A Proposal for Lodging Judgment of Rice Based on Binocular Camera
Abstract
:1. Introduction
2. Materials and Methods
2.1. Algorithm Flow
2.2. Binocular Calibration
2.3. Traditional Census Transform
2.4. Grayscale Level
2.5. Cost Aggregation
2.6. Judgment of Rice Lodging
3. Results and Analysis
3.1. Disparity Map Acquisition Effect
3.2. Lodging Judgment Test
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Iqbal, J.; Qamar, Z.U.Q.; Yousaf, U.; Asgher, A.; Dilshad, R.; Qamar, F.; Sajida, B.; Rehman, S.; Haroon, M. Sustainable Rice Production Under Biotic and Abiotic Stress Challenges. In Sustainable Agriculture in the Era of the OMICs Revolution; Springer: Cham, Switzerland, 2023; pp. 241–268. [Google Scholar] [CrossRef]
- Jin, L.; Lu, Y.; Xiao, P.; Sun, M.; Corke, H.; Bao, J.S. Genetic diversity and population structure of a diverse set of rice germplasm for association mapping. Theor. Appl. Genet. 2010, 121, 475–487. [Google Scholar] [CrossRef]
- Khush, G. Green revolution: The way forward. Nat. Rev. Genet. 2001, 2, 815–822. [Google Scholar] [CrossRef]
- Shah, L.; Yahya, M.; Shah, S.M.A.; Nadeem, M.; Ali, A.; Ali, A.; Wang, J.; Riaz, M.W.; Rehman, S.; Wu, W.X.; et al. Improving Lodging Resistance: Using Wheat and Rice as Classical Examples. Int. J. Mol. Sci. 2019, 20, 4211. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.M.; Chen, S.S.; Jia, K.; Jiang, H.; Sun, Y.S.; Li, D.; Zheng, Q.; Huang, J.X. A Decision-Tree Approach to Identifying Paddy Rice Lodging with Multiple Pieces of Polarization Information Derived from Sentinel-1. Remote Sens. 2023, 15, 240. [Google Scholar] [CrossRef]
- Chauhan, S.; Darvishzadeh, R.; Boschetti, M.; Pepe, M.; Nelson, A. Remote sensing-based crop lodging assessment: Current status and perspectives. Isprs J. Photogramm. Remote Sens. 2019, 151, 124–140. [Google Scholar] [CrossRef]
- Tian, M.L.; Ban, S.T.; Yuan, T.; Ji, Y.B.; Ma, C.; Li, L.Y. Assessing rice lodging using UAV visible and multispectral image. Int. J. Remote Sens. 2021, 42, 8840–8857. [Google Scholar] [CrossRef]
- Zhao, X.; Yuan, Y.T.; Song, M.D.; Ding, Y.; Lin, F.F.; Liang, D.; Zhang, D.Y. Use of Unmanned Aerial Vehicle Imagery and Deep Learning UNet to Extract Rice Lodging. Sensors 2019, 19, 3859. [Google Scholar] [CrossRef]
- Li, X.; Wang, K.; Ma, Z.; Wang, H. Early detection of wheat disease based on thermal infrared imaging. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2014, 30, 183–189. [Google Scholar]
- Li, Z.; Chen, Z.; Wang, L.; Liu, J.; Zhou, Q. Area extraction of maize lodging based on remote sensing by small unmanned aerial vehicle. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2014, 30, 207–213. [Google Scholar]
- Tang, Z.Q.; Sun, Y.Q.; Wan, G.T.; Zhang, K.F.; Shi, H.T.; Zhao, Y.D.; Chen, S.; Zhang, X.W. Winter Wheat Lodging Area Extraction Using Deep Learning with GaoFen-2 Satellite Imagery. Remote Sens. 2022, 14, 4887. [Google Scholar] [CrossRef]
- Chauhan, S.; Darvishzadeh, R.; Lu, Y.; Boschetti, M.; Nelson, A. Understanding wheat lodging using multi-temporal Sentinel-1 and Sentinel-2 data. Remote Sens. Environ. 2020, 243, 111804. [Google Scholar] [CrossRef]
- Sun, Q.; Gu, X.H.; Chen, L.P.; Xu, X.B.; Pan, Y.C.; Hu, X.Q.; Xu, B. Monitoring rice lodging grade via Sentinel-2A images based on change vector analysis. Int. J. Remote Sens. 2022, 43, 1549–1576. [Google Scholar] [CrossRef]
- Zhao, L.L.; Yang, J.; Li, P.X.; Shi, L.; Zhang, L.P. Characterizing Lodging Damage in Wheat and Canola Using Radarsat-2 Polarimetric SAR Data. Remote Sens. Lett. 2017, 8, 667–675. [Google Scholar] [CrossRef]
- Chauhan, S.; Darvishzadeh, R.; Boschetti, M.; Nelson, A. Estimation of crop angle of inclination for lodged wheat using multi-sensor SAR data. Remote Sens. Environ. 2020, 236, 111488. [Google Scholar] [CrossRef]
- Schaepman, M.E.; Ustin, S.; Plaza, A.; Painter, T.; Verrelst, J.; Liang, S. Earth system science related imaging spectroscopy—An assessment. Remote Sens. Environ. 2009, 113 (Suppl. S1), S123–S137. [Google Scholar] [CrossRef]
- Miphokasap, P.; Kiyoshi, H.; Vaiphasa, C.; Souris, M.; Nagai, M. Estimating Canopy Nitrogen Concentration in Sugarcane Using Field Imaging Spectroscopy. Remote Sens. 2012, 4, 1651–1670. [Google Scholar] [CrossRef]
- Liu, T.; Li, R.; Zhong, X.; Jiang, M.; Jin, X.; Zhou, P.; Liu, S.; Sun, C.; Guo, W. Estimates of rice lodging using indices derived from UAV visible and thermal infrared images. Agric. For. Meteorol. 2018, 252, 144–154. [Google Scholar] [CrossRef]
- Somers, B.; Asner, G.; Tits, L.; Coppin, P. Endmember variability in Spectral Mixture Analysis: A review. Remote Sens. Environ. 2011, 115, 1603–1616. [Google Scholar] [CrossRef]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef]
- Varela, S.; Pederson, T.L.; Leakey, A.D.B. Implementing Spatio-Temporal 3D-Convolution Neural Networks and UAV Time Series Imagery to Better Predict Lodging Damage in Sorghum. Remote Sens. 2022, 14, 733. [Google Scholar] [CrossRef]
- Su, Z.B.; Wang, Y.; Xu, Q.; Gao, R.; Kong, Q.M. LodgeNet: Improved rice lodging recognition using semantic segmentation of UAV high-resolution remote sensing images. Comput. Electron. Agric. 2022, 196, 106873. [Google Scholar] [CrossRef]
- Zhao, B.Q.; Li, J.T.; Baenziger, P.S.; Belamkar, V.; Ge, Y.F.; Zhang, J.; Shi, Y.Y. Automatic Wheat Lodging Detection and Mapping in Aerial Imagery to Support High-Throughput Phenotyping and In-Season Crop Management. Agronomy 2020, 10, 1762. [Google Scholar] [CrossRef]
- Zhang, Z.; Flores, P.; Igathinathane, C.; Naik, D.L.; Kiran, R.; Ransom, J.K. Wheat Lodging Detection from UAS Imagery Using Machine Learning Algorithms. Remote Sens. 2020, 12, 1838. [Google Scholar] [CrossRef]
- Haridasan, A.; Thomas, J.; Raj, E.D. Deep learning system for paddy plant disease detection and classification. Environ. Monit. Assess. 2023, 195, 120. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhang, X.Y.; Zhang, Z.Q.; Fang, H. Automated detection of boundary line in paddy field using MobileV2-UNet and RANSAC. Comput. Electron. Agric. 2022, 194, 106667. [Google Scholar] [CrossRef]
- Ma, Z.H.; Tao, Z.Y.; Du, X.Q.; Yu, Y.X.; Wu, C.Y. Automatic detection of crop root rows in paddy fields based on straight-line clustering algorithm and supervised learning method. Biosyst. Eng. 2021, 211, 63–76. [Google Scholar] [CrossRef]
- Wen, J.Q.; Yin, Y.X.; Zhang, Y.W.; Pan, Z.L.; Fan, Y.D. Detection of Wheat Lodging by Binocular Cameras during Harvesting Operation. Agriculture 2023, 13, 120. [Google Scholar] [CrossRef]
- Li, J.H.; Dai, Y.P.; Su, X.H.; Wu, W.B. Efficient Dual-Branch Bottleneck Networks of Semantic Segmentation Based on CCD Camera. Remote Sens. 2022, 14, 3925. [Google Scholar] [CrossRef]
- Li, J.; Li, J.H.; Zhao, X.; Su, X.H.; Wu, W.B. Lightweight detection networks for tea bud on complex agricultural environment via improved YOLO v4. Comput. Electron. Agric. 2023, 211, 107955. [Google Scholar] [CrossRef]
- Yang, Y.K.; Nie, J.; Kan, Z.; Yang, S.; Zhao, H.X.; Li, J.B. Cotton stubble detection based on wavelet decomposition and texture features. Plant Methods 2021, 17, 113. [Google Scholar] [CrossRef]
- Sun, J.W.; Zhou, J.; He, Y.Q.; Jia, H.B.; Liang, Z. RL-DeepLabv3+: A lightweight rice lodging semantic segmentation model for unmanned rice harvester. Comput. Electron. Agric. 2023, 209, 107823. [Google Scholar] [CrossRef]
- Laga, H.; Jospin, L.V.; Boussaid, F.; Bennamoun, M. A Survey on Deep Learning Techniques for Stereo-Based Depth Estimation. Ieee Trans. Pattern Anal. Mach. Intell. 2022, 44, 1738–1764. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.G.; Liu, D.Y.; Zhang, H.D.; Li, J.R.; Shi, B.J. Semi-Global Stereo Matching Algorithm Based on Multi-Scale Information Fusion. Appl. Sci. 2023, 13, 1027. [Google Scholar] [CrossRef]
- Ren, J.; Guan, F.; Wang, T.; Qian, B.; Luo, C.; Cai, G.; Kan, C.; Li, X. High Precision Calibration Algorithm for Binocular Stereo Vision Camera using Deep Reinforcement Learning. Comput. Intell. Neurosci. 2022, 2022, 6596868. [Google Scholar] [CrossRef]
- Hou, Y.; Liu, C.; An, B.; Liu, Y. Stereo matching algorithm based on improved Census transform and texture filtering. Optik 2021, 249, 168186. [Google Scholar] [CrossRef]
- Zhang, K.; Lu, J.; Lafruit, G. Cross-Based Local Stereo Matching Using Orthogonal Integral Images. Circuits Syst. Video Technol. IEEE Trans. 2009, 19, 1073–1079. [Google Scholar] [CrossRef]
- Mei, X.; Sun, X.; Zhou, M.; Jiao, S.; Wang, H.; Zhang, X. On building an accurate stereo matching system on graphics hardware. In Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Barcelona, Spain, 6–13 November 2011; pp. 467–474. [Google Scholar] [CrossRef]
- Ma, N.; Men, Y.B.; Men, C.G.; Li, X. Accurate Dense Stereo Matching Based on Image Segmentation Using an Adaptive Multi-Cost Approach. Symmetry 2016, 8, 159. [Google Scholar] [CrossRef]
Algorithm | Adiron | MotorE | PianoL | PlaytP | Vintage | |||||
---|---|---|---|---|---|---|---|---|---|---|
RMS | Avgerr | RMS | Avgerr | RMS | Avgerr | RMS | Avgerr | RMS | Avgerr | |
ADSM | 38.1 | 14.3 | 26.6 | 8 | 41.9 | 20.4 | 18.7 | 5.84 | 34 | 11.1 |
SGBM | 23.3 | 7.07 | 52.5 | 21.3 | 55.2 | 29 | 31.5 | 9.97 | 42.3 | 16.1 |
OURS | 20.6 | 6.94 | 23.6 | 8.7 | 33.7 | 15.7 | 19.3 | 8.77 | 25.1 | 14.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Liang, C.; Hu, L.; Luo, X.; He, J.; Wang, P.; Huang, P.; Gao, R.; Li, J. A Proposal for Lodging Judgment of Rice Based on Binocular Camera. Agronomy 2023, 13, 2852. https://doi.org/10.3390/agronomy13112852
Yang Y, Liang C, Hu L, Luo X, He J, Wang P, Huang P, Gao R, Li J. A Proposal for Lodging Judgment of Rice Based on Binocular Camera. Agronomy. 2023; 13(11):2852. https://doi.org/10.3390/agronomy13112852
Chicago/Turabian StyleYang, Yukun, Chuqi Liang, Lian Hu, Xiwen Luo, Jie He, Pei Wang, Peikui Huang, Ruitao Gao, and Jiehao Li. 2023. "A Proposal for Lodging Judgment of Rice Based on Binocular Camera" Agronomy 13, no. 11: 2852. https://doi.org/10.3390/agronomy13112852
APA StyleYang, Y., Liang, C., Hu, L., Luo, X., He, J., Wang, P., Huang, P., Gao, R., & Li, J. (2023). A Proposal for Lodging Judgment of Rice Based on Binocular Camera. Agronomy, 13(11), 2852. https://doi.org/10.3390/agronomy13112852