Ribeiro, V.P.; Desuó Neto, L.; Marques, P.A.A.; Achcar, J.A.; Junqueira, A.M.; Chinatto, A.W., Jr.; Junqueira, C.C.M.; Maciel, C.D.; Balestieri, J.A.P.
A Stochastic Bayesian Artificial Intelligence Framework to Assess Climatological Water Balance under Missing Variables for Evapotranspiration Estimates. Agronomy 2023, 13, 2970.
https://doi.org/10.3390/agronomy13122970
AMA Style
Ribeiro VP, Desuó Neto L, Marques PAA, Achcar JA, Junqueira AM, Chinatto AW Jr., Junqueira CCM, Maciel CD, Balestieri JAP.
A Stochastic Bayesian Artificial Intelligence Framework to Assess Climatological Water Balance under Missing Variables for Evapotranspiration Estimates. Agronomy. 2023; 13(12):2970.
https://doi.org/10.3390/agronomy13122970
Chicago/Turabian Style
Ribeiro, Vitor P., Luiz Desuó Neto, Patricia A. A. Marques, Jorge A. Achcar, Adriano M. Junqueira, Adilson W. Chinatto, Jr., Cynthia C. M. Junqueira, Carlos D. Maciel, and José Antônio P. Balestieri.
2023. "A Stochastic Bayesian Artificial Intelligence Framework to Assess Climatological Water Balance under Missing Variables for Evapotranspiration Estimates" Agronomy 13, no. 12: 2970.
https://doi.org/10.3390/agronomy13122970
APA Style
Ribeiro, V. P., Desuó Neto, L., Marques, P. A. A., Achcar, J. A., Junqueira, A. M., Chinatto, A. W., Jr., Junqueira, C. C. M., Maciel, C. D., & Balestieri, J. A. P.
(2023). A Stochastic Bayesian Artificial Intelligence Framework to Assess Climatological Water Balance under Missing Variables for Evapotranspiration Estimates. Agronomy, 13(12), 2970.
https://doi.org/10.3390/agronomy13122970