Yield Components and Development in Indeterminate Tomato Landraces: An Agromorphological Approach to Promoting Their Utilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Essay
2.3. Harvest
2.4. Yield, Yield Components, and Phenotypical Traits
2.5. Data Analysis
3. Results
3.1. Yield and Yield Components
3.2. Cluster Growth and Development
3.3. Morphological and Phenological Traits
4. Discussion
4.1. Landrace Yields and Yield Components
4.2. Plant and Cluster Compensation
4.3. Development and Agronomic Management
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van der Ploeg, A.; van der Meer, M.; Heuvelink, E. Breeding for a more energy efficient greenhouse tomato: Past and future perspectives. Euphytica 2007, 158, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Chávez-Servia, J.; Vera-Guzmán, A.; Linares-Menéndez, L.; Carrillo-Rodríguez, J.; Aquino-Bolaños, E. Agromorphological Traits and Mineral Content in Tomato Accessions from El Salvador, Central America. Agronomy 2018, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Marlowe, G.A.; Overman, A.J.; Schuster, D.J. Growth and development studies of the tomato. Proc. Fla. State Hortic. Soc. 1983, 96, 103–107. [Google Scholar]
- Hurd, R.G.; Graves, C.J. The Influence of Different Temperature Patterns Having the Same Integral on the Earliness and Yield of Tomatoes. Acta Hortic. 1984, 148, 547–554. [Google Scholar] [CrossRef]
- Higashide, T.; Heuvelink, E. Physiological and morphological changes over the past 50 years in yield components in tomato. J. Am. Soc. Hortic. Sci. 2009, 134, 460–465. [Google Scholar] [CrossRef] [Green Version]
- Barrios-Masias, F.H.; Jackson, L.E. California processing tomatoes: Morphological, physiological and phenological traits associated with crop improvement during the last 80 years. Eur. J. Agron. 2014, 53, 45–55. [Google Scholar] [CrossRef]
- Nesbitt, T.C.; Tanksley, S.D. fw2.2 Directly Affects the Size of Developing Tomato Fruit, with Secondary Effects on Fruit Number and Photosynthate Distribution. Plant Physiol. 2001, 127, 575–583. [Google Scholar] [CrossRef]
- Rodríguez, G.R.; Muños, S.; Anderson, C.; Sim, S.-C.; Michel, A.; Causse, M.; Gardener, B.B.M.; Francis, D.; van der Knaap, E. Distribution of SUN, OVATE, LC, and FAS in the Tomato Germplasm and the Relationship to Fruit Shape Diversity. Plant Physiol. 2011, 156, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, M.; Zhang, N.A.; Sauvage, C.; Muños, S.; Blanca, J.; Cañizares, J.; Diez, M.J.; Schneider, R.; Mazourek, M.; McClead, J.; et al. A cytochrome P450 regulates a domestication trait in cultivated tomato. Proc. Natl. Acad. Sci. USA 2013, 110, 17125–17130. [Google Scholar] [CrossRef] [Green Version]
- Andreakis, N.; Giordano, I.; Pentangelo, A.; Fogliano, V.; Graziani, G.; Monti, L.M.; Rao, R. DNA Fingerprinting and Quality Traits of Corbarino Cherry-like Tomato Landraces. J. Agric. Food Chem. 2004, 52, 3366–3371. [Google Scholar] [CrossRef]
- Mazzucato, A.; Ficcadenti, N.; Caioni, M.; Mosconi, P.; Piccinini, E.; Reddy Sanampudi, V.R.; Sestili, S.; Ferrari, V. Genetic diversity and distinctiveness in tomato (Solanum lycopersicum L.) landraces: The Italian case study of ‘A pera Abruzzese’. Sci. Hortic. 2010, 125, 55–62. [Google Scholar] [CrossRef]
- Terzopoulos, P.J.; Bebeli, P.J. Phenotypic diversity in Greek tomato (Solanum lycopersicum L.) landraces. Sci. Hortic. 2010, 126, 138–144. [Google Scholar] [CrossRef]
- Scholberg, J.; McNeal, B.L.; Jones, J.W.; Boote, K.J.; Stanley, C.D.; Obreza, T.A. Growth and Canopy Characteristics of Field-Grown Tomato. Agron. J. 2000, 92, 152–159. [Google Scholar] [CrossRef]
- Casals, J.; Pascual, L.; Cañizares, J.; Cebolla-Cornejo, J.; Casañas, F.; Nuez, F. The risks of success in quality vegetable markets: Possible genetic erosion in Marmande tomatoes (Solanum lycopersicum L.) and consumer dissatisfaction. Sci. Hortic. 2011, 130, 78–84. [Google Scholar] [CrossRef]
- Koutsika-Sotiriou, M.; Mylonas, I.; Tsivelikas, A.; Traka-Mavrona, E. Compensation studies on the tomato landrace ‘Tomataki Santorinis’. Sci. Hortic. 2016, 198, 78–85. [Google Scholar] [CrossRef]
- Henareh, M.; Dursum, A.; Mandoulakani, B.A. Genetic diversity in tomato landraces collected from Turkey and Iran revealed by morphological characters. Acta Sci. Pol. Hortorum Cultus 2015, 14, 87–96. [Google Scholar]
- Sadras, V.O.; Denison, R.F. Neither crop genetics nor crop management can be optimised. Field Crops Res. 2016, 189, 75–83. [Google Scholar] [CrossRef]
- Drogoudi, P.D.; Ashmore, M.R. Screening of Three Strawberry Cultivars for their Ozone Sensitivity. In Proceedings of the II Balkan Symposium on Vegetables and Potatoes, Thessaloniki, Greece, 11–15 October 2000; pp. 275–280. [Google Scholar] [CrossRef]
- Acquaah, G. Principles of Plant Genetics and Breeding, 2nd ed.; Wiley-Blackwell: Wesy Sussex, UK, 2012. [Google Scholar] [CrossRef]
- Gautier, H. Modulation of Competition between Fruits and Leaves by Flower Pruning and Water Fogging, and Consequences on Tomato Leaf and Fruit Growth. Ann. Bot. 2001, 88, 645–652. [Google Scholar] [CrossRef]
- Bertin, N.; Gautier, H.; Roche, C. Number of cells in tomato fruit depending on fruit position and source-sink balance during plant development. Plant Growth Regul. 2002, 36, 105–112. [Google Scholar] [CrossRef]
- Xu, C.; Liberatore, K.L.; MacAlister, C.A.; Huang, Z.; Chu, Y.H.; Jiang, K.; Brooks, C.; Ogawa-Ohnishi, M.; Xiong, G.; Pauly, M.; et al. A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat. Genet. 2015, 47, 784–792. [Google Scholar] [CrossRef]
- Ripoll, J.; Urban, L.; Staudt, M.; Lopez-Lauri, F.; Bidel, L.P.R.; Bertin, N. Water shortage and quality of fleshy fruits—Making the most of the unavoidable. J. Exp. Bot. 2014, 65, 4097–4117. [Google Scholar] [CrossRef] [Green Version]
- De Azevedo, V.F.; Abboud, A.C.S.; do Carmo, M.G.F. Row spacing and pruning regimes on organically grown cherry tomato. Hortic. Bras. 2010, 28, 389–394. [Google Scholar] [CrossRef] [Green Version]
- Baldet, P.; Hernould, M.; Laporte, F.; Mounet, F.; Just, D.; Mouras, A.; Chevalier, C.; Rothan, C. The expression of cell proliferation-related genes in early developing flowers is affected by a fruit load reduction in tomato plants. J. Exp. Bot. 2006, 57, 961–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, K.J. Competition effects between fruit trusses of the tomato plant. Sci. Hortic. 1977, 7, 37–42. [Google Scholar] [CrossRef]
- Fischer, R.A.; Byerlee, D.; Edmeades, G.O. Crop Yields and Global Food Security: Will Yield Increase Continue to Feed the World? Centre for International Agricultural Research: Canberra, Australia, 2014.
- Donoso, A.; Martínez, J.P.; Salazar, E. History of Tomato Cultivation in Chile: The Limachino Tomato Case. RIVAR 2022, 9, 204–220. [Google Scholar] [CrossRef]
- Farinon, B.; Picarella, M.E.; Siligato, F.; Rea, R.; Taviani, P.; Mazzucato, A. Phenotypic and Genotypic Diversity of the Tomato Germplasm From the Lazio Region in Central Italy, With a Focus on Landrace Distinctiveness. Front. Plant Sci. 2022, 13, 931233. [Google Scholar] [CrossRef] [PubMed]
- Rick, C.M. The role of natural hybridization in the derivation of cultivated tomatoes of western south America. Econ. Bot. 1958, 12, 346–367. [Google Scholar] [CrossRef]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.-S.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S.; Bojesen, R.H.; Singmann, H.; Dai, B.; Scheipl, F.; Grothendieck, G.; Green, P. lme4: Linear Mixed-Effects Models Using Eigen and S4. R Package Version 1.1-18-1. 2018. Available online: http://CRAN.R-project.org/package=lme4 (accessed on 11 August 2020).
- Piepho, H.P.; Möhring, J.; Melchinger, A.E.; Büchse, A. BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 2008, 161, 209–228. [Google Scholar] [CrossRef]
- Merk, H.L. Estimating Heritability and BLUPs for Traits Using Tomato Phenotypic Data. In Proceedings of the Tomato Disease Workshop 2011, Ithaca, NY, USA, 11–13 October 2011. [Google Scholar]
- Alonso, M.P.; Mirabella, N.E.; Panelo, J.S.; Cendoya, M.G.; Pontaroli, A.C. Selection for high spike fertility index increases genetic progress in grain yield and stability in bread wheat. Euphytica 2018, 214, 112. [Google Scholar] [CrossRef] [Green Version]
- Conner, J.K. Genetic mechanisms of floral trait correlations in a natural population. Nature 2002, 420, 407–410. [Google Scholar] [CrossRef]
- Casler, M.D.; Ramstein, G.P. Breeding for Biomass Yield in Switchgrass Using Surrogate Measures of Yield. Bioenergy Res. 2018, 11, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ruggieri, V.; Francese, G.; Sacco, A.; D’Alessandro, A.; Rigano, M.M.; Parisi, M.; Milone, M.; Cardi, T.; Mennella, G.; Barone, A. An association mapping approach to identify favourable alleles for tomato fruit quality breeding. BMC Plant Biol. 2014, 14, 337. [Google Scholar] [CrossRef] [Green Version]
- Shalaby, T.A. Mode of gene action, heterosis and inbreeding depression for yield and its components in tomato (Solanum lycopersicum L.). Sci. Hortic. 2013, 164, 540–543. [Google Scholar] [CrossRef]
- Huat, J.; Doré, T.; Aubry, C. Limiting factors for yields of field tomatoes grown by smallholders in tropical regions. Crop Prot. 2013, 44, 120–127. [Google Scholar] [CrossRef]
- Patanè, C.; Cosentino, S.L. Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate. Agric. Water Manag. 2010, 97, 131–138. [Google Scholar] [CrossRef]
- Wang, F.; Kang, S.; Du, T.; Li, F.; Qiu, R. Determination of comprehensive quality index for tomato and its response to different irrigation treatments. Agric. Water Manag. 2011, 98, 1228–1238. [Google Scholar] [CrossRef]
- Slafer, G.A.; Savin, R.; Sadras, V.O. Coarse and fine regulation of wheat yield components in response to genotype and environment. Field Crops Res. 2014, 157, 71–83. [Google Scholar] [CrossRef]
- Krieger, U.; Lippman, Z.B.; Zamir, D. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat. Genet. 2010, 42, 459–463. [Google Scholar] [CrossRef]
- Acevedo, E.; Ceccarelli, S. Role of the Physiologist-Breeder in a Breeding Program for Drought Resistance Conditions; ICARDA: Aleppo, Syria; CAB International: Wallingford, UK, 1989. [Google Scholar]
- Lastdrager, J.; Hanson, J.; Smeekens, S. Sugar signals and the control of plant growth and development. J. Exp. Bot. 2014, 65, 799–807. [Google Scholar] [CrossRef]
- Martín, G.; Leivar, P.; Ludevid, D.; Tepperman, J.M.; Quail, P.H.; Monte, E. Phytochrome and retrograde signalling pathways converge to antagonistically regulate a light-induced transcriptional network. Nat. Commun. 2016, 7, 11431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musseau, C.; Just, D.; Jorly, J.; Gévaudant, F.; Moing, A.; Chevalier, C.; Lemaire-Chamley, M.; Rothan, C.; Fernandez, L. Identification of Two New Mechanisms That Regulate Fruit Growth by Cell Expansion in Tomato. Front. Plant Sci. 2017, 8, 988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradshaw, A.D. Evolutionary Significance of Phenotypic Plasticity in Plants. Adv. Genet. 1965, 13, 115–155. [Google Scholar] [CrossRef]
- Soyk, S.; Müller, N.A.; Park, S.J.; Schmalenbach, I.; Jiang, K.; Hayama, R.; Zhang, L.; van Eck, J.; Jiménez-Gómez, J.M.; Lippman, Z.B. Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat. Genet. 2017, 49, 162–168. [Google Scholar] [CrossRef] [PubMed]
Collection ID 1 | Other ID 2 | Name | Collection Site and Year | Description |
---|---|---|---|---|
SLY49 | PI128586 | - | Limache, Chile 1938 | Small, cherry-like |
SLY30 | PI128587 | - | Limache, Chile 1938 | Flat, highly ribbed |
SLY50 | PI128588 | - | Limache, Chile 1938 | - |
SLY74 | PI264548 | Limachino | Campex Los Andes, Chile 1960 | High locule number, early |
SLY148 | Limachino | Limache, Chile 1980 | High locule number, early | |
SLY149 | Limachino | Limache, Chile 1980 | High locule number, early | |
SLY150 | Limachino | Limache, Chile 1980 | High locule number, early | |
SLY151 | Limachino | Limache, Chile 1980 | High locule number, early | |
SLY152 | Limachino | Limache, Chile 1980 | High locule number, early | |
SLY147 | Limachino | Limache, Chile 1980 | High locule number, early | |
SLY121 | Limachino Español | Limache, Chile 2015 | High locule number, early | |
SLY122 | Limachino Frances | Limache 2015 | High locule number, early | |
SLY123 | Limachino Italiano | Limache 2015 | Beefsteak, pear-shaped | |
SLY124 | Limachino | Limache 2015 | High locule number, early | |
SLY82 | PI270198 | Marglobe | USA 1960 | Round, smooth |
SLY83 | PI157850, CGN14430 3 | Marmande | Israel 1947 | High locule number |
SLY129 | Marmande | Chile, 1980 | High locule number | |
SLY65 | PI128611 | - | Antofagasta, Chile 1938 | Lanceolate leaf, round, pink |
SLY66 | PI128612 | - | Antofagasta, Chile 1938 | Small, round |
SLY70 | PI128618 | - | Tacna, Perú 1938 | Flat, small to medium |
SLY39 | PI128615 | - | Arica, Chile 1938 | Lanceolate leaf, variable fruit |
SLY47 | PI128447 | - | Talca, Chile 1938 | - |
SLY159 | Rosado | San Clemente, Chile 2015 | Beefsteak, pink | |
SLY157 | Rosado | Coihueco, Chile 2015 | Beefsteak, pink |
Acronym | Description | Unit |
---|---|---|
Vegetative | ||
SD | Stem diameter | mm |
Phenology and yield | ||
CGDD | Average growing degree days per cluster | growing degree days per cluster |
FRU | Average number of harvested fruits per cluster | fruits per cluster |
CLU | Total number of harvested clusters per plant | clusters per plant per m−2 |
NFC | Total number of fruits per cluster | fruits per cluster |
NFM | Total number of fruits per plant | plant fruits per m−2 |
FFW | Average fresh fruit weight of all harvested fruits | grams per fruit |
CW | Total fresh fruit weight per cluster | grams per cluster |
CAW | Average fresh fruit weight | grams per fruit |
Y | Fresh fruit yield | grams per m−2 |
Flower | ||
NP | Number of petals | number |
OL | Ovary length | mm |
OD | Ovary diameter | mm |
STL | Style length | mm |
PL | Petal length | mm |
AL | Anther length | mm |
STE | Stigma exertion | mm |
Inflorescence | ||
NFL | Number of flowers in the inflorescence | number |
NSF | Number of set flowers in the inflorescence | number |
Fruit | ||
NLC | Number of locules in a tomato of the third cluster | number |
WG | Fresh weight of a tomato in the third cluster | grams |
Correlation Coefficients | Y | FFW | NFM | CLU | FRU | ||||
---|---|---|---|---|---|---|---|---|---|
(Grams per m−2) | (Grams per Fruit) | (Plant Fruits per m−2) | (Clusters per Plant per m−2) | (Fruits per Cluster) | |||||
Genetic (n = 24) | |||||||||
FFW | 0.14 | ns | - | ||||||
NFM | 0.46 | * | −0.66 | *** | - | ||||
CLU | 0.07 | ns | −0.31 | ns | 0.53 | ** | - | ||
FRU | 0.28 | ns | −0.69 | *** | 0.80 | *** | 0.02 | ns | - |
Phenotypic (n = 365) | |||||||||
FFW | 0.30 | *** | - | ||||||
NFM | 0.58 | *** | −0.50 | *** | - | ||||
CLU | 0.32 | *** | −0.18 | *** | 0.51 | *** | - | ||
FRU | 0.36 | *** | −0.45 | *** | 0.69 | *** | −0.19 | *** | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donoso, A.; Salazar, E. Yield Components and Development in Indeterminate Tomato Landraces: An Agromorphological Approach to Promoting Their Utilization. Agronomy 2023, 13, 434. https://doi.org/10.3390/agronomy13020434
Donoso A, Salazar E. Yield Components and Development in Indeterminate Tomato Landraces: An Agromorphological Approach to Promoting Their Utilization. Agronomy. 2023; 13(2):434. https://doi.org/10.3390/agronomy13020434
Chicago/Turabian StyleDonoso, Adolfo, and Erika Salazar. 2023. "Yield Components and Development in Indeterminate Tomato Landraces: An Agromorphological Approach to Promoting Their Utilization" Agronomy 13, no. 2: 434. https://doi.org/10.3390/agronomy13020434
APA StyleDonoso, A., & Salazar, E. (2023). Yield Components and Development in Indeterminate Tomato Landraces: An Agromorphological Approach to Promoting Their Utilization. Agronomy, 13(2), 434. https://doi.org/10.3390/agronomy13020434