Co-Inoculation with Bradyrhizobium and Humic Substances Combined with Herbaspirillum seropedicae Promotes Soybean Vegetative Growth and Nodulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Humic Substances
2.2. Microorganisms
2.3. Plant Growth Conditions
2.4. Differential Transcription Level of Genes with RT-qPCR
2.5. Statistical Analysis
3. Results
3.1. Vegetative Growth
3.2. Plant Nodulation
3.3. Plant Nutrient Content
3.4. Plant Metabolism was Affected by Co-Inoculation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buono, B. Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Sci. Total Environ. 2021, 751, 141763. [Google Scholar] [CrossRef]
- Nardi, S.; Carletti, P.; Pizzeghello, D.; Muscolo, A. Biological activities of humic substances. In Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems; Volume 2., Part 1: Fundamentals and Impact of Mineral-Organic Biota Interactions on the Formation, Transformation, Turnover, and Storage of Natural Nonliving Organic Matter (NOM); Senesi, N., Xing, B., Huang, P.M., Eds.; Wiley: Hoboken, NJ, USA, 2009; pp. 305–339. [Google Scholar]
- Nardi, S.; Schiavon, M.; Francioso, O. Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules 2021, 26, 2256. [Google Scholar] [CrossRef]
- Nardi, S.; Muscolo, A.; Vaccaro, S.; Baiano, S.; Spaccini, R.; Piccolo, A. Relationship between molecular characteristics of soil humic fractions and glycolytic pathway and Krebs cycle in maize seedlings. Soil Biol. Biochem. 2007, 39, 3138–3146. [Google Scholar] [CrossRef]
- Schiavon, M.; Pizzeghello, D.; Muscolo, A.; Vaccaro, S.; Francioso, O.; Nardi, S. High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). J. Chem. Ecol. 2010, 36, 662–669. [Google Scholar] [CrossRef]
- Conab. Safra 2022/23: Produção de Grãos Pode Chegar a 308 Milhões de t Impulsionada pela boa Rentabilidade de Milho, soja e Algodão. Available online: https://www.conab.gov.br/ultimas-noticias/4731-safra-2022-23-producao-de-graos-pode-chegar-a-308-milhoes-de-toneladas-impulsionada-pela-boa-rentabilidade-de-milho-soja-e-algodao (accessed on 8 August 2023).
- Iowa State University Extension and Outreach. Humic and Fulvic Acids and Their Potential in Crop Production. Available online: https://fieldcropnews.com/wp-content/uploads/2015/04/Humic-Acid-Iowa-State.pdf (accessed on 18 April 2023).
- Silva, G. Soybean Yield Response to Foliar Applied Humic Acid and Fungicide. Available online: https://www.canr.msu.edu/news/soybean_yield_response_to_foliar_applied_humic_acid_and_fungicide (accessed on 8 August 2023).
- Lenssen, A.W.; Olk, D.C.; Dinnes, D.L. Application of a formulated humic product can increase soybean yield. Crop Forage Turfgrass Manag. 2019, 5, 180053. [Google Scholar] [CrossRef]
- Nardi, S.; Pizzeghello, D.; Ertani, A. Hormone-like activity of the soil organic matter. Appl. Soil Ecol. 2018, 123, 517–520. [Google Scholar] [CrossRef]
- Tan, K.H.; Tantiwiramanond, D. Effect of humic acids on nodulation and dry matter production of soybean peanut, and clover. Soil Sci. Soc. Am. J. 1983, 47, 1121–1124. [Google Scholar] [CrossRef]
- da Silva, M.S.R.A.; de Carvalho, L.A.L.; Braos, L.B.; de Sousa Antunes, L.F.; da Silva, C.S.R.A.; da Silva, C.G.N.; Pinheiro, D.G.; Correia, M.E.F.; Araújo, E.S.; Colnago, L.A.; et al. Effect of the application of vermicompost and millicompost humic acids about the soybean microbiome under water restriction conditions. Front. Microbiol. 2022, 13, 1000222. [Google Scholar] [CrossRef]
- Puglisi, E.; Pascazio, S.; Suciu, N.; Cattani, I.; Fait, G.; Spaccini, R.; Crecchio, C.; Piccolo, A.; Trevisan, M. Rhizosphere microbial diversity as influenced by humic substance amendments and chemical composition of rhizodeposits. J. Geochem. Explor. 2013, 129, 82–94. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Canellas, N.O.A.; Mazzei, P.; Piccolo, A. Humic acids increase the maize seedlings exudation yield. Chem. Biol. Technol. Agric. 2019, 6, 3. [Google Scholar] [CrossRef]
- Hungria, M.; Nogueira, M.A.; Araujo, R.S. Co-inoculation of soybeans and common beans with rhizobia and azospirilla: Strategies to improve sustainability. Biol. Fertil. Soils 2013, 49, 791–801. [Google Scholar] [CrossRef]
- Hungria, M.; Nogueira, M.A.; Araujo, R.S. Soybean seed co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense: A new biotechnological tool to improve yield and sustainability. Am. J. Plant Sci. 2015, 6, 811–817. [Google Scholar] [CrossRef]
- Rego, C.H.Q.; Cardoso, F.B.; Cândido, A.C.S.; Teodoro, P.E.; Alves, C.Z. Co-inoculation with Bradyrhizobium and Azospirillum increases yield and quality of soybean seeds. Agron. J. 2018, 110, 2302–2309. [Google Scholar] [CrossRef]
- Deak, E.A.; Martin, T.N.; Fipke, G.M.; Stecca, J.D.L.; Cunha, V.S. Soil humidity as a productive conditioner of soybean culture through inoculation, co-inoculation and rooting. Aust. J. Crop Sci. 2020, 14, 932–939. [Google Scholar] [CrossRef]
- Moretti, L.G.; Crusciol, C.A.C.; Bossolani, J.W.; Momesso, L.; Garcia, A.; Kuramae, E.E.; Hungria, M. Bacterial consortium and microbial metabolites increase grain quality and soybean yield. J. Soil Sci. Plant Nutr. 2020, 20, 1923–1934. [Google Scholar] [CrossRef]
- Rondina, A.B.L.; Sanzovo, A.W.S.; Guimarães, G.S.; Wendling, J.R.; Nogueira, M.A.; Hungria, M. Changes in root morphological traits in soybean co-inoculated with Bradyrhizobium spp. and Azospirillum brasilense or treated with A. brasilense exudates. Biol. Fertil. Soils 2020, 56, 537–549. [Google Scholar] [CrossRef]
- Baldani, J.I.; Baldani, V.L.D.; Seldin, L.; Döbereiner, J. Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int. J. Syst. Evol. Microbiol. 1986, 36, 86–93. [Google Scholar] [CrossRef]
- Olivares, F.L.; Baldani, V.L.D.; Reis, V.M.; Baldani, J.I.; Döbereiner, J. Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems and leaves predominantly of Gramineae. Biol. Fertil. Soils 1996, 21, 197–200. [Google Scholar] [CrossRef]
- da Piedade Melo, A.; Olivares, F.L.; Médici, L.O.; Torres-Neto, A.; Dobbss, L.B.; Canellas, L.P. Mixed rhizobia and Herbaspirillum seropedicae inoculations with humic acid-like substances improve water-stress recovery in common beans. Chem. Biol. Technol. Agric. 2017, 4, 6. [Google Scholar] [CrossRef][Green Version]
- Döbereiner, J.; Baldani, V.L.D.; Baldani, J.I. Como Isolar E Identificar Bactérias Diazotróficas de Plantas não Leguminosas; Embrapa Agrobiologia: Seropédica, Brasil, 1995. [Google Scholar]
- Islam, M.S.; Muhyidiyn, I.; Islam, M.R.; Hasan, M.K.; Hafeez, A.S.G.; Hosen, M.M.; Saneoka, H.; Ueda, A.; Liu, L.; Naz, M.; et al. Soybean and Sustainable Agriculture for Food Security [Internet]. In Soybean—Recent Advances in Research and Applications; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Dinler, B.S.; Gunduzer, E.; Tekinay, T. Pre-treatment of fulvic acid plays a stimulant role in protection of soybean (Glycine max L.) leaves against heat and salt stress. Acta Biol. Cracoviensia Ser. Bot. 2016, 58, 29–41. [Google Scholar]
- Bahjat, N.M.; Tuncturk, M.; Tuncturk, R. Effect of humic acid applications on physiological and biochemical properties of soybean (Glycine max L.) grown under salt stress conditions. Yuz. Yil Univ. J. Agric. Sci. 2022, 33, 1–9. [Google Scholar]
- Matuszak-Slamani, R.; Bejger, R.; Włodarczyk, M.; Kulpa, D.; Sienkiewicz, M.; Gołębiowska, D.; Skórska, E.; Ukalska-Jaruga, A. Effect of humic acids on soybean seedling growth under polyethylene-glycol-6000-induced drought stress. Agronomy 2022, 12, 1109. [Google Scholar] [CrossRef]
- Chen, Y.; Clapp, C.E.; Magen, H. Mechanisms of plant growth stimulation by humic substances: The role of organo-iron complexes. Soil Sci. Plant Nutr. 2004, 50, 1089–1095. [Google Scholar] [CrossRef]
- Tunçtürk, R.; Kulaz, H.; Tunçturk, M. Effect of humic acid applications on some nutrient contents of soybean (Glycine max L.) Cultivars. Oxid. Commun. 2016, 39, 503–510. [Google Scholar]
- Savita, S.P.; Girijesh, G.K. Effect of humic substances on nutrient uptake and yield of soybean. J. Pharmacogn. Phytochem. 2019, 8, 2167–2171. [Google Scholar]
- Yang, X.; Alidoust, D.; Wang, C. Effects of iron oxide nanoparticles on the mineral composition and growth of soybean (Glycine max L.) plants. Acta Physiol. Plant. 2020, 42, 128. [Google Scholar] [CrossRef]
- Huziem, G.A.M.; Ibrahim, M.M.; Khalitay, A.M.; Mahdy, A.Y. Response of two soybeans (Glycine max L.) cultivars to different levels of humic acids and mineral fertilization. Arch. Agric. Sci. J. 2022, 5, 1–12. [Google Scholar]
- Latifnia, E.; Reza Eisvand, H.R. Soybean physiological properties and grain quality responses to nutrients, and predicting nutrient defciency using chlorophyll fluorescence. J. Soil Sci. Plant Nutr. 2022, 22, 1942–1954. [Google Scholar] [CrossRef]
- Meerza, C.H.M.N.; Ali, S.S. Morphological growth of soybean (Glycine max L.) treated with soil application of humic acid under different cultivation periods. J. Agric. Sci. Agric. Eng. 2023, 6, 136–145. [Google Scholar]
- Pidurkar, P.K.; Hanwate, G.R.; Asati, N.P.; Jaybhaye, B.B. Effect of humic acid on growth and available soil nutrient of soybean (Glycine max L.) Pharma Innov. J. 2022, 11, 1592–1598. Pharma Innov. J. 2022, 11, 1592–1598. [Google Scholar]
- Hungria, M.; Campo, R.J.; Mendes, I.C. Fixação Biológica do Nitrogênio na Cultura da soja. Embrapa Soja, Circular Técnica, n. 35; Embrapa Cerrados, Circular Técnica, n. 13, 2001. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPSO/18515/1/circTec35.pdf (accessed on 17 April 2023).
- Döbereiner, J. Evaluation of nitrogen fixation in legumes by the regression of total plant nitrogen with nodule weight. Nature 1966, 210, 850–852. [Google Scholar] [CrossRef]
- Muñoz, N.; Qi, X.; Li, M.W.; Xie, M.; Gao, Y.; Cheung, M.Y.; Wong, F.L.; Lam, H. M Improvement in nitrogen fixation capacity could be part of the domestication process in soybean. Heredity 2016, 117, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Reis de Andrade da Silva, M.S.; de Melo Silveira dos Santos, B.; Hidalgo Chavez, D.W.; de Oliveira, R.; Barbosa Santos, C.H.; Oliveira, E.C.; Rigobelo, E.C. K-humate as an agricultural alternative to increase nodulation of soybeans inoculated with Bradyrhizobium. Biocatal. Agric. Biotechnol. 2021, 36, 102129. [Google Scholar] [CrossRef]
- Canellas, N.A.; Olivares, F.L.; Canellas, L.P. Metabolite fingerprints of maize and sugarcane seedlings: Searching for markers after inoculation with plant growth-promoting bacteria in humic acids. Chem. Biol. Technol. Agric. 2019, 6, 14. [Google Scholar] [CrossRef]
- Olivares, F.L.; Busato, J.G.; Paula, A.M.; Lima, L.S.; Aguiar, N.O.; Canellas, L.P. Plant growth promoting bacteria and humic substances: Crop promotion and mechanisms of action. Chem. Biol. Technol. Agric. 2017, 4, 30. [Google Scholar] [CrossRef]
- Schwember, A.R.; Schulze, J.A.; Del Pozo, A.; Cabeza, R.A. Regulation of symbiotic nitrogen fixation in legume root nodules. Plants 2019, 8, 333. [Google Scholar] [CrossRef]
- Egli, M.A.; Griffith, S.M.; Miller, S.S.; Anderson, M.P.; Vance, C.P. Nitrogen assimilating enzyme activities and enzyme protein during development and senescence of effective and plant gene-controlled ineffective alfalfa nodules. Plant Physiol. 1989, 91, 898–904. [Google Scholar] [CrossRef]
- Sulieman, S.; Fischinger, S.A.; Gresshoff, P.M.; Schulze, J. Asparagine as a major factor in the N-feedback regulation of N2 fixation in Medicago truncatula. Physiol. Plant. 2010, 140, 21–31. [Google Scholar] [CrossRef]
- Vaccaro, S.; Ertani, A.; Nebbioso, A.; Muscolo, A.; Quaggiotti, S.; Piccolo, A.; Nardi, S. Humic substances stimulate maize nitrogen assimilation and aminoacid metabolism at physiological and molecular level. Chem. Biol. Technol. Agric. 2015, 2, 5. [Google Scholar] [CrossRef]
- Quaggiotti, S.; Rupert, B.; Pizzeghello, D.; Francioso, O.; Tugnoli, V.; Nardi, S. Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.). J. Exp. Bot. 2004, 55, 803–813. [Google Scholar] [CrossRef]
- Azevedo, I.G.; Olivares, F.L.O.; Ramos, A.C.R.; Bertolazi, A.A.; Canellas, L.P. Humic acids and Herbaspirillum seropedicae change the extracellular H+ flux and gene expression in maize roots seedlings. Chem. Biol. Technol. Agric. 2019, 6, 8. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, C.; Yang, J.; Yu, N.; Wang, E. Hormone modulation of legume-rhizobial symbiosis. J. Integr. Plant Biol. 2018, 60, 632–648. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Hou, H.; Zhang, D.; Zhu, B.; Yuan, H.; Gao, T. Transcriptomic and metabolomic analysis of soybean nodule number improvements with the use of water-soluble humic materials. J. Agric. Food Chem. 2023, 71, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.C.; Olivares, F.L.; Peres, L.E.P.; Piccolo, A.; Canellas, L.P. Plant hormone crosstalk mediated by humic acids. Chem. Biol. Technol. Agric. 2022, 9, 29. [Google Scholar] [CrossRef]
- Barbosa, J.Z.; Hungria, M.; da Silva Sena, J.V.; Poggere, G.; dos Reis, A.R.; Corrêa, R.S. Meta-analysis reveals benefits of co-inoculation of soybean with Azospirillum brasilense and Bradyrhizobium spp. in Brazil. Appl. Soil Ecol. 2021, 163, 103913. [Google Scholar] [CrossRef]
roots | |||||||||||
Treatment | N | P | K | Ca | Mg | S | B | Cu | Fe | Mn | Zn |
g kg−1 | mg kg−1 | ||||||||||
Control | 12.0 (±1.5) | 0.9 (±0.1) | 4.1 (1.0) | 1.2 (0.2) | 1.2 (0.1) | 2.4 (0.2) | 3 (1) | 12 (1) | 6545 (60) | 184 (4) | 27 (5) |
HS | 11.0 (±3.6) | 0.9 (0.2) | 2.7 (1.3) | 0.9 (0.1) | 1.3 (0.1) | 2.3 (0.3) | 2 (2) | 9 (1) | 5934 (435) | 173 (16) | 32 (6) |
HS + H. seropedicae | 9.9 (1.1) | 0.9 (0.1) | 5.3 (1.3) | 1.1 (0.1) | 1.6 (0.2) | 2.8 (0.3) | 3 (1) | 10 (1) | 7006 * (492) | 192 (100) | 26 (3) |
shoots | |||||||||||
g kg−1 | mg kg−1 | ||||||||||
N | P | K | Ca | Mg | S | B | Cu | Fe | Mn | Zn | |
Control | 29.6 (3.8) | 2.2 (0.1) | 14.0 (2.1) | 8.6 (0.7) | 3.9 (0.4) | 2.2 (0.2) | 29 (3) | 6 (0.4) | 251 (42) | 181 (20) | 85 (4) |
HS | 35.6 * (1.3) | 2.4 (0.3) | 16.0 (5.4) | 8.4 (0.5) | 3.7 (0.1 | 2.2 (0.0) | 27 (3) | 7 (2) | 206 (6) | 197 (82) | 93 (18) |
HS + H. seropedicae | 27.3 (3.5) | 2.3 (0.1) | 14.6 (0.8) | 7.8 (0.3) | 3.4 (0.2) | 2.3 (0.1) | 29 (1) | 6 (1) | 162 (18) | 266 * (68) | 92 (5.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canellas, L.P.; Silva, R.M.; Barbosa, L.J.d.S.; Sales, F.S.; Ribeiro, R.C.; Mota, G.P.; Olivares, F.L. Co-Inoculation with Bradyrhizobium and Humic Substances Combined with Herbaspirillum seropedicae Promotes Soybean Vegetative Growth and Nodulation. Agronomy 2023, 13, 2660. https://doi.org/10.3390/agronomy13102660
Canellas LP, Silva RM, Barbosa LJdS, Sales FS, Ribeiro RC, Mota GP, Olivares FL. Co-Inoculation with Bradyrhizobium and Humic Substances Combined with Herbaspirillum seropedicae Promotes Soybean Vegetative Growth and Nodulation. Agronomy. 2023; 13(10):2660. https://doi.org/10.3390/agronomy13102660
Chicago/Turabian StyleCanellas, Luciano Pasqualoto, Rakiely Martins Silva, Lucas José da Silva Barbosa, Fernando Soares Sales, Rafael Chaves Ribeiro, Gabriela Petroceli Mota, and Fábio Lopes Olivares. 2023. "Co-Inoculation with Bradyrhizobium and Humic Substances Combined with Herbaspirillum seropedicae Promotes Soybean Vegetative Growth and Nodulation" Agronomy 13, no. 10: 2660. https://doi.org/10.3390/agronomy13102660
APA StyleCanellas, L. P., Silva, R. M., Barbosa, L. J. d. S., Sales, F. S., Ribeiro, R. C., Mota, G. P., & Olivares, F. L. (2023). Co-Inoculation with Bradyrhizobium and Humic Substances Combined with Herbaspirillum seropedicae Promotes Soybean Vegetative Growth and Nodulation. Agronomy, 13(10), 2660. https://doi.org/10.3390/agronomy13102660