analysis
2.4. Statistical Analysis
3. Results
3.1. Organic Matter Concentration and Stock of Organic Carbon (SOC)
3.2. Concentration of Nitrogen
3.3. C/N Ratio
3.4. Index of the Structure of the Soil (WSI)
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, J.; Manuel, D.-B.; de Beeck, M.O.; Shahbaz, M.; Chen, Y.; Deng, X.; Xu, Z.; Li, J.; Liu, Z. Rotation cropping and organic fertilizer jointly promote soil health and crop production. J. Environ. Manag. 2022, 315, 115190. [Google Scholar] [CrossRef] [PubMed]
- Alhajj Ali, S.; Tedone, L.; De Mastro, G. A comparison of the energy consumption of rainfed durum wheat under different management scenarios in southern Italy. Energy 2013, 61, 308–318. [Google Scholar] [CrossRef]
- Dash, B.; Laik, R.; Kumar, V.; Singh, S.K. Best Management Practices for Impending Climate Change through Conservation Agriculture; Kumar, R., Koteswara, R.K., Eds.; ICAR Research Complex for Eastern Region: Patna, India, 2018; p. 64. [Google Scholar]
- Gregorich, E.G.; Rochette, P.; VandenBygaart, A.J.; Angers, D.A. Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada. Soil Tillage Res. 2005, 83, 53–72. [Google Scholar] [CrossRef]
- Zhang, H.L.; Lal, R.; Zhao, X.; Xue, J.F.; Chen, F. Opportunities and challenges of soil carbon sequestration by conservation agriculture in China. Adv. Agron. 2014, 124, 1–36. [Google Scholar]
- Li, J.; Wen, Y.C.; Li, X.H.; Li, Y.T.; Yang, X.D.; Lin, Z.A.; Song, Z.Z.; Cooper, J.M.; Zhao, B.Q. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain. Soil Tillage Res. 2018, 175, 281–290. [Google Scholar] [CrossRef]
- Abbas, F.; Hammad, H.M.; Ishaq, W.; Farooque, A.A.; Bakhat, H.F.; Zia, Z.; Cerdà, A. A review of soil carbon dynamics resulting from agricultural practices. J. Environ. Manag. 2020, 268, 110319. [Google Scholar] [CrossRef]
- Puget, P.; Lal, R. Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use. Soil Tillage Res. 2005, 80, 201–213. [Google Scholar] [CrossRef]
- Baker, J.M.; Ochsner, T.E.; Venterea, R.T.; Griffis, T.J. Tillage and soil carbon sequestration-what do we really know? Agric. Ecosyst. Environ. 2007, 118, 1–5. [Google Scholar] [CrossRef]
- Lal, R. Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil Tillage Res. 2007, 93, 1–12. [Google Scholar] [CrossRef]
- Salinas-Garcıa, J.R.; Velazquez-Garcıa, J.J.; Gallardo-Valdez, M.; Dıaz-Mederos, P.; Caballero-Hernandez, F.; Tapia-Vargas, L.M.; Rosales-Robles, E. Tillage effects on microbial biomass and nutrient distribution in soils under rain-fed corn production in central-western Mexico. Soil Tillage Res. 2002, 66, 143–156. [Google Scholar] [CrossRef]
- Chatterjee, A.; Lal, R. On farm assessment of tillage impact on soil carbon and associated soil quality parameters. Soil Tillage Res. 2009, 104, 270–277. [Google Scholar] [CrossRef]
- Mishra, U.; Ussiri, D.A.N.; Lal, R. Tillage effects on soil organic carbon storage and dynamics in Corn Belt of Ohio USA. Soil Tillage Res. 2010, 107, 88–96. [Google Scholar] [CrossRef]
- Wander, M.M.; Bidart, M.G.; Aref, S. Tillage impacts on depth distribution of total and particulate organic matter in three Illinois soils. Soil Sci. Soc. Am. J. 1998, 62, 1704–1711. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. No-tillage and soil profile carbon sequestration: An on-farm assessment. Soil Sci. Soc. Am. J. 2008, 72, 693–701. [Google Scholar] [CrossRef]
- Dong, W.; Hu, C.; Chen, S.; Zhang, Y. Tillage and residue management effects on soil carbon and CO2 in a wheat–corn double-cropping system. Nutr. Cycl. Agroecosyst. 2008, 83, 27–37. [Google Scholar] [CrossRef]
- West, T.O.; Post, W.M. Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef]
- Lal, R.; Kimble, J.M.; Stewart, B.A. Land use and C pools in terrestrial ecosystems. In Management of Carbon Sequestration in Soil; Lal, R., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 1998; pp. 1–10. [Google Scholar]
- Campbell, C.A.; McKonkey, B.G.; Zentner, R.P.; Dyck, F.; Selles, F.; Curtin, D. Carbon sequestration in a brown Chernozem as affected by tillage and rotation. Can. J. Soil Sci. 1995, 75, 449–458. [Google Scholar] [CrossRef]
- Christopher, S.F.; Lal, R.; Mishra, U. Regional study of no-till effects on carbon sequestration in the Midwestern United States. Soil Sci. Soc. Am. J. 2009, 73, 207–216. [Google Scholar] [CrossRef]
- Ussiri, D.A.N.; Lal, R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an Alfisol in Ohio. Soil Tillage Res. 2009, 104, 39–47. [Google Scholar] [CrossRef]
- Lou, Y.; Xu, M.; Chen, X.; He, X.; Zhao, K. Stratification of soil organic C, N and C:N ratio as affected by conservation tillage in two maize fields of China. Catena 2012, 95, 124–130. [Google Scholar] [CrossRef]
- Al-Kaisi, M.M.; Yin, X.; Licht, M.A. Soil carbon and nitrogen changes as influenced by tillage and cropping systems in some Iowa soils. Agric. Ecosyst. Environ. 2005, 105, 635–647. [Google Scholar] [CrossRef]
- Pagliai, M.; Torri, D.; Patruno, A. Stabilità e distribuzione dimensionale degli aggregati. In Metodi di Analisi Fisica del Suolo; Parte, V., Pagliai, M., Eds.; Franco Angeli: Milan, Italy, 1997; pp. 1–9. [Google Scholar]
- Pagliai, M.; Vignozzi, N.; Pellegrini, S. Soil structure and the effect of management practices. Soil Tillage Res. 2004, 79, 131–143. [Google Scholar] [CrossRef]
- Mrabet, R.; Saber, N.; El-Brahli, A.; Lahlou, S.; Bessam, F. Total, particulate organic matter and structural stability of a Calcixeroll soil under different wheat rotations and tillage systems in a semiarid area of Morocco. Soil Tillage Res. 2001, 57, 225–235. [Google Scholar] [CrossRef]
- Hajabbasi, M.A.; Hemmat, A. Tillage impacts on aggregate stability and crop productivity in a clay-loam soil in central Iran. Soil Tillage Res. 2000, 56, 205–212. [Google Scholar] [CrossRef]
- Ozpinar, S.; Cay, A. Effect of different tillage systems on the quality and crop productivity of a clay–loam soil in semi-arid north-western Turkey. Soil Tillage Res. 2006, 88, 95–106. [Google Scholar] [CrossRef]
- Álvaro-Fuentes, J.; López, M.V.; Cantero-Martínez, C.; Arrúe, J.L. Tillage effects on soil organic carbon fractions in Mediterranean dryland agroecosystems. Soil Sci. Soc. Am. J. 2008, 72, 541–547. [Google Scholar] [CrossRef]
- Cárceles Rodríguez, B.; Durán-Zuazo, V.H.; Soriano Rodríguez, M.; García-Tejero, I.F.; Gálvez Ruiz, B.; Cuadros Tavira, S. Conservation Agriculture as a Sustainable System for Soil Health: A Review. Soil Syst. 2022, 6, 87. [Google Scholar] [CrossRef]
- Moreno, F.; Murillo, J.M.; Pelegrín, F.; Girón, I.F. Long-term impact of conservation tillage on stratification ratio of soil organic carbon and loss of total and active CaCO3. Soil Tillage Res. 2006, 85, 86–93. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Liebig, M.A.; Tanaka, D.L.; Wienhold, B.J. Tillage and cropping effects on soil quality indicators in the northern Great Plains. Soil Tillage Res. 2004, 78, 131–141. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Manuring and rotation effects on soil organic carbon concentration for different aggregate size fractions on two soils in northeastern Ohio, USA. Soil Tillage Res. 2005, 81, 239–252. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Steffens, M.; Mueller, C.W.; Kölbl, A.; Reszkowska, A.; Peth, S.; Horn, R.; Kögel-Knabner, I. Aggregate stability and physical protection of soil organic carbon in semi-arid steppe soils. Eur. J. Soil Sci. 2012, 63, 22–31. [Google Scholar] [CrossRef]
- Razafimbelo, T.M.; Albrecht, A.; Oliver, R.; Chevallier, T.; Chapuis-Lardy, L.; Feller, C. Aggregate associated-C and physical protection in a tropical clayey soil under Malagasy conventional and no-tillage systems. Soil Tillage Res. 2008, 98, 140–149. [Google Scholar] [CrossRef]
- Daraghmeh, O.A.; Jensen, J.R.; Petersen, C.T. Soil structure stability under conventional and reduced tillage in a sandy loam. Geoderma 2009, 150, 64–71. [Google Scholar] [CrossRef]
- Chen, H.; Hou, R.; Gong, Y.; Li, H.; Fan, M.; Kuzyakov, Y. Effects of 11 years of conservation tillage on soil organic matter fractions in wheat monoculture in Loess Plateau of China. Soil Tillage Res. 2009, 106, 85–94. [Google Scholar] [CrossRef]
- Grandy, A.S.; Robertson, G.P. Aggregation and organic matter protection following tillage of a previously uncultivated soil. Soil Sci. Soc. Am. J. 2006, 70, 1398–1406. [Google Scholar] [CrossRef]
- Gangwar, K.S.; Singh, K.K.; Sharma, S.K.; Tomar, O.K. Alternative tillage and crop residue management in wheat after rice in sandy loam soils of Indo-Gangetic plains. Soil Tillage Res. 2006, 88, 242–252. [Google Scholar] [CrossRef]
- Green, V.S.; Stott, D.E.; Cruz, J.C.; Curi, N. Tillage impacts on soil biological activity and aggregation in a Brazilian Cerrado Oxisol. Soil Tillage Res. 2007, 92, 114–121. [Google Scholar] [CrossRef]
- Paul, B.K.; Vanlauwe, B.; Ayuke, F.; Gassner, A.; Hoogmoed, M.; Hurisso, T.T.; Koala, S.; Lelei, D.; Ndabamenye, T.; Six, J.; et al. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity. Agric. Ecosyst. Environ. 2013, 164, 14–22. [Google Scholar] [CrossRef]
- Plaza-Bonilla, D.; Álvaro-Fuentes, J.; Cantero-Martínez, C. Identifying soil organic carbon fractions sensitive to agricultural management practices. Soil Tillage Res. 2014, 139, 19–22. [Google Scholar] [CrossRef]
- Christensen, B.T. Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur. J. Soil Sci. 2001, 52, 345–353. [Google Scholar] [CrossRef]
- Cai, S.; Pittelkow, C.M.; Zhao, X.; Wang, S. Winter legume-rice rotations can reduce nitrogen pollution and carbon footprint while maintaining net ecosystem economic benefits. J. Clean. Prod. 2018, 195, 289–300. [Google Scholar] [CrossRef]
- Virk, A.L.; Liu, W.S.; Chen, Z.; Yves, N.; Bohoussou, D.; Cheema, M.A.; Khan, K.S.; Zhao, X.; Zhang, H.L. Effects of different tillage systems and cropping sequences on soil physicochemical properties and greenhouse gas emissions. Agric. Ecosyst. Environ. 2022, 335, 108010. [Google Scholar] [CrossRef]
- Badagliacca, G.; Benítez, E.; Amato, G.; Badalucco, L.; Giambalvo, D.; Laudicina, V.A.; Ruisi, P. Long-term no-tillage application increases soil organic carbon, nitrous oxide emissions and faba bean (Vicia faba L.) yields under rain-fed Mediterranean conditions. Sci. Total Environ. 2018, 639, 350–359. [Google Scholar] [CrossRef]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef]
- Tedone, L.; Alhajj Ali, S.; De Mastro, G. The Effect of Tillage on Faba Bean (Vicia faba L.) Nitrogen Fixation in Durum Wheat ((Triticum turgidum L. subsp. Durum (Desf))-Based Rotation under a Mediterranean Climate. Agronomy 2023, 13, 105. [Google Scholar]
- Zhang, X.; Wang, M.; Zhang, D.; Zhang, Y.; Wang, X. Increasing soil organic carbon pools and wheat yields by optimising tillage and fertilisation on the Loess Plateau in China. Eur. J. Soil Sci. 2022, 73, e13197. [Google Scholar] [CrossRef]
- Dane, J.H.; Topp, C.G. (Eds.) Methods of Soil Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Dikgwatlhe, S.B.; Chen, Z.; Lal, R.; Zhang, H.; Chen, F. Changes in soil organic carbon and nitrogen as affected by tillage and residue management under wheat–maize cropping system in the North China Plain. Soil Tillage Res. 2014, 144, 110–118. [Google Scholar] [CrossRef]
- Shao, Y.; Xie, Y.; Wanga, C.; Yue, J.; Yao, Y.; Li, X.; Liu, W.; Zhu, Y.; Guo, T. Effects of different soil conservation tillage approaches on soil nutrients, water use and wheat-maize yield in rainfed dry-land regions of North China. Eur. J. Agron. 2016, 81, 37–45. [Google Scholar] [CrossRef]
- Ali, S.A.; Tedone, L.; Verdini, L.; Cazzato, E.; De Mastro, G. Wheat response to no-tillage and nitrogen fertilization in a long-term faba bean-based rotation. Agronomy 2019, 9, 50. [Google Scholar] [CrossRef]
- Tan, S.S.; Kuebbing, S.E. A synthesis of the effect of regenerative agriculture on soil carbon sequestration in Southeast Asian croplands. Agric. Ecosyst. Environ. 2023, 349, 108450. [Google Scholar] [CrossRef]
- Ljubičić, N.; Popović, V.; Ćirić, V.; Kostić, M.; Ivošević, B.; Popović, D.; Pandžić, M.; El Musafah Seddiq Janković, S. Multivariate Interaction Analysis of Winter Wheat Grown in Environment of Limited Soil Conditions. Plants 2021, 10, 604. [Google Scholar] [CrossRef] [PubMed]
- Kostić, M.; Ljubičić, N.; Ivošević, B.; Radulović, M.; Popovic, S.; Blagojević, D.; Popović, V. Spot-based proximal sensing for field-scale assessment of winter wheat yield and economical production. Agric. For. 2021, 67, 103–113. [Google Scholar] [CrossRef]
Characteristics | M. Unit | Value |
---|---|---|
Total Nitrogen (Kjeldahl method) | g kg−1 | 1.7 |
Available P (Olsen Method) | mg kg−1 | 27.6 |
Nitrate (Nitrate Test Kit NO3−) | ppm | 14.3 |
Organic matter (Walkley–Black method) | % | 2.8 |
Total lime | % | 8.8 |
Exchangeable Na (ESP) | % | 1.9 |
pH | - | 7.72 |
Exchangeable K2O (ammonium acetate method) | mg kg−1 | 227 |
Total carbonate | g kg−1 | 15.0 |
Active carbonate (Druineau) | g kg−1 | 5.0 |
Soil salinity (ECe) (saturated paste extract method) | dS m−1 | 0.95 |
Effect | SOC | Total N | Water Stability Index (WSI) |
---|---|---|---|
Cultivations (wheat vs. faba beans) | * | *** | ** |
Soil Organic Carbon (SOC) | Total N | Water Stability Index (WSI) | |
---|---|---|---|
Main effect | |||
Year (Y) | * | * | ** |
Deep sampling (D) | ** | *** | ns |
Tillage (T) | ** | * | *** |
Interaction | |||
Y × D | * | ** | ns |
Y × T | ** | *** | ** |
D × T | ** | ns | ns |
Y × D × T | ns | ns | ns |
Soil Organic Carbon (SOC) | Total N | Water Stability Index (WSI) | |
---|---|---|---|
Main effect | |||
Year (Y) | ** | ** | * |
Deep sampling (D) | *** | *** | *** |
Tillage (T) | ** | * | * |
Interaction | |||
Y × D | ** | * | ns |
Y × T | ** | *** | ns |
D × T | *** | ns | ns |
Y × D × T | * | ns | ns |
Variable | Organic Carbon | ||
---|---|---|---|
Year | g kg−1 | ||
2010 | 11.76 d | ± | 0.23 |
2011 | 13.56 b | ± | 0.33 |
2012 | 13.45 b | ± | 0.36 |
2013 | 12.94 c | ± | 0.38 |
2014 | 13.69 b | ± | 0.42 |
2015 | 14.33 a | ± | 0.37 |
2016 | 13.61 b | ± | 0.43 |
2017 | 14.24 a | ± | 0.41 |
2018 | 14.13 a | ± | 0.45 |
Tillage system | |||
CT | 13.35 b | ± | 0.36 |
RT | 13.35 c | ± | 0.38 |
NT | 14.10 a | ± | 0.42 |
Soil depth | |||
0–15 | 17.05 a | ± | 0.24 |
15–30 | 15.53 b | ± | 0.15 |
30–60 | 13.06 c | ± | 0.20 |
60–90 | 8.46 d | ± | 0.12 |
Soil Depth (cm) | 2010 | 2018 | Net Increase 2010–2018 | ||||||
---|---|---|---|---|---|---|---|---|---|
CT | RT | NT | CT | RT | NT | CT | RT | NT | |
(t ha−1) | (t ha−1) | (t ha−1) | |||||||
0–15 | 25.5 | 23.5 | 28.0 | 35.2 | 36.1 | 41.4 | 9.7 | 12.6 | 13.4 |
15–30 | 26.5 | 24.9 | 25.9 | 31.1 | 32.2 | 31.8 | 4.5 | 7.3 | 6.0 |
30–60 | 45.5 | 47.9 | 50.8 | 45.6 | 49.9 | 51.2 | 0.1 | 2.0 | 0.3 |
60–90 | 32.0 | 31.1 | 34.5 | 32.1 | 31.3 | 34.7 | 0.1 | 0.2 | 0.3 |
Mean | 129.5 | 127.4 | 139.2 | 143.9 | 149.5 | 159.2 | 14.4 | 5.5 | 5.0 |
Annual accumulation rate | |||||||||
0–30 | 1.58 | 2.21 | 2.15 | ||||||
30–90 | 0.02 | 0.25 | 0.07 | ||||||
ANOVA | |||||||||
Year | *** | ||||||||
Tillage | *** | ||||||||
Soil Depth | *** | ||||||||
Year × Tillage | ** | ||||||||
Year × Depth | *** | ||||||||
Tillage × Depth | ** | ||||||||
Tillage × Year × Depth | ns |
Cultivation | Variable | Nitrogen Content | ||
---|---|---|---|---|
Year | g kg−1 | |||
wheat | 2010 | 1.51 c | ± | 0.040 |
faba bean | 2011 | 1.67 a | ± | 0.044 |
wheat | 2012 | 1.52 c | ± | 0.041 |
faba bean | 2013 | 1.52 c | ± | 0.047 |
wheat | 2014 | 1.44 d | ± | 0.043 |
faba bean | 2015 | 1.52 c | ± | 0.044 |
wheat | 2016 | 1.48 cd | ± | 0.039 |
faba bean | 2017 | 1.59 b | ± | 0.040 |
wheat | 2018 | 1.52 c | ± | 0.040 |
Tillage system | ||||
CT | 1.59 a | ± | 0.043 | |
RT | 1.48 c | ± | 0.039 | |
NT | 1.52 b | ± | 0.044 | |
Soil depth | ||||
0–15 | 1.81 a | ± | 0.028 | |
15–30 | 1.68 b | ± | 0.032 | |
30–60 | 1.49 c | ± | 0.035 | |
60–90 | 1.15 d | ± | 0.037 |
Cultivation | Variable | CN Rate | ||
---|---|---|---|---|
Year | ||||
wheat | 2010 | 8.02 e | ± | 0.134 |
faba bean | 2011 | 8.41 d | ± | 0.200 |
wheat | 2012 | 8.96 cd | ± | 0.172 |
faba bean | 2013 | 8.69 cd | ± | 0.179 |
wheat | 2014 | 9.67 a | ± | 0.254 |
faba bean | 2015 | 9.61 a | ± | 0.154 |
wheat | 2016 | 9.3 2 ab | ± | 0.163 |
faba bean | 2017 | 9.01 ab | ± | 0.139 |
wheat | 2018 | 9.29 ab | ± | 0.109 |
Tillage system | ||||
CT | 8.71 c | ± | 0.188 | |
RT | 9.03 b | ± | 0.177 | |
NT | 9.26 a | ± | 0.170 | |
Soil depth | ||||
0–15 | 9.01 ab | ± | 0.147 | |
15–30 | 8.98 ab | ± | 0.141 | |
30–60 | 9.16 a | ± | 0.217 | |
60–90 | 8.85 b | ± | 0.202 |
Cultivation | Variable | CN Rate | ||
---|---|---|---|---|
Year | ||||
faba bean | 2013 | 13.7 a | ± | 0.475 |
wheat | 2014 | 13.9 a | ± | 0.197 |
faba bean | 2015 | 14.6 a | ± | 0.309 |
wheat | 2016 | 14.2 a | ± | 0.307 |
faba bean | 2017 | 13.9 a | ± | 0.310 |
wheat | 2018 | 14.7 a | ± | 0.309 |
Tillage system | ||||
HD | 13.0 b | ± | 0.344 | |
LD | 13.2 b | ± | 0.301 | |
SS | 15.4 a | ± | 0.363 | |
Soil depth | ||||
0–15 | 15.1 a | ± | 0.388 | |
15–30 | 13.7 b | ± | 0.296 | |
30–60 | 12.7 c | ± | 0.328 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tedone, L.; Verdini, L.; De Mastro, G. Effects of Different Types of Soil Management on Organic Carbon and Nitrogen Contents and the Stability Index of a Durum Wheat–Faba Bean Rotation under a Mediterranean Climate. Agronomy 2023, 13, 1298. https://doi.org/10.3390/agronomy13051298
Tedone L, Verdini L, De Mastro G. Effects of Different Types of Soil Management on Organic Carbon and Nitrogen Contents and the Stability Index of a Durum Wheat–Faba Bean Rotation under a Mediterranean Climate. Agronomy. 2023; 13(5):1298. https://doi.org/10.3390/agronomy13051298
Chicago/Turabian StyleTedone, Luigi, Leonardo Verdini, and Giuseppe De Mastro. 2023. "Effects of Different Types of Soil Management on Organic Carbon and Nitrogen Contents and the Stability Index of a Durum Wheat–Faba Bean Rotation under a Mediterranean Climate" Agronomy 13, no. 5: 1298. https://doi.org/10.3390/agronomy13051298
APA StyleTedone, L., Verdini, L., & De Mastro, G. (2023). Effects of Different Types of Soil Management on Organic Carbon and Nitrogen Contents and the Stability Index of a Durum Wheat–Faba Bean Rotation under a Mediterranean Climate. Agronomy, 13(5), 1298. https://doi.org/10.3390/agronomy13051298