Comparative Analysis of Powdery Mildew Disease Resistance and Susceptibility in Brassica Coenospecies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Fungal Infection
2.2. Disease Scoring
2.3. Trypan Blue Staining
2.4. Antioxidant Enzyme Assays in B. juncea, C. sativa, and S. alba after Powdery Mildew Infection
2.5. cDNA Synthesis and Real-Time-PCR
2.6. Statistical Analysis
3. Results and Discussion
3.1. Powdery Mildew Disease Susceptibility and Resistance Is Cultivar Dependent
3.2. Powdery Mildew-Mediated Cell Death in B. juncea, C. sativa, and S. alba
3.3. Antioxidant Enzyme Assay in B. juncea, C. sativa, and S. alba Plants after Powdery Mildew Infection
3.4. Deciphering SA Signaling Pathways in B. juncea, C. sativa, and S. alba after Powdery Mildew
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doehlemann, G.; Ökmen, B.; Zhu, W.; Sharon, A. Plant pathogenic fungi. Microbiol. Spectr. 2017, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Ganai, B.A.; Kamili, A.N.; Bhat, A.A.; Mir, Z.A.; Bhat, J.A.; Tyagi, A.; Islam, S.T.; Mushtaq, M.; Yadav, P.; et al. Pathogene sis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol. Res. 2018, 212, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Seybold, H.; Demetrowitsch, T.J.; Hassani, M.A.; Szymczak, S.; Reim, E.; Haueisen, J.; Lübbers, L.; Rühlemann, M.; Franke, A.; Schwarz, K.; et al. A fungal pathogen induces systemic susceptibility and systemic shifts in wheat metabolome and microbiome composition. Nat. Commun. 2020, 11, 1910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, C.; Xu, Q.; Zhao, M.; Wang, X.; Kang, Z. Understanding the lifestyles and pathogenicity mechanisms of obligate biotrophic fungi in wheat: The emerging genomics era. Crops J. 2018, 6, 60–67. [Google Scholar] [CrossRef]
- Mapuranga, J.; Zhang, N.; Zhang, L.; Chang, J.; Yang, W. Infection Strategies and Pathogenicity of Biotrophic Plant Fungal Pathogens. Front. Microbiol. 2022, 13, 799396. [Google Scholar] [CrossRef]
- Ali, S.; Mir, Z.A.; Tyagi, A.; Bhat, J.A.; Chandrashekar, N.; Papolu, P.K.; Rawat, S.; Grover, A. Identification and comparative analysis of Brassica juncea pathogenesis-related genes in response to hormonal, biotic and abiotic stresses. Acta Physiol. Plant. 2017, 39, 268. [Google Scholar] [CrossRef]
- Zhang, J.; Du, X.; Wang, Q.; Chen, X.; Lv, D.; Xu, K.; Qu, S.; Zhang, Z. Expression of pathogenesis related genes in response to salicylic acid, methyl jasmonate and 1-aminocyclopropane-1-carboxylic acid in Malus hupehensis (Pamp.) Rehd. BMC Res. Notes 2010, 3, 208. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.L.; Yang, H.L.; Zhao, J.P.; Bian, S.J.; Li, Q.F.; Guo, Y.Y.; Chen, B.H.; Li, X.Z. A Pathogenesis-Related Protein 1 of Cucurbita moschata responds to powdery mildew infection. Res. Sq. 2022, 1–16. [Google Scholar] [CrossRef]
- Fu, Z.Q.; Dong, X.N. Systemic acquired resistance: Turning local infection into global defense. Annu. Rev. Plant Biol. 2013, 64, 839–863. [Google Scholar] [CrossRef] [Green Version]
- Lu, H. Dissection of salicylic acid-mediated defense signaling networks. Plant Signal. Behav. 2009, 4, 713–717. [Google Scholar] [CrossRef] [Green Version]
- Mittler, R.; Vanderauwera, S.; Gollery, M.; Van Breusegem, F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004, 9, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Van Esse, H.P.; Reuber, T.L.; Van Der Does, D. Genetic modification to improve disease resistance in crops. New Phytol. 2020, 225, 70–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takamatsu, S. Phylogeny and evolution of the powdery mildew fungi (Erysiphales, Ascomycota) inferred from nuclear ribosomal DNA sequences. Mycoscience 2004, 45, 147–157. [Google Scholar] [CrossRef]
- Moore, D. 21st Century Guidebook to Fungi, 2nd ed.; Reviews and Contents; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Runno-Paurson, E.; Lääniste, P.; Eremeev, V.; Edesi, L.; Metspalu, L.; Kännaste, A.; Niinemets, Ü. Powdery mildew (Erysiphe cruciferarum) evaluation on oilseed rape and alternative cruciferous oilseed crops in the northern Baltic region in unusually warm growing seasons. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2021, 71, 443–452. [Google Scholar] [CrossRef]
- Kumar, S.; Saharan, G.S. Sources of multiple disease resistance in Brassica spp. J. Mycol. Plant Pathol. 2002, 32, 184–188. [Google Scholar]
- Desai, A.G.; Chattopadhyay, C.; Agrawal, R.; Kumar, A.; Meena, R.L.; Meena, P.D.; Sharma, K.C.; Srinivasa Rao, M.; Prasad, Y.G.; Ramakrishna, Y.S. Brassica juncea powdery mildew epidemiology and weather-based forecasting models for India—A case study. J. Plant Dis. Protect. 2004, 111, 429–438. [Google Scholar]
- Sadowski, C.; Dakowska, S.; Lukanowski, A.; Jedryczka, M. Occurrence of fungal diseases on spring rape in Poland. In Working Group: Integrated Control in Oilseed Crops; Paul, V., Föller, I., Eds.; IOBC/WPRS Bulletin: Dijon, France, 2001; Volume 25, pp. 1–12. [Google Scholar]
- Mert-Türk, F.; Gül, M.K.; Egesel, C.O. Nitrogen and fungicide applications against Erysiphe cruciferarum affect quality components of oilseed rape. Mycopathologia 2008, 165, 27–35. [Google Scholar] [CrossRef]
- Karakaya, A.; Gray, F.A.; Koch, D. Powdery mildew of Brassica spp. in Wyoming. Plant Dis. 1993, 77, 1063. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, B.S.; Cho, S.E.; Shin, H.D. First Report of Powdery Mildew Caused by Erysiphe cruciferarum on Indian Mustard (Brassica juncea) in Korea. Plant Dis. 2013, 97, 1383. [Google Scholar] [CrossRef]
- Cho, S.E.; Park, J.H.; Choi, Y.J.; Choi, I.Y.; Shin, H.D. First Report of Powdery Mildew Caused by Erysiphe cruciferarum on Oilseed Rape in Korea. Plant Dis. 2016, 100, 1245. [Google Scholar] [CrossRef]
- Uloth, M.B.; You, M.P.; Barbetti, M.J. Plant age and ambient temperature: Significant drivers for powdery mildew (Erysiphe cruciferarum) epidemics on oilseed rape (Brassica napus). Plant Pathol. 2017, 67, 445–456. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Sharma, V.; Shukla, A.K.; Kaur, M.; Verma, V.; Sandhu, P.S.; Alsuhaibani, A.M.; Gaber, A.; Hossain, A. Biofortification of oil quality, yield, and nutrient uptake in Indian mustard (Brassica juncea L.) by foliar application of boron and nitrogen. Front. Plant Sci. 2022, 23, 976391. [Google Scholar] [CrossRef] [PubMed]
- Nanjundan, J.; Manjunatha, C.; Radhamani, J.; Thakur, A.K.; Yadav, R.; Kumar, A.; Meena, M.L.; Tyagi, R.K.; Yadava, D.K.; Singh, D. Identification of New Source of Resistance to Powdery Mildew of Indian Mustard and Studying Its Inheritance. Plant Pathol. J. 2020, 36, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.P.; Kumari, P.; Rai, P.K. Current status of the disease-resistant gene (s)/QTLs, and strategies for improvement in Brassica juncea. Front. Plant Sci. 2021, 12, 617405. [Google Scholar] [CrossRef]
- Ali, S.; Mir, Z.A.; Tyagi, A.; Mehari, H.; Meena, R.P.; Bhat, J.A.; Yadav, P.; Papalou, P.; Rawat, S.; Grover, A. Overexpression of NPR1 in Brassica juncea Confers Broad Spectrum Resistance to Fungal Pathogens. Front. Plant Sci. 2017, 8, 1693. [Google Scholar] [CrossRef] [Green Version]
- Mir, Z.A.; Ali, S.; Shivaraj, S.; Bhat, J.A.; Singh, A.; Yadav, P.; Rawat, S.; Paplao, P.K.; Grover, A. Genome-wide identification and characterization of Chitinase gene family in Brassica juncea and Camelina sativa in response to Alternaria brassicae. Genomics 2020, 112, 749–763. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 7, 248–254. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Warwick, S.I.; Francis, A.; Al-Shehbaz, I.A. Brassicaceae: Species checklist and database on CD-Rom. Plant Syst. Evol. 2006, 259, 249–258. [Google Scholar] [CrossRef]
- Mehta, N.; Singh, K.; Sangwang, M.S. Assessment of yield losses and evaluation of different varieties/genotypes of mustard against powdery mildew in Haryana. Plant Dis. Res. 2008, 23, 55–59. [Google Scholar]
- Vellios, E.; Bilalis, D.; Karkanis, A. Powdery mildew (Erysiphe cruciferarum) infection on camelina (Camelina sativa) under mediterranean conditions and the role of wild mustard (Sinapis arvensis) as alternative host of this pathogen. Emir. J. Food Agric. 2017, 29, 639–642. [Google Scholar] [CrossRef] [Green Version]
- Uloth, M.B.; You, M.; Barbetti, M.J. Cultivar resistance offers the first opportunity for effective management of the emerging powdery mildew (Erysiphe cruciferarum) threat to oilseed brassicas in Australia. Crops Pasture Sci. 2016, 67, 1179–1187. [Google Scholar] [CrossRef]
- Li, C.Y.; Zhang, N.; Bin, G.; Zhou, Z.Q.; Mei, F.Z. Reactive oxygen species are involved in cell death in wheat roots against powdery mildew. J. Integr. Agric. 2019, 18, 1961–1970. [Google Scholar] [CrossRef]
- Peterhänsel, C.; Freialdenhoven, A.; Kurth, J.; Kolsch, R.; Schulze-Lefert, P. Interaction analyses of genes required for resistance responses to powdery mildew in barley reveal distinct pathways leading to leaf cell death. Plant Cell 1997, 9, 1397–1409. [Google Scholar] [CrossRef]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojtaszek, P. Oxidative burst: An early plant response to pathogen. Biochem. J. 1997, 322, 681–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, P.M.; Zannini, E.; Arendt, E.K. Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: From crop farming to cereal products. Food Microbiol. 2014, 37, 78–95. [Google Scholar] [CrossRef]
- Fung, R.W.; Gonzalo, M.; Fekete, C.; Kovacs, L.G.; He, Y.; Marsh, E.; McIntyre, L.; Schachtman, D.; Qiu, W. Powdery Mildew Induces Defense-Oriented Reprogramming of the Transcriptome in a Susceptible but Not in a Resistant Grapevine. Plant Physiol. 2008, 146, 236–249. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Mir, Z.A.; Bhat, J.A.; Tyagi, A.; Chandrashekar, N.; Yadav, P.; Rawat, S.; Sultana, M.; Grover, A. Isolation and characterization of systemic acquired resistance marker gene PR1 and its promoter from Brassica juncea. 3 Biotech 2018, 8, 10. [Google Scholar] [CrossRef]
- Fang, L.J.; Qin, R.L.; Liu, Z.; Liu, C.R.; Gai, Y.P.; Ji, X.L. Expression and functional analysis of a PR-1 Gene, MuPR1, involved in disease resistance response in mulberry (Morus multicaulis). J. Plant Interact. 2019, 14, 376–385. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Chandrashekar, N.; Rawat, S.; Nayanakantha, N.M.C.; Mir, Z.; Manoharan, A.; Sultana, M.; Grover, A. Isolation and molecular characterization of pathogenesis related PR2 gene and its promoter from Brassica juncea. Biol. Plant. 2017, 61, 763–773. [Google Scholar] [CrossRef]
- Chandrashekar, N.; Ali, S.; Rawat, S.; Grover, A. Gene expression profiling of Arabidopsis thaliana chitinase genes in response to Alternaria brassicae challenge. Indian Phytopathol. 2015, 68, 106–111. [Google Scholar]
- Chandrashekar, N.; Ali, S.; Grover, A. Exploring expression patterns of PR-1, PR-2, PR-3, and PR-12 like genes in Arabidopsis thaliana upon Alternaria brassicae inoculation. 3 Biotech 2018, 8, 230. [Google Scholar] [CrossRef]
- Rawat, S.; Ali, S.; Mittra, B.; Grover, A. Expression analysis of chitinase upon challenge inoculation to Alternaria wounding and defense inducers in Brassica juncea. Biotechnol. Rep. 2017, 13, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Rawat, S.; Ali, S.; Nayankantha, N.C.; Chandrashekar, N.; Mittra, B.; Grover, A. Isolation and expression analysis of defensin gene and its promoter from Brassica juncea. J. Plant Dis. Prot. 2017, 124, 591–600. [Google Scholar] [CrossRef]
- Chamil, N.M.; Sandhya, R.; Sajad, A.; Grover, A. Defense gene induction in Camelina sativa upon Alternaria brassicae challenge. Indian Phytopathol. 2014, 67, 252–256. [Google Scholar]
- Yadav, P.; Mir, Z.A.; Ali, S.; Papolu, P.K.; Grover, A. A combined transcriptional, biochemical and histopathological study unravels the complexity of Alternaria resistance and susceptibility in Brassica coenospecies. Fungal Biol. 2020, 124, 44–53. [Google Scholar] [CrossRef]
- Mir, Z.A.; Ali, S.; Singh, A.; Yadav, P.; Tyagi, A.; Chaturani, G.D.G.; Grover, A. In silico analysis and overexpression of chitinase class IV gene in Brassica juncea improves resistance against Al-ternaria brassicae. Ind. Crops Prod. 2021, 169, 113555. [Google Scholar] [CrossRef]
Primer Name | Sequence |
---|---|
PR1_F PR1_R | 5′ TCGGCAAGTACCATGATGAG 3′ 5′ GCATGTTGGTGGCAACG 3′ |
PR2_F PR2_R | 5′ CGAAGCCGGACCTAATCAAG 3′ 5′ GAGAAGCTGCAAGCCACTAA 3′ |
PR5_F PR5_R | 5′ GCTTTCGCGTTGGCATAATC 3′ 5′ GGAGAGCATGGAAGCAAGAA 3′ |
Alpha tubulin_F Alpha tubulin_R | 5′GCCTCGTCTCTCAGGTTATTTC3′ 5′TGAAGTGGATTCTTGGGTATGG3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mir, Z.A.; Ali, S.; Tyagi, A.; Yadav, P.; Chandrashekar, N.; El-Sheikh, M.A.; Alansi, S.; Grover, A. Comparative Analysis of Powdery Mildew Disease Resistance and Susceptibility in Brassica Coenospecies. Agronomy 2023, 13, 1033. https://doi.org/10.3390/agronomy13041033
Mir ZA, Ali S, Tyagi A, Yadav P, Chandrashekar N, El-Sheikh MA, Alansi S, Grover A. Comparative Analysis of Powdery Mildew Disease Resistance and Susceptibility in Brassica Coenospecies. Agronomy. 2023; 13(4):1033. https://doi.org/10.3390/agronomy13041033
Chicago/Turabian StyleMir, Zahoor Ahmad, Sajad Ali, Anshika Tyagi, Prashant Yadav, N Chandrashekar, Mohamed A. El-Sheikh, Saleh Alansi, and Anita Grover. 2023. "Comparative Analysis of Powdery Mildew Disease Resistance and Susceptibility in Brassica Coenospecies" Agronomy 13, no. 4: 1033. https://doi.org/10.3390/agronomy13041033
APA StyleMir, Z. A., Ali, S., Tyagi, A., Yadav, P., Chandrashekar, N., El-Sheikh, M. A., Alansi, S., & Grover, A. (2023). Comparative Analysis of Powdery Mildew Disease Resistance and Susceptibility in Brassica Coenospecies. Agronomy, 13(4), 1033. https://doi.org/10.3390/agronomy13041033