Development of a Full-View-Type Grading Cup for Automated Sweet Cherry Sorters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical Characteristic Test
2.1.1. Test Conditions and Methods
2.1.2. Results Analysis of the Geometric Sizes and Masses
2.2. Mechanical Structure Design
2.2.1. Structure Overview
2.2.2. Design of Rotating Roller Mechanism
2.2.3. Design of Multi-functional Frame
2.2.4. Design of Base Plate
2.3. Operation Programs and Motion Planning
2.3.1. Operation Principle
2.3.2. Calculation and Analysis of the Mechanical Model
2.4. Design and Analysis of Simulation Experiment
Design of Simulation Experiment
3. Results and Discussion
3.1. Test Analysis Results
3.2. Response Surface Analysis of Various Factors
3.3. Performance Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Timm, E.; Guyer, D.; Brown, G.; Schulte, N. Michigan sweet cherry color measurement and prototype color chip development. Appl. Eng. Agric. 1995, 11, 403–407. [Google Scholar] [CrossRef]
- Díaz-Mula, H.M.; Castillo, S.; Martínez-Romero, D.; Valero, D.; Zapata, P.J.; Guillén, F.; Serrano, M. Sensory, nutritive and functional properties of sweet cherry as affected by cultivar and ripening stage. Food Sci. Technol. Int. 2009, 15, 535–543. [Google Scholar] [CrossRef]
- Kirakosyan, A.; Seymour, E.M.; Noon, K.R.; Llanes, D.E.U.; Kaufman, P.B.; Warber, S.L.; Bolling, S.F. Interactions of antioxidants isolated from tart cherry (Prunus cerasus) fruits. Food Chem. 2010, 122, 78–83. [Google Scholar] [CrossRef]
- Esti, M.; Cinquanta, L.; Sinesio, F.; Moneta, E.; Di Matteo, M. Physicochemical and sensory fruit characteristics of two sweet cherry cultivars after cool storage. Food Chem. 2002, 76, 399–405. [Google Scholar] [CrossRef]
- Junfeng, S.; Menglin, X.; Chunsheng, W.; Jianhua, L. Research status and development of post-harvest physiology characteristics and storage techniques of sweet cherry. Storage Process 2009, 9, 7–10. [Google Scholar]
- Li, Z.; Jiang, X.; Shuai, L.; Zhang, B.; Yang, Y.; Mu, J. A Real-Time Detection Algorithm for Sweet Cherry Fruit Maturity Based on YOLOX in the Natural Environment. Agronomy 2022, 12, 2482. [Google Scholar] [CrossRef]
- Matteo, M.; Zoffoli, J.P.; Ayala, M. Calcium Sprays and Crop Load Reduction Increase Fruit Quality and Postharvest Storage in Sweet Cherry (Prunus avium L.). Agronomy 2022, 12, 829. [Google Scholar] [CrossRef]
- Momeny, M.; Jahanbakhshi, A.; Jafarnezhad, K.; Zhang, Y.-D. Accurate classification of cherry fruit using deep CNN based on hybrid pooling approach. Postharvest Biol. Technol. 2020, 166, 111204. [Google Scholar] [CrossRef]
- Rosenberger, C.; Emile, B.; Laurent, H. Calibration and quality control of cherries by artificial vision. J. Electron. Imaging 2004, 13, 539–546. [Google Scholar] [CrossRef]
- Villacrés, J.F.; Auat Cheein, F. Detection and characterization of cherries: A deep learning usability case study in Chile. Agronomy 2020, 10, 835. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, X.; Xu, T.; Zhao, J. On-line sorting maturity of cherry tomato bymachine vision. In International Conference on Computer and Computing Technologies in Agriculture; Springer: Berlin/Heidelberg, Germany, 2008; pp. 2223–2229. [Google Scholar]
- Pei, Y.; Ye, J.; Jiang, Y.; Lian, M.; Han, X.; Yu, G. Research on cherry shape detection technology based on machine vision. In Proceedings of the 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 11–13 December 2019; pp. 1–5. [Google Scholar]
- Wang, Q.; Wang, H.; Xie, L.; Zhang, Q. Outdoor color rating of sweet cherries using computer vision. Comput. Electron. Agric. 2012, 87, 113–120. [Google Scholar] [CrossRef]
- Kunrui, X.; Xi, L.; Qiaohua, W.; Meihu, M. Online automatic grading of salted eggs based on machine vision. Int. J. Agric. Biol. Eng. 2015, 8, 35–41. [Google Scholar]
- Zhang, H.; Shen, L.; Lan, H.; Li, Y.; Liu, Y.; Tang, Y.; Li, W. Mechanical properties and finite element analysis of walnut under different cracking parts. Int. J. Agric. Biol. Eng. 2018, 11, 81–88. [Google Scholar] [CrossRef]
- Chaschatzis, C.; Karaiskou, C.; Mouratidis, E.G.; Karagiannis, E.; Sarigiannidis, P.G. Detection and Characterization of Stressed Sweet Cherry Tissues Using Machine Learning. Drones 2022, 6, 3. [Google Scholar] [CrossRef]
- Chong, G. Research on Apple Quality Detection Method and Device Based on Hyperspectral Imaging and Deep Learning. Master Dissertation, Shandong Agriculture University, Taian, China, 2021. [Google Scholar]
- TOMRA Systems ASA. Compac’s Inspectra2 NIR Platform. Available online: https://www.tomra.com/en/solutions/food/fruit (accessed on 12 July 2022).
- Xu, H.; Ying, Y.; Ling, G. Research on Fruit Feeding and Rolling Installation with Bicone Rollers. Trans. Chin. Soc. Agric. Mach. 2003, 34, 100–103. [Google Scholar]
- Zhang, Y. Design and Experimental Validation of Fruit Quality Hyperspectral Online Sorting Equipment—Gannan Navel Oranges as an Example. Master’s Thesis, Jiangxi Agricultural University, Nanchang, China, 2021. [Google Scholar]
- Ge, J. Design and Implementation of Fruit Sorting Machine Mechanical Systems and Weighing Module. Master’s Thesis, Northwest A&F University, Xianyang, China, 2012. [Google Scholar]
- Zhai, B. Grading Actuator Simulation and Optimization Analysis for Free Pallet Conveying Fruit. Master’s Thesis, Zhejiang University, Hangzhou, China, 2021. [Google Scholar]
- Han, C. Research and Development of On-Line Non-Destructive Detecting Method and Grading Equipment of Apple Watercore and Soluble Solids Content. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2021. [Google Scholar]
- Xu, C. Study on Nonlinear Mechanical Model and Damping Characteristics of Steel Spring Damping Rubber Pad for Railway Vehicles. Ph.D. Thesis, Southwest Jiaotong University, Chengdu, China, 2020. [Google Scholar]
- Qian, Y.; Liu, K. Optimization of soil Cd extraction process using the response surface methodology. Chin. J. Environ. Eng. 2018, 12, 3448–3455. [Google Scholar]
- Yu, Z.; Huai, S.; Wang, W. Leakage rate and optimization of working parameters for cylinder pickup collector based on spring-finger trajectory. Trans. Chin. Soc. Agric. Eng. 2018, 34, 37–43. [Google Scholar]
Sweet Cherry Species | L Size/mm | Percentage | Maximum Mass/g | Minimum Mass/g | Average Mass/g | Mass Standard Deviation |
---|---|---|---|---|---|---|
Tieton | 6.67% | 4.13 | 2.80 | 3.46 | 0.65 | |
50.00% | 8.24 | 4.52 | 5.44 | 0.88 | ||
43.33% | 13.52 | 9.38 | 10.21 | 1.13 | ||
Huang Mi | 46.67% | 4.60 | 2.64 | 3.87 | 0.58 | |
53.33% | 6.79 | 4.10 | 5.49 | 0.66 | ||
0.00% | - | - | - | - | ||
Lapins | 16.67% | 4.90 | 3.94 | 4.44 | 0.33 | |
76.67% | 7.84 | 4.80 | 6.07 | 1.40 | ||
6.67% | 9.56 | 6.88 | 7.27 | 0.56 |
Level | X1/Operating Speed [Sweet Cherries/min] | X2/Young’s Modulus [GPa] | X3/Friction Coefficient |
---|---|---|---|
−1 | 10 | 200.00 | 1 |
0 | 30 | 104.75 | 5.5 |
1 | 50 | 0.10 | 10 |
Test Serial Number | Operating Speed [Sweet Cherries/min] | Young’s Modulus [GPa] | Friction Coefficient | |
---|---|---|---|---|
1 | 30 | 104.75 | 5.5 | 90 |
2 | 50 | 0.10 | 5.5 | 84 |
3 | 30 | 0.10 | 10.0 | 94 |
4 | 10 | 200.00 | 5.5 | 90 |
5 | 30 | 104.75 | 5.5 | 90 |
6 | 30 | 0.10 | 1.0 | 86 |
7 | 50 | 200.00 | 5.5 | 76 |
8 | 30 | 104.75 | 5.5 | 92 |
9 | 10 | 104.75 | 10 | 96 |
10 | 30 | 104.75 | 5.5 | 88 |
11 | 30 | 104.75 | 5.5 | 90 |
12 | 50 | 104.75 | 10 | 84 |
13 | 10 | 0.10 | 5.5 | 92 |
14 | 10 | 104.75 | 1.0 | 90 |
15 | 30 | 200.00 | 10 | 92 |
16 | 30 | 200.00 | 1.0 | 82 |
17 | 50 | 104.75 | 1.0 | 74 |
Source | Sum of Squares | Freedom | Mean Square | F Value | p-Value | |
---|---|---|---|---|---|---|
Model | 562.88 | 9 | 62.54 | 29.19 | <0.0001 | significant |
312.50 | 1 | 312.50 | 145.83 | <0.0001 | ||
32.00 | 1 | 32.00 | 14.93 | 0.0062 | ||
144.50 | 1 | 144.50 | 67.43 | <0.0001 | ||
9.00 | 1 | 9.00 | 4.20 | 0.0796 | ||
4.00 | 1 | 4.00 | 1.87 | 0.2141 | ||
1.00 | 1 | 1.00 | 0.4667 | 0.5165 | ||
51.58 | 1 | 51.58 | 24.07 | 0.0017 | ||
4.21 | 1 | 4.21 | 1.96 | 0.2037 | ||
1.05 | 1 | 1.05 | 0.4912 | 0.5060 | ||
Residual | 15.00 | 7 | 2.14 | |||
Lack of Fit | 7.00 | 3 | 2.33 | 1.17 | 0.4262 | not significant |
Pure Error | 8.00 | 4 | 2.00 | |||
Total | 577.88 | 16 |
Project | X1 | X2 | X3 | W |
---|---|---|---|---|
Before optimization | 48.388 | 0.019 | 15.0 | 91.313% |
After optimization | 48.000 | 0.012 | 15.0 | 86.000% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Ren, L.; Shang, Z.; Liu, B.; Liu, Y.; Gong, Y.; Song, Y. Development of a Full-View-Type Grading Cup for Automated Sweet Cherry Sorters. Agronomy 2023, 13, 500. https://doi.org/10.3390/agronomy13020500
Han X, Ren L, Shang Z, Liu B, Liu Y, Gong Y, Song Y. Development of a Full-View-Type Grading Cup for Automated Sweet Cherry Sorters. Agronomy. 2023; 13(2):500. https://doi.org/10.3390/agronomy13020500
Chicago/Turabian StyleHan, Xiang, Longlong Ren, Ziwen Shang, Baoyou Liu, Yi Liu, Yanchen Gong, and Yuepeng Song. 2023. "Development of a Full-View-Type Grading Cup for Automated Sweet Cherry Sorters" Agronomy 13, no. 2: 500. https://doi.org/10.3390/agronomy13020500
APA StyleHan, X., Ren, L., Shang, Z., Liu, B., Liu, Y., Gong, Y., & Song, Y. (2023). Development of a Full-View-Type Grading Cup for Automated Sweet Cherry Sorters. Agronomy, 13(2), 500. https://doi.org/10.3390/agronomy13020500