Accurate and Rapid Measurement of Soil Dry Depth Using Ultrasonic Reflection Waves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Analysis
2.2. Simulation Description
2.3. Sample Preparation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaiswal, S. Fuzzy inference based irrigation controller for agricultural demand side management. Comput. Electron. Agric. 2020, 175, 105537. [Google Scholar] [CrossRef]
- Bhattarai, S.P.; Su, N.; Midmore, D.J. Oxygation unlocks yield potentials of crops in oxygen-limited soil environments. Adv. Agron. 2005, 88, 313–377. [Google Scholar]
- Bhattarai, S.P.; Midmore, D.J.; Pendergast, L. Yield, water-use efficiencies and root distribution of soybean, chickpea and pumpkin under different subsurface drip irrigation depths and oxygation treatments in vertisols. Irrig. Sci. 2008, 26, 439–450. [Google Scholar] [CrossRef]
- Schmugge, T.J.; Jackson, T.J.; McKim, H.L. Survey of methods for soil moisture determination. Water Resour. Res. 1980, 16, 961–979. [Google Scholar] [CrossRef]
- Zazueta, F.S.; Xin, J.N. Soil moisture sensors. Florida cooperative extension service. Bulletin 1994, 292, 1–11. [Google Scholar]
- Patil, V.S.; Shinde, S.A.; Dhawale, N.M. A review on determination of soil organic matter and soil moisture content using conventional methods and image processing techniques. In Proceedings of the 2021 IEEE Pune Section International Conference (PuneCon), Pune, India, 16–19 December 2021; pp. 1–6. [Google Scholar]
- Fu, Y.; Taneja, P.; Lin, S.; Ji, W.; Adamchuk, V.; Daggupati, P.; Biswas, A. Predicting soil organic matter from cellular phone images under varying soil moisture. Geoderma 2020, 361, 114020. [Google Scholar] [CrossRef]
- Singh, D.N.; Kuriyan, S.J. Estimation of hydraulic conductivity of unsaturated soils using a geotechnical centrifuge. Can. Geotech. J. 2002, 39, 684–694. [Google Scholar] [CrossRef]
- Vanapalli, S.K.; Fredlund, D.G.; Pufahl, D.E. Influence of soil structure and stress history on the soil-water characteristics of a compacted till. Geotechnique 2001, 51, 573–576. [Google Scholar] [CrossRef]
- Jayawardane, N.S.; Meyer, W.S.; Barrs, H.D. Moisture measurement in a swelling clay soil using neutron moisture meters. Soil Res. 1984, 22, 109–117. [Google Scholar] [CrossRef]
- Li, J.; Smith, D.W.; Fityus, S.G. The effect of a gap between the access tube and the soil during neutron probe measurements. Soil Res. 2003, 41, 151–164. [Google Scholar] [CrossRef]
- Evett, S.R. Some aspects of time domain reflectometry, neutron scattering, and capacitance methods for soil water content measurement. In Proceedings of the Joint FAO/IAEA Consultants Meeting on Comparison of Soil Water Measurement Using the Neutron Scattering, Time Domain Reflectometry and Capacitance Methods, Vienna, Austria, 23–25 November 1998. [Google Scholar]
- Jones, W.K.; Carroll, T.R. Error analysis of airborne gamma radiation soil moisture measurements. Agric. Meteorol. 1983, 28, 19–30. [Google Scholar] [CrossRef]
- Cho, E.; Jacobs, J.M.; Schroeder, R.; Tuttle, S.E.; Olheiser, C. Improvement of operational airborne gamma radiation snow water equivalent estimates using smap soil moisture. Remote Sens. Environ. 2020, 240, 111668. [Google Scholar] [CrossRef]
- Bogena, H.R.; Huisman, J.A.; Güntner, A.; Hübner, C.; Kusche, J.; Jonard, F.; Vey, S.; Vereecken, H. Emerging methods for noninvasive sensing of soil moisture dynamics from field to catchment scale: A review. Wiley Interdiscip. Rev. Water 2015, 2, 635–647. [Google Scholar] [CrossRef]
- Robinson, D.A.; Campbell, C.S.; Hopmans, J.W.; Hornbuckle, B.K.; Jones, S.B.; Knight, R.; Ogden, F.; Selker, J.; Wendroth, O. Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone J. 2008, 7, 358–389. [Google Scholar] [CrossRef]
- Terhoeven-Urselmans, T.; Schmidt, H.; Joergensen, R.G.; Ludwig, B. Usefulness of near-infrared spectroscopy to determine biological and chemical soil properties: Importance of sample pre-treatment. Soil Biol. Biochem. 2008, 40, 1178–1188. [Google Scholar] [CrossRef]
- Stacheder, M.; Koeniger, F.; Schuhmann, R. New dielectric sensors and sensing techniques for soil and snow moisture measurements. Sensors 2009, 9, 2951–2967. [Google Scholar] [CrossRef]
- Gaskin, G.J.; Miller, J.D. Measurement of soil water content using a simplified impedance measuring technique. J. Agric. Eng. Res. 1996, 63, 153–159. [Google Scholar] [CrossRef]
- Kelleners, T.J.; Soppe, R.W.O.; Robinson, D.A.; Schaap, M.G.; Ayars, J.E.; Skaggs, T.H. Calibration of capacitance probe sensors using electric circuit theory. Soil Sci. Soc. Am. J. 2004, 68, 430–439. [Google Scholar] [CrossRef]
- Fares, A.; Polyakov, V. Advances in crop water management using capacitive water sensors. Adv. Agron. 2006, 90, 43–47. [Google Scholar]
- Ghaemifard, M.; Ghal-Eh, N.; Najafabadi, R.I.; Vega-Carrillo, H.R. Angular distribution of scattered neutrons as a tool for soil moisture measurement: A feasibility study. Appl. Radiat. Isot. 2020, 160, 109131. [Google Scholar] [CrossRef]
- Zhao, T.; Hu, L.; Shi, J.; Lü, H.; Li, S.; Fan, D.; Wang, P.; Geng, D.; Kang, C.S.; Zhang, Z. Soil moisture retrievals using l-band radiometry from variable angular ground-based and airborne observations. Remote Sens. Environ. 2020, 248, 111958. [Google Scholar] [CrossRef]
- Calamita, G.; Brocca, L.; Perrone, A.; Piscitelli, S.; Lapenna, V.; Melone, F.; Moramarco, T. Electrical resistivity and tdr methods for soil moisture estimation in central italy test-sites. J. Hydrol. 2012, 454, 101–112. [Google Scholar] [CrossRef]
- Chow, L.; Xing, Z.; Rees, H.W.; Meng, F.; Monteith, J.; Stevens, L. Field performance of nine soil water content sensors on a sandy loam soil in new brunswick, maritime region, canada. Sensors 2009, 9, 9398–9413. [Google Scholar] [CrossRef] [PubMed]
- Van Bavel, C.H.M.; Underwood, N.; Swanson, R.W. Soil moisture measurement by neutron moderation. Soil Sci. 1956, 82, 29–42. [Google Scholar] [CrossRef]
- Greacen, E.L. Soil Water Assessment by the Neutron Method; CSIRO: Melbourne, Australia, 1981. [Google Scholar]
- Yin, Z.; Lei, T.; Yan, Q.; Chen, Z.; Dong, Y. A near-infrared reflectance sensor for soil surface moisture measurement. Comput. Electron. Agric. 2013, 99, 0168–1699. [Google Scholar] [CrossRef]
- Hinkel, K.M.; Doolittle, J.A.; Bockheim, J.G.; Nelson, F.E.; Paetzold, R.; Kimble, J.M.; Travis, R. Detection of subsurface permafrost features with ground-penetrating radar, barrow, alaska. Permafr. Periglac. Process. 2001, 12, 179–190. [Google Scholar] [CrossRef]
- Dafflon, B.; Hubbard, S.; Ulrich, C.; Peterson, J.; Wu, Y.; Wainwright, H.; Kneafsey, T.J. Geophysical estimation of shallow permafrost distribution and properties in an ice-wedge polygon-dominated arctic tundra regionimaging permafrost soil properties. Geophysics 2016, 81, WA247–WA263. [Google Scholar] [CrossRef]
- Lachenbruch, A.H.; Marshall, B.V. Changing climate: Geothermal evidence from permafrost in the alaskan arctic. Science 1986, 234, 689–696. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, W.; Wang, G.; Li, H. Correlation mechanism between the law of ultrasonic propagation in coal samples and the migration of water. Fuel 2022, 310, 122264. [Google Scholar] [CrossRef]
- Tanaka, K.; Hiraoka, N.; Nakano, S.; Kameda, T.; Fujimoto, M.; Fukagawa, R. Improved measurement of soil moisture using an ultrasonic waveguide to predict rainfall-induced slope failure. Jpn. J. Appl. Phys. 2015, 54, 10ND04. [Google Scholar] [CrossRef]
- Huisman, J.A.; Hubbard, S.S.; Redman, J.D.; Annan, A.P. Measuring soil water content with ground penetrating radar: A review. Vadose Zone J. 2003, 2, 476–491. [Google Scholar] [CrossRef]
- Robinson, D.A.; Jones, S.B.; Wraith, J.M.; Or, D.; Friedman, S.P. A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone J. 2003, 2, 444–475. [Google Scholar] [CrossRef]
- Ochsner, T.E.; Cosh, M.H.; Cuenca, R.H.; Dorigo, W.A.; Draper, C.S.; Hagimoto, Y.; Kerr, Y.H.; Larson, K.M.; Njoku, E.G.; Small, E.E. State of the art in large-scale soil moisture monitoring. Soil Sci. Soc. Am. J. 2013, 77, 1888–1919. [Google Scholar] [CrossRef]
- Cao, D.; Shi, B.; Zhu, H.; Wei, G.; Chen, S.-E.; Yan, J. A distributed measurement method for in-situ soil moisture content by using carbon-fiber heated cable. J. Rock Mech. Geotech. Eng. 2015, 7, 700–707. [Google Scholar] [CrossRef]
Soil Moisture Content | Soil Density (kg/m3) | Sound Velocity (m/s) |
---|---|---|
5% | 1.49 | 520 |
25% | 1.67 | 200 |
Soil Types | Manually Measured | Ultrasonic Measured | The Maximum Error |
---|---|---|---|
Clay | 96.23 mm | 90.78 mm | 5.67% |
Sandy loam | 197.85 mm | 186.05 mm | 5.97% |
Silty loam | 120.19 mm | 113.51 mm | 5.89% |
Sandy | 62.54 mm | 58.8 mm | 5.98% |
Techniques | R2 | RMSE | |
---|---|---|---|
This work | Reflected ultrasonic wave | 0.98~0.99 | 1.5%~1.7% |
Huisman et al. [34] | TDR | 0.87~0.99 | 1.4%~4.4% |
Robinson et al. [35] | Capacitance sensors | 0.88~0.94 | 1.4%~2.4% |
Ochsner et al. [36] | Neutron probe | 0.74~0.99 | 2%~6.7% |
Cao et al. [37] | Carbon-fiber heated cable | 0.72 | 2.85% |
Calamita et al. [24] | Electrical resistivity | 0.21~0.68 | 1.15%~6.03% |
Zhao et al. [23] | L-band Radiometry | Not mentioned | 4.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.; Zhao, C.; Zhang, Y.; Long, S.; Xiao, J.; Zhao, Z. Accurate and Rapid Measurement of Soil Dry Depth Using Ultrasonic Reflection Waves. Agronomy 2023, 13, 1276. https://doi.org/10.3390/agronomy13051276
Liang Z, Zhao C, Zhang Y, Long S, Xiao J, Zhao Z. Accurate and Rapid Measurement of Soil Dry Depth Using Ultrasonic Reflection Waves. Agronomy. 2023; 13(5):1276. https://doi.org/10.3390/agronomy13051276
Chicago/Turabian StyleLiang, Zhongwei, Chunhui Zhao, Yupeng Zhang, Sheng Long, Jinrui Xiao, and Zhuan Zhao. 2023. "Accurate and Rapid Measurement of Soil Dry Depth Using Ultrasonic Reflection Waves" Agronomy 13, no. 5: 1276. https://doi.org/10.3390/agronomy13051276
APA StyleLiang, Z., Zhao, C., Zhang, Y., Long, S., Xiao, J., & Zhao, Z. (2023). Accurate and Rapid Measurement of Soil Dry Depth Using Ultrasonic Reflection Waves. Agronomy, 13(5), 1276. https://doi.org/10.3390/agronomy13051276