Prediction Model of Pumpkin Rootstock Seedlings Based on Temperature and Light Responses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Collection of Environmental Data
2.3. Measurement of Plant Growth Characteristics
2.4. Establishment of Prediction Model for Pumpkin Rootstock Seedlings
2.5. Model Evaluation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effects of Temperature and Light Intensity on Growth of Pumpkin Rootstock Seedlings
3.2. Prediction Model of Development Time of Pumpkin Rootstock Seedlings Based on Daily Average Temperature and DLI
3.3. Development of the Simulation Model for Seedling Quality Indices
3.4. Validation of Prediction Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vatakait-Kairien, V.; Brazaityt, A.; Virsile, A.; Samuoliene, G.; Miliauskiene, J.; Jankauskiene, J.; Novickovas, A.; Duchovskis, P. The Nutritional Value of Brassica Leafy Greens in Different Growth Stages. Acta Hortic. 2020, 1271, 455–464. [Google Scholar] [CrossRef]
- Yan, Z.; He, D.; Niu, G.; Zhai, H. Evaluation of Growth and Quality of Hydroponic Lettuce at Harvest as Affected by The Light Intensity, Photoperiod and Light Quality at Seedling Stage. Sci. Hortic. 2019, 248, 138–144. [Google Scholar] [CrossRef]
- Liu, M.; Ji, Y.; Wu, Z.; He, W. Current Situation and Development Trend of Vegetable Seedling Industry in China. China Veg. 2018, 11, 1–7. [Google Scholar]
- Niu, M.; Wei, L.; Peng, Y.; Huang, Y.; Bie, Z. Mechanisms of Increasing Salt Resistance of Vegetables by Grafting. Veg. Res. 2022, 2, 8. [Google Scholar] [CrossRef]
- Shireen, F.; Nawaz, M.A.; Xiong, M.; Ahmad, A.; Sohail, H.; Chen, Z.; Abouseif, Y.; Huang, Y.; Bie, Z. Pumpkin Rootstock Improves The Growth and Development of Watermelon by Enhancing Uptake and Transport of Boron and Regulating The Gene Expression. Plant Physiol. Biochem. 2020, 154, 204–218. [Google Scholar] [CrossRef]
- Zhen, A.; Bie, Z.; Huang, Y.; Liu, Z.; Li, Q. Effects of Scion and Rootstock Genotypes on The Antioxidant Defense Systems of Grafted Cucumber Seedlings Under NaCl Stress. Soil Sci. Plant Nutr. 2010, 56, 263–271. [Google Scholar] [CrossRef]
- FAO. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 27 July 2022).
- Nawaz, M.A.; Wang, L.; Chen, C.; Zhao, L.; Mei, M.; Yu, Y.; Bie, Z.; Huang, Y. Pumpkin Rootstock Improves Nitrogen Use Efficiency of Watermelon Scion by Enhancing Nutrient Uptake, Cytokinin Content, and Expression of Nitrate Reductase Genes. Plant Growth Regul. 2017, 82, 233–246. [Google Scholar] [CrossRef]
- Liu, W.; Xiang, C.; Li, X.; Wang, T.; Lu, X.; Liu, Z.; Gao, L.; Zhang, W. Identification of Long-Distance Transmissible mRNA between Scion and Rootstock in Cucurbit Seedling Heterografts. Int. J. Mol. Sci. 2020, 21, 5253. [Google Scholar] [CrossRef]
- Fu, X.; Feng, Y.; Zhang, X.; Zhang, Y.; Bi, H.; Ai, X. Salicylic Acid Is Involved in Rootstock–Scion Communication in Improving the Chilling Tolerance of Grafted Cucumber. Front. Plant Sci. 2021, 12, 693344. [Google Scholar] [CrossRef]
- Kasampalis, D.A.; Alexandridis, T.; Deva, C.; Challinor, A.; Moshou, D.; Zalidis, G. Contribution of Remote Sensing on Crop Models: A Review. J. Imaging 2018, 4, 52. [Google Scholar] [CrossRef]
- Perry, K.B.; Wehner, T.C.; Johnson, G.L. Comparison of 14 Methods to Determine Heat Unit Requirements for Cucumber Harvest. Hortscience 1986, 21, 419–423. [Google Scholar] [CrossRef]
- Uzun, S.; Marangoz, D.; Ozkaraman, F. Modeling the Time Elapsing from Seed Sowing to Emergence in Some Vegetable Crops. Pak. J. Biol. Sci. 2001, 4, 442–445. [Google Scholar] [CrossRef]
- Sarba, H.E.; Uzun, S. A Model to Determine Quantitative Effects of Light and Temperature on Organic Tomato Seedlings. Acta scientiarum Polonorum. Hortorum Cultus 2019, 18, 175–185. [Google Scholar]
- Chang, C.; Chung, S.; Fu, W.; Huang, C. Artificial Intelligence Approaches to Predict Growth, Harvest Day, and Quality of Lettuce (Lactuca sativa L.) in a IoT-enabled Greenhouse System. Biosyst. Eng. 2021, 212, 77–105. [Google Scholar] [CrossRef]
- Rizkiana, A.; Nugroho, A.P.; Salma, N.M.; Afif, S.; Masithoh, R.E.; Sutiarso, L.; Okayasu, T. Plant Growth Prediction Model for Lettuce (Lactuca sativa.) in Plant Factories Using Artificial Neural Network. IOP Conf. Ser. Earth Environ. Sci. 2021, 733, 012027. [Google Scholar] [CrossRef]
- Concepcion, R.; Dadios, E.P.; Bandala, A.; Sybingco, E. Prediction of Cultivation Period and Canopy Area in Lettuce Using Multi- Temporal Visible RGB-Based Vegetation Indices and Computational Intelligence. Int. J. Adv. Sci. Technol. 2020, 29, 12600–12625. [Google Scholar]
- Hang, T.; Lu, N.; Takagaki, M.; Mao, H. Leaf Area Model Based on Thermal Effectiveness and Photosynthetically Active Radiation in Lettuce Grown in Mini-plant Factories Under Different Light Cycles. Sci. Hortic. 2019, 252, 113–120. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, J.; Zhang, B.; Wang, Z.; Xing, L.; Zhang, H.; Hu, J. Obtaining a Light Intensity Regulation Target Value Based on The Tomato Dry Weight Model. Sci. Hortic. 2022, 295, 110879. [Google Scholar] [CrossRef]
- Liu, B.; Heins, R.D. Photothermal Ratio Affects Plant Quality in `Freedom’ Poinsettia. J. Am. Soc. Hortic. Sci. Am. Soc. Hortic. Sci. 2002, 127, 20–26. [Google Scholar] [CrossRef]
- Maurya, D.; Pandey, A.K.; Kumar, V.; Dubey, S.; Prakash, V. Grafting techniques in vegetable crops: A review. AkiNik Publ. 2019, 7, 1664–1672. [Google Scholar]
- Alshoaibi, A. Estimation of Growth and Photosynthetic Performance of Two C4 Species (Pennisetum spicatum (L.) Krn. and Zea mays L.) under a Low Temperature Treatment. Phyton-Int. J. Exp. Bot. 2022, 91, 11. [Google Scholar]
- Kozai, T.; Tsukagoshi, S.; Sakaguchi, S. Reconsidering the Terminology and Units for Light and Nutrient Solution: The Next Generation Indoor Vertical Farms. Smart Plant Factory; Kozai, T., Ed.; Springer: Singapore, 2018; pp. 183–193. [Google Scholar]
- Sun, L.; Zhao, W.; Jiang, M.; Yang, R.; Sun, X.; Wang, J.; Wang, S. Rootstock Screening for Greenhouse Tomato Production Under a Coconut Coir Cultivation System. Chil. J. Agric. Res. 2021, 81, 202–209. [Google Scholar] [CrossRef]
- Ming, C.; Jiang, F.; Wang, G.; Hu, H.; Wu, Z. Simulation Model of Cucumber Healthy Indexes Based on Radiation and Thermal Effectiveness. J. Agric. Eng. 2012, 28, 109–113. [Google Scholar]
- Zhou, T.; Wu, Z.; Wang, Y.; Su, X.; Qin, C.; Huo, H.; Jiang, F. Modelling Seedling Development Using Thermal Effectiveness and Photosynthetically Active Radiation. J. Integr. Agric. 2019, 18, 2521–2533. [Google Scholar] [CrossRef]
- Khoramivafa; Jalilian, N.E.A.; Sayyadian, K. Estimation of Base Temperature for Germination and Study of Growth Degree Day at Various Phenological Stages in Medicinal Pumpkin. Eur. J. Sci. Res. 2011, 66, 319–324. [Google Scholar]
- Teotia, M.S.; Saxena, A.K.; Berry, S.K.; Ahuja, D.K. Development of Instant Pumpkin Kofta. J. Food Sci. Technol. 2004, 6, 41. [Google Scholar]
- Qu, S. Key Techniques of High Quality and Efficient Cultivation of Seed Pumpkin; Heilongjiang Science and Technology Press: Harbin, China, 2008; p. 56. [Google Scholar]
- Kahlen, K.; Zinkernagel, J.; Stutzel, H. Modeling Temperature-Modulated Stem Growth of Cucumber Plants (Cucumis sativus L.). In Proceedings of the IEEE Fourth International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA 2012), Shanghai, China, 31 October–3 November 2012; pp. 188–191. [Google Scholar]
- Takagaki, M. Influence of Day Temperature on Relative Growth Rate and Net Photosynthetic Rate of Four Pepper, Capsicum annuum, varieties. Jpn. J. Trop. Agric. 2010, 37, 277–283. [Google Scholar]
- Lee, A.C.; Liao, F.S.; Lo, H.F. Temperature, Daylength, and Cultivar Interact to Affect the Growth and Yield of Lettuce Grown in High Tunnels in Subtropical Regions. Hortscience 2015, 50, 1412–1418. [Google Scholar] [CrossRef]
- Onur, K.; Ahmet, B.; Gocmen, M.; Ismail, S.; Dilek, K. Use of Phenotypic Selection and Hypocotyl Properties as Predictive Selection Criteria in Pumpkin (Cucurbita moschata Duch.) Rootstock Lines Used for Grafted Cucumber (Cucumis sativus L.) Seedling Cultivation. Turk. J. Agric. For. 2018, 42, 124–135. [Google Scholar]
- Hwang, H.; An, S.; Pham, M.D.; Cui, M.Y.; Chun, C. The Combined Conditions of Photoperiod, Light Intensity, and Air Temperature Control the Growth and Development of Tomato and Red Pepper Seedlings in a Closed Transplant Production System. Sustainability 2020, 12, 9939. [Google Scholar] [CrossRef]
- Kitaya, Y.; Niu, G.; Kozai, T.; Ohashi, M. Photosynthetic Photon Flux, Photoperiod, and CO2 Concentration Affect Growth and Morphology of Lettuce Plug Transplants. HortScience 1998, 33, 988–991. [Google Scholar] [CrossRef]
- Kelly, N.; Choe, D.; Meng, Q.; Runkle, E. Promotion of Lettuce Growth Under an Increasing Daily Light Integral Depends on The Combination of The Photosynthetic Photon Flux Density and Photoperiod. Sci. Hortic. 2020, 272, 109565. [Google Scholar] [CrossRef]
- Liu, H. Effect of Daily Light Integral on Cucumber Plug Seedlings in Artificial Light Plant Factory. Horticulturae 2021, 7, 139. [Google Scholar]
- Yan, Z.; Wang, L.; Dai, J.; Lui, Y.; Lin, D.; Yang, Y. Morphological and Physiological Responses of Cucumber Seedlings to Different Combinations of Light Intensity and Photoperiod with the Same Daily Light Integral. HortScience 2021, 11, 56. [Google Scholar] [CrossRef]
- Ji, F.; Wei, S.; Liu, N.; Xu, L. Growth of Cucumber Seedlings in Different Varieties as Affected by Light Environment. Int. J. Agric. Biol. Eng. 2020, 13, 73–78. [Google Scholar] [CrossRef]
- Wang, R.; Sun, Z.; Yang, D.; Ma, Y. Simulating Cucumber Plant Heights Using Optimized Growth Functions Driven by Water and Accumulated Temperature in a Solar Greenhouse. Agric. Water Manag. 2022, 259, 107170. [Google Scholar] [CrossRef]
- Rimaz, H.R.; Zand-Parsa, S.; Taghvaei, M.; Kamgar-Haghighi, A.A. Predicting the Seedling Emergence Time of Sugar beet (Beta vulgaris) Using Beta Models. Physiol. Mol. Biol. Plants 2020, 26, 2329–2338. [Google Scholar] [CrossRef]
- Zhang, H.; Dai, J.; Luo, W.; Zhuang, K. Model for Simulating Development and Growth of Pot Planted Poinsettia (Euphorbia pulcherrima) Grown in Greenhouse. Trans. Chin. Soc. Agric. Eng. 2009, 25, 241–247. [Google Scholar]
- Cao, L.; Tian, Y.; Zhao, L.; Tai, S. Current Status of Relevant Standards for Vegetable Seedling Cultivation and Evaluation Methods for Strong Seedlings. Agric. Eng. Technol. 2017, 37, 3. [Google Scholar]
- Xin, P.; Zhang, H.; Hu, J.; Wang, Z.; Zhang, Z. An Improved Photosynthesis Prediction Model Based on Artificial Neural Networks Intended for Cucumber Growth Control. Appl. Eng. Agric. 2018, 34, 769–787. [Google Scholar] [CrossRef]
Years | Variables | Min. | Max. | Average | SD |
---|---|---|---|---|---|
2021 (n = 48) | Daily average temperature (°C) | 16.5 | 29.3 | 22.7 | 3.2 |
DLI (mol m−2 d−1) | 2.1 | 16.0 | 8.6 | 3.5 | |
2022 (n = 22) | Daily average temperature (°C) | 17.8 | 31.5 | 23.0 | 4.2 |
DLI (mol m−2 d−1) | 3.2 | 16.6 | 8.4 | 3.8 |
Temperature Parameters | Fundamental Temperature (°C) |
---|---|
Tb | 10 |
Tob–Tou | 25–30 |
Tm | 50 |
Variables | Daily Average Temperature and Daily Light Integral (°C, mol m−2 d−1) | |||||||
---|---|---|---|---|---|---|---|---|
T1L1 (21.7,5.6) | T2L2 (24.3,14.5) | T3L3 (24.0,9.7) | T4L4 (23.7,7.2) | T5L5 (25.0,9.3) | T6L6 (22.8,5.2) | T7L7 (25.0,11.2) | T8L8 (26.9,7.8) | |
Emergence time (d) | 4.8 ± 0.3 a | 4.1 ± 0.2 b | 4.6 ± 0.2 a | 4.6 ± 0.2 a | 4.1 ± 0.2 b | 4.0 ± 0.4 b | 3.8 ± 0.3 b | 2.8 ± 0.3 c |
Seedling time (d) | 6.9 ± 0.2 a | 5.2 ± 0.3 bc | 4.2 ± 0.3 f | 5.0 ± 0.4 cd | 4.8 ± 0.3 d | 5.5 ± 0.4 b | 4.7 ± 0.3 de | 4.3 ± 0.3 ef |
Plant height (cm) | 8.2 ± 0.5 b | 6.6 ± 0.1 c | 6.8 ± 0.1 c | 9.7 ± 0.2 a | 5.6 ± 0.4 d | 8.2 ± 0.8 b | 6.0 ± 0.4 cd | 9.3 ± 0.7 a |
Hypocotyl length (cm) | 7.8 ± 0.5 b | 6.3 ± 0.2 c | 6.5 ± 0.1 c | 9.3 ± 0.3 a | 4.9 ± 0.5 d | 7.9 ± 0.8 b | 5.5 ± 0.7 d | 8.8 ± 0.7 a |
Stem diameter (mm) | 4.77 ± 0.14 b | 4.27 ± 0.24 cd | 5.15 ± 0.31 a | 4.25 ± 0.11 cd | 4.41 ± 0.32 cd | 4.25 ± 0.24 d | 4.41 ± 0.27 cd | 4.52 ± 0.22 bc |
Shoot dry weight (mg) | 183.7 ± 17.6 d | 220.5 ± 13.9 ab | 211.8 ± 16.4 abc | 208.0 ± 19.9 bc | 191.8 ± 10.7 cd | 200.0 ± 13.4 c | 233.3 ± 15.3 a | 204.2 ± 16.6 bc |
Root dry weight (mg) | 42.7 ± 2.1 cd | 51.0 ± 3.5 b | 46.5 ± 1.9 bc | 44.6 ± 3.8 c | 45.5 ± 4.1 c | 33.4 ± 1.9 e | 58.4 ± 4.8 a | 38.7 ± 2.8 d |
Total dry weight (mg) | 226.0 ± 18.0 d | 269.0 ± 17.6 ab | 257.5 ± 17.1 bc | 252.6 ± 22.5 bc | 235.4 ± 14.9 cd | 236.4 ± 15.2 cd | 287.9 ± 19.0 a | 242.0 ± 17.8 cd |
Root shoot ratio | 0.199 ± 0.013 bc | 0.216 ± 0.016 ab | 0.199 ± 0.010 bc | 0.215 ± 0.017 ab | 0.235 ± 0.016 a | 0.187 ± 0.012 c | 0.218 ± 0.019 ab | 0.190 ± 0.018 c |
Seedling quality index | 0.143 ± 0.011 cd | 0.207 ± 0.016 b | 0.189 ± 0.015 b | 0.115 ± 0.011 e | 0.159 ± 0.009 c | 0.117 ± 0.010 e | 0.249 ± 0.018 a | 0.134 ± 0.006 d |
Variables | n | Regression Equation | R2 | F Value | p |
---|---|---|---|---|---|
Emergence Time (d) | 48 | y1 = 0.009 x12 − 0.720 x1 + 16.463 | 0.789 | 242.089 | 0.0001 |
Seedling Time (d) | 48 | y2 = 14.781 − 0.405 x1 + 0.007 x22 | 0.789 | 86.025 | 0.0001 |
Contribution Factors | Correlation Coefficient | Direct Effect | Through Daily Average Temperature | Through DLI |
---|---|---|---|---|
Daily average temperature | –0.866 ** | –1.006 | 0.147 | |
DLI | –0.45 ** | 0.219 | –0.674 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Cheng, J.; Wan, Z.; Wang, B.; Lin, D.; Yang, Y. Prediction Model of Pumpkin Rootstock Seedlings Based on Temperature and Light Responses. Agronomy 2023, 13, 516. https://doi.org/10.3390/agronomy13020516
Yan Z, Cheng J, Wan Z, Wang B, Lin D, Yang Y. Prediction Model of Pumpkin Rootstock Seedlings Based on Temperature and Light Responses. Agronomy. 2023; 13(2):516. https://doi.org/10.3390/agronomy13020516
Chicago/Turabian StyleYan, Zhengnan, Jie Cheng, Ze Wan, Beibei Wang, Duo Lin, and Yanjie Yang. 2023. "Prediction Model of Pumpkin Rootstock Seedlings Based on Temperature and Light Responses" Agronomy 13, no. 2: 516. https://doi.org/10.3390/agronomy13020516
APA StyleYan, Z., Cheng, J., Wan, Z., Wang, B., Lin, D., & Yang, Y. (2023). Prediction Model of Pumpkin Rootstock Seedlings Based on Temperature and Light Responses. Agronomy, 13(2), 516. https://doi.org/10.3390/agronomy13020516