Sown Covers Enhance the Diversity and Abundance of Ground-Dwelling Predators in Mediterranean Pear Orchards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location
2.2. Arthropod Sampling
2.3. Data Analyses
3. Results
3.1. Proportion of Ground Covered
3.2. Effects of Cover Crops on the Biodiversity of Ground-Dwelling Arthropods
3.3. Effects of Cover Crops on the Abundance of Ground-Dwelling Arthropods
3.3.1. Abundance and Trend of Microarthropods
3.3.2. Abundance and Trend of Spiders
3.3.3. Abundance and Trend of Beetles
3.3.4. Abundance and Trend of Hymenoptera
3.4. Structure of the Assemblage of Ground-Dwelling Arthropods in Soil with and without Cover
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hole, D.G.; Perkins, A.J.; Wilson, J.D.; Alexander, I.H.; Grice, P.V.; Evans, A.D. Does Organic Farming Benefit Biodiversity? Biol. Conserv. 2005, 122, 113–130. [Google Scholar] [CrossRef]
- Raven, P.H.; Wagner, D.L. Agricultural Intensification and Climate Change Are Rapidly Decreasing Insect Biodiversity. Proc. Natl. Acad. Sci. USA 2021, 118, e2002548117. [Google Scholar] [CrossRef] [PubMed]
- Seastedt, T.R.; Crossley, D.A. The Influence of Arthropods on Ecosystems. Bioscience 1984, 34, 157–161. [Google Scholar] [CrossRef]
- Pimentel, D.; Wilson, C.; McCullum, C.; Huang, R.; Dwen, P.; Flack, J.; Tran, Q.; Saltman, T.; Cliff, B. Economic and Environmental Benefits of Biodiversity. Bioscience 1997, 47, 747–757. [Google Scholar] [CrossRef]
- Civolani, S. The Past and Present of Pear Protection against the Pear Psylla, Cacopsylla pyri L. Insectic.-Pest Eng. 2012, 65, 385–408. [Google Scholar] [CrossRef]
- Sharma, N.; Singhvi, R. Consumers Perception and Behaviour towards Organic Food: A Systematic Review of Literature. J. Pharmacogn. Phytochem. 2018, 7, 2152–2155. [Google Scholar]
- Provost, C.; Pedneault, K. The Organic Vineyard as a Balanced Ecosystem: Improved Organic Grape Management and Impacts on Wine Quality. Sci. Hortic. (Amst.) 2016, 208, 43–56. [Google Scholar] [CrossRef]
- Jerez-Valle, C.; García, P.A.; Campos, M.; Pascual, F. A Simple Bioindication Method to Discriminate Olive Orchard Management Types Using the Soil Arthropod Fauna. Appl. Soil Ecol. 2014, 76, 42–51. [Google Scholar] [CrossRef]
- Eurostat Agriculture Statistics at Regional Level. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agriculture_statistics_at_regional_level#Agricultural_land_use (accessed on 20 May 2023).
- European Commission Action Plan for Organic Production in the EU. Available online: https://agriculture.ec.europa.eu/farming/organic-farming/organic-action-plan_en#documents (accessed on 20 May 2023).
- Lantero, E.; Ortega, M.; Sánchez-Ramos, I.; González-Núñez, M.; Fernández, C.E.; Rescia, A.J.; Matallanas, B.; Callejas, C.; Pascual, S. Effect of Local and Landscape Factors on Abundance of Ground Beetles and Assessment of Their Role as Biocontrol Agents in the Olive Growing Area of Southeastern Madrid, Spain. BioControl 2019, 64, 685–696. [Google Scholar] [CrossRef]
- Dainese, M.; Martin, E.A.; Aizen, M.A.; Albrecht, M.; Bommarco, R.; Carvalheiro, L.G.; Chaplin-kramer, R.; Garibaldi, L.A.; Ghazoul, J.; Grab, H.; et al. A Global Synthesis Reveals Biodiversity-Mediated Benefits for Crop Production. Sci. Adv. 2019, 5, eaax0121. [Google Scholar] [CrossRef]
- Duan, M.; Liu, Y.; Li, X.; Wu, P.; Hu, W.; Zhang, F.; Shi, H.; Yu, Z.; Baudry, J. Effect of Present and Past Landscape Structures on the Species Richness and Composition of Ground Beetles (Coleoptera: Carabidae) and Spiders (Araneae) in a Dynamic Landscape. Landsc. Urban Plan. 2019, 192, 103649. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Pérez-Méndez, N.; Garratt, M.P.D.; Gemmill-Herren, B.; Miguez, F.E.; Dicks, L.V. Policies for Ecological Intensification of Crop Production. Trends Ecol. Evol. 2019, 34, 282–286. [Google Scholar] [CrossRef] [PubMed]
- de Pedro, L.; Perera-Fernández, L.G.; López-Gallego, E.; Pérez-Marcos, M.; Sanchez, J.A. The Effect of Cover Crops on the Biodiversity and Abundance of Ground-Dwelling Arthropods in a Mediterranean Pear Orchard. Agronomy 2020, 10, 580. [Google Scholar] [CrossRef]
- Altieri, M.; Nicholls, C.I. Teoría y Práctica Para Una Agricultura Sustentable; Serie Textos Básicos para la Formación Ambiental; Programa de las Naciones Unidas para el Medio Ambiente: Mexico City, Mexico, 2000. [Google Scholar]
- Carabajal-Capitán, S.; Kniss, A.R.; Jabbour, R. Seed Predation of Interseeded Cover Crops and Resulting Impacts on Ground Beetles. Environ. Entomol. 2021, 50, 832–841. [Google Scholar] [CrossRef]
- Liang, W.; Huang, M. Influence of Citrus Orchard Ground Cover Plants on Arthropod Communities in China: A Review. Agric. Ecosyst. Environ. 1994, 50, 29–37. [Google Scholar] [CrossRef]
- Lu, Y.C.; Watkins, K.B.; Teasdale, J.R.; Abdul-Baki, A.A. Cover Crops in Sustainable Food Production. Food Rev. Int. 2000, 16, 121–157. [Google Scholar] [CrossRef]
- Bergtold, J.S.; Ramsey, S.; Maddy, L.; Williams, J.R. A Review of Economic Considerations for Cover Crops as a Conservation Practice. Renew. Agric. Food Syst. 2019, 34, 62–76. [Google Scholar] [CrossRef]
- Danne, A.; Thomson, L.J.; Sharley, D.J.; Penfold, C.M.; Hoffmann, A.A. Effects of Native Grass Cover Crops on Beneficial and Pest Invertebrates in Australian Vineyards. Environ. Entomol. 2010, 39, 970–978. [Google Scholar] [CrossRef]
- Sanchez, J.A.; Carrasco, A.; La Spina, M.; Pérez-Marcos, M.; Ortiz-Sánchez, F.J. How Bees Respond Differently to Field Margins of Shrubby and Herbaceous Plants in Intensive Agricultural Crops of the Mediterranean Area. Insects 2020, 11, 26. [Google Scholar] [CrossRef]
- Pérez-Marcos, M.; López-Gallego, E.; Ramírez-Soria, M.J.; Sanchez, J.A. Key Parameters for the Management and Design of Field Margins Aiming to the Conservation of Beneficial Insects. IOBC-WPRS Bull. 2017, 122, 151–155. [Google Scholar]
- Evans, S.C.; Shaw, E.M.; Rypstra, A.L. Exposure to a Glyphosate-Based Herbicide Affects Agrobiont Predatory Arthropod Behaviour and Long-Term Survival. Ecotoxicology 2010, 19, 1249–1257. [Google Scholar] [CrossRef] [PubMed]
- Miñarro, M.; Espadaler, X.; Melero, V.X.; Suárez-Álvarez, V. Organic versus Conventional Management in an Apple Orchard: Effects of Fertilization and Tree-Row Management on Ground-Dwelling Predaceous Arthropods. Agric. For. Entomol. 2009, 11, 133–142. [Google Scholar] [CrossRef]
- Fiera, C.; Ulrich, W.; Popescu, D.; Buchholz, J.; Querner, P.; Bunea, C.I.; Strauss, P.; Bauer, T.; Kratschmer, S.; Winter, S.; et al. Tillage Intensity and Herbicide Application Influence Surface-Active Springtail (Collembola) Communities in Romanian Vineyards. Agric. Ecosyst. Environ. 2020, 300, 107006. [Google Scholar] [CrossRef]
- de Oliveira Filho, L.C.I.; Zeppelini, D.; Sousa, J.P.; Baretta, D.; Klauberg-Filho, O. Collembola Community Structure under Different Land Management in Subtropical Brazil. Ann. Appl. Biol. 2020, 177, 294–307. [Google Scholar] [CrossRef]
- Sommaggio, D.; Peretti, E.; Burgio, G. The Effect of Cover Plants Management on Soil Invertebrate Fauna in Vineyard in Northern Italy. BioControl 2018, 63, 795–806. [Google Scholar] [CrossRef]
- Monzó, C. Artrópodos Depredadores Potenciales de Ceratitis capitata (Wiedemann) Presentes en el Suelo de Cítricos; Universidad Politécnica de Valencia: Valencia, Spain, 2010. [Google Scholar]
- Michalko, R.; Pekár, S.; Entling, M.H. An Updated Perspective on Spiders as Generalist Predators in Biological Control. Oecologia 2019, 189, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Michalko, R.; Pekár, S.; Dul’a, M.; Entling, M.H. Global Patterns in the Biocontrol Efficacy of Spiders: A Meta-Analysis. Glob. Ecol. Biogeogr. 2019, 28, 1366–1378. [Google Scholar] [CrossRef]
- Attwood, S.J.; Maron, M.; House, A.P.N.; Zammit, C. Do Arthropod Assemblages Display Globally Consistent Responses to Intensified Agricultural Land Use and Management? Glob. Ecol. Biogeogr. 2008, 17, 585–599. [Google Scholar] [CrossRef]
- Langellotto, G.A.; Denno, R.F. Responses of Invertebrate Natural Enemies to Complex-Structured Habitats: A Meta-Analytical Synthesis. Oecologia 2004, 139, 1–10. [Google Scholar] [CrossRef]
- Rivers, A.N.; Mullen, C.A.; Barbercheck, M.E. Cover Crop Species and Management Influence Predatory Arthropods and Predation in an Organically Managed, Reduced-Tillage Cropping System. Environ. Entomol. 2018, 47, 340–355. [Google Scholar] [CrossRef]
- Schmidt, J.M.; Rypstra, A.L. Opportunistic Predator Prefers Habitat Complexity That Exposes Prey While Reducing Cannibalism and Intraguild Encounters. Oecologia 2010, 164, 899–910. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, J.A.; Ortin-Angulo, M.C. Sampling of Cacopsylla pyri (Hemiptera: Psyllidae) and Pilophorus gallicus (Hemiptera: Miridae) in Pear Orchards. J. Econ. Entomol. 2011, 104, 1742–1751. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, J.A.; Carrasco-Ortiz, A.; López-Gallego, E.; Ramírez-Soria, M.J.; La Spina, M. Ants Reduce Fruit Damage Caused by Psyllids in Mediterranean Pear Orchards. Pest Manag. Sci. 2021, 77, 1886–1892. [Google Scholar] [CrossRef]
- Sanchez, J.A.; López-Gallego, E.; La-Spina, M. The Impact of Ant Mutualistic and Antagonistic Interactions on the Population Dynamics of Sap-Sucking Hemipterans in Pear Orchards. Pest Manag. Sci. 2020, 76, 1422–1434. [Google Scholar] [CrossRef] [PubMed]
- Hernández Carrión, E. Evolución Histórica de Los Vinos de Jumilla. Rev. Murc. Antropol. 2005, 12, 249–261. [Google Scholar]
- Martínez, M.D.; Acosta, F.D.; Ruiz, E. Claves Para La Identificación de La Fauna Española. Las Subfamilias y Géneros de Las Hormigas Ibéricas; Universidad Complutense: Madrid, Spain, 1985. [Google Scholar]
- Nentwig, W.; Blick, T.; Bosmans, R.; Gloor, D.; Hänggi, A.; Kropf, C. Spiders of Europe. Available online: https://www.araneae.nmbe.ch (accessed on 10 June 2022).
- Albouy, V.; Richard, D. Guía de Los Coleópteros de Europa; OMEGA: Artarmon, Australia, 2013. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 48. [Google Scholar] [CrossRef]
- R-Development-Core-Team R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org (accessed on 27 January 2023).
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. R Package Version 2.6-4. Available online: https://github.com/vegandevs/vegan (accessed on 11 March 2023).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis. Available online: https://ggplot2.tidyverse.org (accessed on 11 March 2023).
- Ji, X.Y.; Wang, J.Y.; Dainese, M.; Zhang, H.; Chen, Y.J.; Cavalieri, A.; Jiang, J.X.; Wan, N.F. Ground Cover Vegetation Promotes Biological Control and Yield in Pear Orchards. J. Appl. Entomol. 2022, 146, 262–271. [Google Scholar] [CrossRef]
- Eckert, M.; Mathulwe, L.L.; Gaigher, R.; Joubert-van der Merwe, L.; Pryke, J.S. Native Cover Crops Enhance Arthropod Diversity in Vineyards of the Cape Floristic Region. J. Insect Conserv. 2020, 24, 133–149. [Google Scholar] [CrossRef]
- Geldenhuys, M.; Gaigher, R.; Pryke, J.S.; Samways, M.J. Diverse Herbaceous Cover Crops Promote Vineyard Arthropod Diversity across Different Management Regimes. Agric. Ecosyst. Environ. 2021, 307, 107222. [Google Scholar] [CrossRef]
- Gonçalves, F.; Nunes, C.; Carlos, C.; López, Á.; Oliveira, I.; Crespí, A.; Teixeira, B.; Pinto, R.; Costa, C.A.; Torres, L. Do Soil Management Practices Affect the Activity Density, Diversity, and Stability of Soil Arthropods in Vineyards? Agric. Ecosyst. Environ. 2020, 294, 106863. [Google Scholar] [CrossRef]
- Markó, V.; Jenser, G.; Kondorosy, E.; Ábrahám, L.; Balázs, K. Flowers for Better Pest Control? The Effects of Apple Orchard Ground Cover Management on Green Apple Aphids (Aphis spp.) (Hemiptera: Aphididae), Their Predators and the Canopy Insect Community. Biocontrol Sci. Technol. 2013, 23, 126–145. [Google Scholar] [CrossRef]
- Fernandez, D.E.; Cichon, L.I.; Sanchez, E.E.; Garrido, S.A.; Gittins, C. Effect of Different Cover Crops on the Presence of Arthropods in an Organic Apple (Malus domestica Borkh) Orchard. J. Sustain. Agric. 2008, 32, 197–211. [Google Scholar] [CrossRef]
- Markó, V.; Keresztes, B. Flowers for Better Pest Control? Ground Cover Plants Enhance Apple Orchard Spiders (Araneae), but Not Necessarily Their Impact on Pests. Biocontrol Sci. Technol. 2014, 24, 574–596. [Google Scholar] [CrossRef]
- Damien, M.; Le Lann, C.; Desneux, N.; Alford, L.; Al Hassan, D.; Georges, R.; Van Baaren, J. Flowering Cover Crops in Winter Increase Pest Control but Not Trophic Link Diversity. Agric. Ecosyst. Environ. 2017, 247, 418–425. [Google Scholar] [CrossRef]
- Whalen, D.A.; Catchot, A.L.; Gore, J.; Cook, D.R.; Barton, B.T.; Brown, R.L.; Irby, J.T.; Speights, C.J. Impacts of Winter Annual Cover Crops and Neonicotinoid Seed Treatments on Arthropod Diversity in Mississippi Soybean. Environ. Entomol. 2022, 51, 578–585. [Google Scholar] [CrossRef]
- Depalo, L.; Burgio, G.; Magagnoli, S.; Sommaggio, D.; Montemurro, F.; Canali, S.; Masetti, A. Influence of Cover Crop Termination on Ground Dwelling Arthropods in Organic Vegetable Systems. Insects 2020, 11, 445. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Marcos, M.; Ortiz-Sánchez, F.J.; López-Gallego, E.; Ibáñez, H.; Carrasco, A.; Sanchez, J.A. Effects of Managed and Unmanaged Floral Margins on Pollination Services and Production in Melon Crops. Insects 2023, 14, 296. [Google Scholar] [CrossRef] [PubMed]
- Liere, H.; Jha, S.; Philpott, S.M. Intersection between Biodiversity Conservation, Agroecology, and Ecosystem Services. Agroecol. Sustain. Food Syst. 2017, 41, 723–760. [Google Scholar] [CrossRef]
- Beaumelle, L.; Auriol, A.; Grasset, M.; Pavy, A.; Thiéry, D.; Rusch, A. Benefits of Increased Cover Crop Diversity for Predators and Biological Pest Control Depend on the Landscape Context. Ecol. Solut. Evid. 2021, 2, e12086. [Google Scholar] [CrossRef]
- Begum, M.; Gurr, G.M.; Wratten, S.D.; Hedberg, P.R.; Nicol, H.I. Using Selective Food Plants to Maximize Biological Control of Vineyard Pests. J. Appl. Ecol. 2006, 43, 547–554. [Google Scholar] [CrossRef]
- Nyffeler, M.; Benz, G. Spiders in Natural Pest Control: A Review. J. Appl. Entomol. 1987, 103, 321–339. [Google Scholar] [CrossRef]
- Monzó, C.; Mollá, Ó.; Castañera, P.; Urbaneja, A. Activity-Density of Pardosa cribata in Spanish Citrus Orchards and Its Predatory Capacity on Ceratitis capitata and Myzus persicae. BioControl 2009, 54, 393–402. [Google Scholar] [CrossRef]
- Kuusk, A.K.; Cassel-Lundhagen, A.; Kvarnheden, A.; Ekbom, B. Tracking Aphid Predation by Lycosid Spiders in Spring-Sown Cereals Using PCR-Based Gut-Content Analysis. Basic Appl. Ecol. 2008, 9, 718–725. [Google Scholar] [CrossRef]
- Sharley, D.J.; Hoffmann, A.A.; Thomson, L.J. The Effects of Soil Tillage on Beneficial Invertebrates within the Vineyard. Agric. For. Entomol. 2008, 10, 233–243. [Google Scholar] [CrossRef]
- Hagen, K.S.; Milss, N.J.; Gordh, G.; McMurtry, J.A. Terrestrial Arthropod Predators of Insect and Mite Pests. In Handbook of Biological Control; Elsevier: Amsterdam, The Netherlands, 1999; pp. 383–503. [Google Scholar]
- Cárdenas, M.; Ruano, F.; García, P.; Pascual, F.; Campos, M. Impact of Agricultural Management on Spider Populations in the Canopy of Olive Trees. Biol. Control 2006, 38, 188–195. [Google Scholar] [CrossRef]
- Bogya, S.; Markó, V. Effect of Pest Management Systems on Ground-Dwelling Spider Assemblages in an Apple Orchard in Hungary. Agric. Ecosyst. Environ. 1999, 73, 7–18. [Google Scholar] [CrossRef]
- Huang, X.; Quan, X.; Wang, X.; Yun, Y.; Peng, Y. Is the Spider a Good Biological Control Agent for Plutella xylostella (Lepidoptera: Plutellidae)? Zoologia 2018, 35, 1–6. [Google Scholar] [CrossRef]
- Finke, D.L.; Denno, R.F. Predator Diversity Dampens Trophic Cascades. Nature 2004, 429, 407–410. [Google Scholar] [CrossRef]
- Pretorius, R.J.; Hein, G.L.; Blankenship, E.E.; Purrington, F.F.; Wilson, R.G.; Bradshaw, J.D. Comparing the Effects of Two Tillage Operations on Beneficial Epigeal Arthropod Communities and Their Associated Ecosystem Services in Sugar Beets. J. Econ. Entomol. 2018, 111, 2617–2631. [Google Scholar] [CrossRef]
- Shearin, A.F.; Chris Reberg-Horton, S.; Gallandt, E.R. Cover Crop Effects on the Activity-Density of the Weed Seed Predator Harpalus rufipes (Coleoptera: Carabidae). Weed Sci. 2008, 56, 442–450. [Google Scholar] [CrossRef]
- Wang, G.; Liu, L.; Liu, G.; Hu, H.; Li, T. Impacts of Grassland Vegetation Cover on the Active-Layer Thermal Regime, Northeast Qinghai-Tibet Plateau, China. Permafr. Periglac. Process. 2010, 21, 335–344. [Google Scholar] [CrossRef]
- Diehl, E.; Wolters, V.; Birkhofer, K. Arable Weeds in Organically Managed Wheat Fields Foster Carabid Beetles by Resource- and Structure-Mediated Effects. Arthropod. Plant. Interact. 2012, 6, 75–82. [Google Scholar] [CrossRef]
- Korkmaz, D.; Gök, A. Contributions to the Knowledge of Darkling Beetles (Coleoptera: Tenebrionidae) of Mount Davraz (Isparta): Along with Ecological and Zoogeographical Notes. J. Entomol. Res. Soc. 2018, 20, 79–90. [Google Scholar]
- Sinka, M.; Jones, T.H.; Hartley, S.E. The Indirect Effect of Above-Ground Herbivory on Collembola Populations Is Not Mediated by Changes in Soil Water Content. Appl. Soil Ecol. 2007, 36, 92–99. [Google Scholar] [CrossRef]
- Roger-Estrade, J.; Anger, C.; Bertrand, M.; Richard, G. Tillage and Soil Ecology: Partners for Sustainable Agriculture. Soil Tillage Res. 2010, 111, 33–40. [Google Scholar] [CrossRef]
- Agustí, N.; Shayler, S.P.; Harwood, J.D.; Vaughan, I.P.; Sunderland, K.D.; Symondson, W.O.C. Collembola as Alternative Prey Sustaining Spiders in Arable Ecosystems: Prey Detection within Predators Using Molecular Markers. Mol. Ecol. 2003, 12, 3467–3475. [Google Scholar] [CrossRef] [PubMed]
- Bilde, T.; Axelsen, J.A.; Toft, S. The Value of Collembola from Agricultural Soils as Food for a Generalist Predator. J. Appl. Ecol. 2000, 37, 672–683. [Google Scholar] [CrossRef]
- Wise, D.H.; Moldenhauer, D.M.; Halaj, J. Using Stable Isotopes to Reveal Shifts in Prey Consumption by Generalist Predators. Ecol. Appl. 2006, 16, 865–876. [Google Scholar] [CrossRef]
- Buchholz, J.; Querner, P.; Paredes, D.; Bauer, T.; Strauss, P.; Guernion, M.; Scimia, J.; Cluzeau, D.; Burel, F.; Kratschmer, S.; et al. Soil Biota in Vineyards Are More Influenced by Plants and Soil Quality than by Tillage Intensity or the Surrounding Landscape. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Pfingstmann, A.; Paredes, D.; Buchholz, J.; Querner, P.; Bauer, T.; Strauss, P.; Kratschmer, S.; Winter, S.; Zaller, J. Contrasting Effects of Tillage and Landscape Structure on Spiders and Springtails in Vineyards. Sustainability 2019, 11, 2095. [Google Scholar] [CrossRef]
- Sturm, M.; Sturm, M.; Eisenbeis, G. Recovery of the Biological Activity in a Vineyard Soil after Landscape Redesign: A Three-Year Study Using the Bait-Lamina Method. Vitis 2002, 41, 43–45. [Google Scholar]
- Sereda, E.; Wolters, V.; Birkhofer, K. Addition of Crop Residues Affects a Detritus-Based Food Chain Depending on Litter Type and Farming System. Basic Appl. Ecol. 2015, 16, 746–754. [Google Scholar] [CrossRef]
- Topping, C.J.; Sunderland, K.D. Limitations to the Use of Pitfall Traps in Ecological Studies Exemplified by a Study of Spiders in a Field of Winter Wheat. J. Appl. Ecol. 1992, 29, 485. [Google Scholar] [CrossRef]
- Halaj, J.; Wise, D.H. Impact of a Detrital Subsidy on Trophic Cascades in a Terrestrial Grazing Food Web. Ecology 2002, 83, 3141–3151. [Google Scholar] [CrossRef]
- Aguilar-Fenollosa, E.; Pascual-Ruiz, S.; Hurtado-Ruiz, M.; Jacas, J.A. Efecto Del Manejo De La Cubierta Vegetal En El Control Biológico de Tetranychus urticae (Acari: Prostigmata) En Clementino. Levante Agric. 2009, 394, 40–48. [Google Scholar]
- Pekár, S. Predatory Characteristics of Ant-Eating Zodarion Spiders (Araneae: Zodariidae): Potential Biological Control Agents. Biol. Control 2005, 34, 196–203. [Google Scholar] [CrossRef]
- Ortiz, D.; Petráková Dušátková, L.; Pekár, S. Gut Content Metabarcoding of Three Widespread Iberian Ant-Eating Spiders Reveals Specialisation on the Same Abundant Harvester Ants. Ecol. Entomol. 2022, 47, 305–313. [Google Scholar] [CrossRef]
- Cobb, L.M.; Cobb, V.A. Occurrence of Parasitoid Wasps, Baeus Sp. and Gelis Sp., in the Egg Sacs of the Wolf Spiders Pardosa moesta and Pardosa sternalis (Araneae, Lycosidae) in Southeastern Idaho. Can. Field-Nat. 2004, 118, 122–123. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Wu, L.; Peng, Y.; Chen, J.; Liu, F. A Survey of Nectar Feeding by Spiders in Three Different Habitats. Bull. Insectology 2010, 63, 203–208. [Google Scholar]
- Menalled, F.D.; Smith, R.G.; Dauer, J.T.; Fox, T.B. Impact of Agricultural Management on Carabid Communities and Weed Seed Predation. Agric. Ecosyst. Environ. 2007, 118, 49–54. [Google Scholar] [CrossRef]
- Davey, J.S. Intraguild Predation among Generalist Predators in Winter Wheat; Cardiff University: Cardiff, UK, 2010. [Google Scholar]
- Lang, A. Intraguild Interference and Biocontrol Effects of Generalist Predators in a Winter Wheat Field. Oecologia 2003, 134, 144–153. [Google Scholar] [CrossRef]
- Wise, D.H. Cannibalism, Food Limitation, Intraspecific Competition, and the Regulation of Spider Populations. Annu. Rev. Entomol. 2006, 51, 441–465. [Google Scholar] [CrossRef] [PubMed]
- Katayama, N.; Suzuki, N. Bodyguard Effects for Aphids of Aphis craccivora Koch (Homoptera: Aphididae) as Related to the Activity of Two Ant Species, Tetramorium caespitum Linnaeus (Hymenoptera: Formicidae) and Lasius niger L. (Hymenoptera: Formicidae). Appl. Entomol. Zool. 2003, 38, 427–433. [Google Scholar] [CrossRef]
- Nuessly, G.S.; Hentz, M.G.; Beiriger, R.; Scully, B.T. Insects Associated with Faba Bean, Vicia faba (Fabales: Fabaceae), in Southern Florida. Fla. Entomol. 2004, 87, 204–211. [Google Scholar] [CrossRef]
- Manfrino, R.G.; Zumoffen, L.; Salto, C.E.; Lastra, C.C.L. Natural Occurrence of Entomophthoroid Fungi of Aphid Pests on Medicago sativa L. in Argentina. Rev. Argent. Microbiol. 2014, 46, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Frouz, J.; Jilková, V. The Effect of Ants on Soil Properties and Processes (Hymenoptera: Formicidae). Myrmecol. News 2008, 11, 191–199. [Google Scholar]
- Zhou, H.; Chen, J.; Chen, F. Ant-Mediated Seed Dispersal Contributes to the Local Spatial Pattern and Genetic Structure of Globba lancangensis (Zingiberaceae). J. Hered. 2007, 98, 317–324. [Google Scholar] [CrossRef]
- Blaise, C.; Mazzia, C.; Bischoff, A.; Millon, A.; Ponel, P.; Blight, O. The Key Role of Inter-Row Vegetation and Ants on Predation in Mediterranean Organic Vineyards. Agric. Ecosyst. Environ. 2021, 311, 107327. [Google Scholar] [CrossRef]
- Moss, A.; Swallow, J.; Greene, M. Always under Foot: Tetramorium immigrans (Hymenoptera: Formicidae), a Review. Myrmecol. News 2022, 32, 75–92. [Google Scholar] [CrossRef]
Order | Family | Treat | Year | Interaction | |||
---|---|---|---|---|---|---|---|
χ2(1) | p | χ2(2) | p | χ2(2) | p | ||
Araneae | Gnaphosidae | 0.18 | 0.66 | 3.5 | 0.17 | 13.29 | 0.0013 |
Lycosidae | 167.76 | <0.001 | 21.52 | <0.001 | 5.3 | 0.07 | |
Zodariidae | 4.96 | 0.026 | 9.2 | 0.01 | 34.58 | <0.001 | |
Linyphiidae | 14.31 | <0.001 | 8.7 | 0.013 | 4.5 | 0.1 | |
Coleoptera | Anthicidae | 2.03 | 0.15 | 5.38 | 0.067 | 37.3 | <0.001 |
Carabidae | 22.22 | <0.001 | 30.28 | <0.001 | 4.12 | 0.127 | |
Histeridae | 43.51 | <0.001 | 3.54 | 0.17 | 2.5 | 0.286 | |
Staphylinidae | 145.7 | <0.001 | 12.4 | 0.002 | 1.15 | 0.56 | |
Tenebrionidae | 23.05 | <0.001 | 1.8 | 0.4 | 12.1 | 0.002 | |
Hymenoptera | Scelionidae | 57.11 | <0.001 | 17.06 | <0.001 | 0.22 | 0.89 |
Formicidae | 0.62 | 0.43 | 4.59 | 0.1 | 129.75 | <0.001 |
Species | Cumulative | p |
---|---|---|
Collembola spp. | 53.9 | 0.001 |
Acari spp. | 65.7 | 0.147 |
Lasius grandis | 74.4 | 0.04 |
Tetramorium caespitum | 80.9 | 1.000 |
Pardosa proxima | 86.8 | 0.001 |
Baeus sp. | 91.5 | 0.993 |
Gonocephalum granulatum pusillum | 93.7 | 0.001 |
Isopoda sp. | 95.4 | 0.888 |
Oxypoda sp. | 96.4 | 0.002 |
Zodarion styliferum | 97.5 | 0.006 |
Cardiocondyla sp. | 98.2 | 0.001 |
Harpalus distinguendus | 98.8 | 0.013 |
Formica sp. | 99.5 | 0.807 |
Saprinus sp. | 100 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perera-Fernández, L.G.; de Pedro, L.; Sanchez, J.A. Sown Covers Enhance the Diversity and Abundance of Ground-Dwelling Predators in Mediterranean Pear Orchards. Agronomy 2023, 13, 3049. https://doi.org/10.3390/agronomy13123049
Perera-Fernández LG, de Pedro L, Sanchez JA. Sown Covers Enhance the Diversity and Abundance of Ground-Dwelling Predators in Mediterranean Pear Orchards. Agronomy. 2023; 13(12):3049. https://doi.org/10.3390/agronomy13123049
Chicago/Turabian StylePerera-Fernández, Luis Gabriel, Luis de Pedro, and Juan Antonio Sanchez. 2023. "Sown Covers Enhance the Diversity and Abundance of Ground-Dwelling Predators in Mediterranean Pear Orchards" Agronomy 13, no. 12: 3049. https://doi.org/10.3390/agronomy13123049
APA StylePerera-Fernández, L. G., de Pedro, L., & Sanchez, J. A. (2023). Sown Covers Enhance the Diversity and Abundance of Ground-Dwelling Predators in Mediterranean Pear Orchards. Agronomy, 13(12), 3049. https://doi.org/10.3390/agronomy13123049