The Effect of Canopy Position on the Fruit Quality Parameters and Contents of Bioactive Compounds and Minerals in ‘Braeburn’ Apples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experiment Set Up
2.2. Physico-Chemical Measurements
2.2.1. Fruit Mass, Firmness, and Color
2.2.2. Soluble Solids Content (SSC), Titratable Acidity (TA), and SSC/TA Ratio
2.2.3. DPPH Radical Scavenging Assay (AOP), Determination of Total Polyphenols (TPC), and Determination of Total Flavonoids (TFC)
2.2.4. Determination of Elements
2.2.5. Light Measurements
2.3. Statistical Analysis
PCA Analysis
3. Results
3.1. Effect of Different Canopy Positions on Fruit Skin CIE Color Variables
3.1.1. Background Color
3.1.2. Additional (Red Blush) Color
3.2. Effect of Different Canopy Positions on Physico-Chemical Properties of ‘Braeburn’ Apples
3.3. Effect of Different Canopy Positions on Bioactive Compounds of ‘Braeburn’ Apples
3.4. Effect of Different Canopy Positions on Mineral Concentration of ‘Braeburn’ Apples
3.5. Weather Data
3.6. Light Measurements Outside and Inside of Canopy
Insolation and Total Irradiance Data
3.7. PCA Analysis and Biplot
4. Discussion
4.1. Effect of Different Canopy Positions on Fruit Skin CIE Color Variables
4.2. Effect of Different Canopy Positions on Physico-Chemical Properties of ‘Braeburn’ Apples
4.3. Effect of Different Canopy Positions on Bioactive Compounds of ‘Braeburn’ Apples
4.4. Effect of Different Canopy Positions on Mineral Concentration of ‘Braeburn’ Apples
4.5. PCA Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tustin, D.S.; Hirst, P.M.; Warrington, I.J. Influence of orientation and position of fruiting laterals on canopy light penetration, yield and fruit quality of ‘Granny Smith’ apple. J. Am. Soc. Hortic. Sci. 1988, 113, 693–699. [Google Scholar] [CrossRef]
- Lawes, G.S. The effect of shading on the chlorophyll content of “Hayward” kiwifruit. New Zeal. J. Crop Hortic. Sci. 1989, 17, 245–249. [Google Scholar] [CrossRef]
- Lewallen, K. Effects of Light Availability and Canopy Position on Peach Fruit Quality. Master’s Thesis, Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2000. [Google Scholar]
- Hagen, S.F.; Borge, G.I.A.; Bengtsson, G.B.; Bilger, W.; Berge, A.; Haffner, K.; Solhaug, K.A. Phenolic contents and other health and sensory related properties of apple fruit (Malus domestica Borkh., cv. Aroma): Effect of postharvest UV-B irradiation. Postharvest Biol. Technol. 2007, 45, 1–10. [Google Scholar] [CrossRef]
- Nilsson, T.; Gustavsson, K.E. Postharvest physiology of ‘Aroma’ apples in relation to position on the tree. Postharvest Biol. Technol. 2007, 43, 36–46. [Google Scholar] [CrossRef]
- Jakopic, J.; Stampar, F.; Veberic, R. The influence of exposure to light on the phenolic content of ‘Fuji’ apple. Sci. Hortic. 2009, 123, 234–239. [Google Scholar] [CrossRef]
- Drogoudi, P.D.; Pantelidis, G. Effect of position on canopy and harvest time on fruit physio-chemical and antioxidant properties in different apple cultivars. Sci. Hortic. 2011, 129, 752–760. [Google Scholar] [CrossRef]
- Hamadziripi, E.T. The Effect of Canopy Position on the Fruit Quality and Consumer Preference of Apples. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2012. [Google Scholar]
- Hopkirk, G.; Snelgar, W.P.; Horne, S.F.; Manson, P.J. Effect of increased preharvest temperature on fruit quality of kiwifruit (Actinidia deliciosa). J. Hortic. Sci. 1989, 64, 227–237. [Google Scholar] [CrossRef]
- Fouché, J.R.; Roberts, S.C.; Midgley, S.J.E.; Steyn, W.J. Peel colour and blemishes in ‘Granny Smith’ apples in relation to canopy light environment. HortScience 2010, 45, 899–905. [Google Scholar] [CrossRef]
- Kays, S.J. Preharvest factors affecting appearance. Postharvest Biol. Technol. 1998, 15, 233–247. [Google Scholar] [CrossRef]
- Steyn, W.J.; Holcroft, D.M.; Wand, S.J.E. Red colour development and loss in pears. Acta Hortic. 2005, 671, 79–85. [Google Scholar] [CrossRef]
- Tahir, I.I.; Johansson, E.; Olsson, M.E. Improvement of quality and storability of apple cv. Aroma by adjustment of some pre-harvest conditions. Sci. Hortic. 2007, 112, 164–171. [Google Scholar] [CrossRef]
- Zabedah, M.; Yusoff, A.; Ridzwan, A.H.; Aishah, H.; Fauzi, R. Effect of fruit canopy position on microenvironment, physical, chemical development of starfruit (Averrhoa carambola) cv. B10 under protective cultivation. Acta Hortic. 2007, 761, 243–248. [Google Scholar] [CrossRef]
- Léchaudel, M.; Joas, J. An overview of pre-harvest factors influencing mango fruit growth, quality and postharvest behavior. Brazilean J. Plant Physiol. 2007, 19, 287–298. [Google Scholar] [CrossRef]
- Harker, F.R. Consumer response to apples. In Proceedings of the Washington Tree Fruit Postharvest Conference; WSU-Tfrec Postharvest Information Network, Wenatchee, WA, USA, 13–14 March 2001. [Google Scholar]
- McDonald, R.E.; Miller, W.R.; McCollum, T.G. Canopy position and heat treatments influence gamma-irradiation-induced changes in phenylpropanoid metabolism in grapefruit. J. Am. Soc. Hortic. Sci. 2000, 125, 364–369. [Google Scholar] [CrossRef]
- Takos, A.M.; Jaffe, F.W.; Jacobs, S.R.; Bogs, J.; Robinson, S.P.; Walker, A.R. Light induced expression of MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol. 2006, 142, 1216–1232. [Google Scholar] [CrossRef]
- Montanaro, G.; Dichio, B.; Xiloyannis, C.; Celano, G. Light influences transpiration and calcium accumulation in fruit of kiwifruit plants (Actinidia deliciosa var. deliciosa). Plant Sci. 2006, 170, 520–527. [Google Scholar] [CrossRef]
- Cronje, P.J.R.; Barry, G.H.; Huysamer, M. Fruiting position during development of ‘Nules Clementine’ mandarin affects the concentration of K, Mg and Ca in the flavedo. Sci. Hortic. 2011, 130, 829–837. [Google Scholar] [CrossRef]
- Jemrić, T.; Fruk, I.; Fruk, M.; Radman, S.; Sinkovič, L.; Fruk, G. Bitter pit in apples: Pre- and postharvest factors: A review. Spanish J. Agric. Res. 2016, 14, 15. [Google Scholar] [CrossRef]
- Fruk, G.; Fruk, M.; Vuković, M.; Buhin, J.; Jatoi, M.A.; Jemrić, T. Colouration of apple cv. ‘Braeburn’ grown under anti-hail nets in Croatia. Acta Hortic. Regiotect. 2016, 19, 1–4. [Google Scholar] [CrossRef]
- Carreño, J.; Martínez, A.; Almela, L.; Fernández-López, J.A. Proposal of an index for the objective evaluation of the colour of red table grapes. Food Res. Int. 1995, 28, 373–377. [Google Scholar] [CrossRef]
- Skendrović Babojelić, M.; Fruk, G. Priručnik Iz Voćarstva: Građa, Svojstva I Analize Voćnih Plodova; Hrvatska sveučilišna naklada, Sveučilište u Zagrebu Agronomski fakultet: Zagreb, Croatia, 2016; ISBN 978-953-169-318-9. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 16th ed.; 5th Rev.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 1999. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Brest, C. Use of free radical method to evaluate antioxidant activity. LWT–Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Lin, J.; Tang, C. Determination of Total Phenolic and Flavonoid Contents in Selected Fruits and Vegetables, as Well as Their Stimulatory Effects on Mouse Splenocyte Proliferation. Food Chem. 2007, 101, 140–147. [Google Scholar] [CrossRef]
- Nečemer, M.; Kump, P.; Vogel-Mikuš, K. Use of X-ray fluorescence-based analytical techniques in phytoremediation. In Handbook of Phytoremediation; Golubev, I.A., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2010; pp. 1–28. [Google Scholar]
- Kaiser, H.F. An index of factorial simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- Croatian Meteorological and Hydrological Service. 2023. Available online: https://meteo.hr/index_en.php (accessed on 11 September 2023).
- SOLCAST a DNV Company World Solar Radiation API. Available online: https://toolkit.solcast.com.au/ (accessed on 11 September 2023).
- González-Talice, J.; Yuri, J.A.; del Pozo, A. Relations among pigments, color and phenolic concentrations in the peel of two Gala apple strains according to canopy position and light environment. Sci. Hortic. 2013, 151, 83–89. [Google Scholar] [CrossRef]
- Wagenmakers, P.S.; Callesen, O. Light distribution in apple orchard systems in relation to production and fruit quality. J. Hortic. Sci. 1995, 70, 935–948. [Google Scholar] [CrossRef]
- Corelli-Grappadelli, L.; Marini, R.P. Orchard Planting Systems. In The Peach: Botany, Production and Uses; Layne, D.R., Bassi, D., Eds.; CABI: London, UK, 2008; pp. 264–288. [Google Scholar]
- Porpiglia, P.J.; Barden, J.A. Seasonal Trends in Net Photosynthetic Potential, Dark Respiration, and Specific Leaf Weight of Apple Leaves as Affected by Canopy Position. J. Am. Soc. Hortic. Sci. 1980, 105, 920–923. [Google Scholar] [CrossRef]
- Marini, R.P.; Barden, J.A. Growth and Flowering of Vigorous Apple Trees as Affected by Summer or Dormant Pruning. J. Am. Soc. Hortic. Sci. 1982, 107, 34–39. [Google Scholar] [CrossRef]
- Kviklys, D.; Viškelis, J.; Liaudanskas, M.; Janulis, V.; Laužikė, K.; Samuolienė, G.; Uselis, N.; Lanauskas, J. Apple Fruit Growth and Quality Depend on the Position in Tree Canopy. Plants 2022, 11, 196. [Google Scholar] [CrossRef]
- Lin, L.; Niu, Z.; Jiang, C.; Yu, L.; Wang, H.; Qiao, M. Influences of Open-Central Canopy on Photosynthetic Parameters and Fruit Quality of Apples (Malus × Domestica) in the Loess Plateau of China. Hortic. Plant J. 2022, 8, 133–142. [Google Scholar] [CrossRef]
- Kokalj, D.E.; Zlatić, B.; Cigić, B.; Kobav, M.B.; Vidrih, R. Postharvest Flavonol and Anthocyanin Accumulation in Three Apple Cultivars in Response to Blue-Light-Emitting Diode Light. Sci. Hortic. 2019, 257, 108711. [Google Scholar] [CrossRef]
- Weber, S.; Damerow, L.; Kunz, A.; Blanke, M. Anthocyanin Synthesis and Light Utilisation Can Be Enhanced by Reflective Mulch—Visualisation of Light Penetration into a Tree Canopy. J. Plant Physiol. 2019, 233, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Jackson, J.E. World-Wide Development of High Density Planting in Research and Practice. Acta Hortic. 1989, 243, 17–27. [Google Scholar] [CrossRef]
- Biasi, R.; Costa, G.; Manson, P.J. Light Influence on Kiwifruit (Actinidia deliciosa) Quality. Acta Hortic. 1997, 379, 245–252. [Google Scholar] [CrossRef]
- Blanpied, G.D.; Bramlage, W.J.; Dewey, D.H.; LaBelle, R.L.; Massey, L.M.; Mattus, G.E.; Stiles, W.C.; Watada, A.E. A Standardized Method for Collecting Apple Pressure Test Data. N. Y. Food Life Sci. Bull. 1978, 74, 1–6. [Google Scholar]
- Ramos, E.; Weinbaum, A.; Shackel, K.A.; Schwankl, L.J.; Mitcham, E.J.; Mitchell, F.G.; Snyder, R.G.; Mayer, G.; McGourty, G. Influence of Tree Water Status and Canopy Position on Fruit Size and Quality of ‘Bartlett’ Pears. Acta Hortic. 1994, 367, 192–200. [Google Scholar] [CrossRef]
- Laubscher, N.J. Pre- and Post Harvest Factors Influencing the Eating Quality of Selected Nectarine (Prunus persica ( L.) Batsch) Cultivars. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2006. [Google Scholar]
- Cronje, A. Effect of Canopy Position on Fruit Quality and Consumer Preference for the Appearance and Taste of Pears. Master’s Thesis, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa, 2014. [Google Scholar]
- Lambers, H.; Chapin, F.S.; Pons, T.L. Plant Physiological Ecology; Springer: New York, NY, USA, 1998; ISBN 978-1-4757-2857-6. [Google Scholar]
- Solomakhin, A.; Blanke, M.M. Can Coloured Hailnets Improve Taste (Sugar, Sugar: Acid Ratio), Consumer Appeal (Colouration) and Nutritional Value (Anthocyanin, Vitamin C) of Apple Fruit? LWT—Food Sci. Technol. 2010, 43, 1277–1284. [Google Scholar] [CrossRef]
- Murray, X.J.; Holcroft, D.M.; Cook, N.C.; Wand, S.J.E. Postharvest Quality of ‘Laetitia’ and ‘Songold’ (Prunus Salicina Lindell) Plums as Affected by Preharvest Shading Treatments. Postharvest Biol. Technol. 2005, 37, 81–92. [Google Scholar] [CrossRef]
- Marini, R.P.; Sowers, D.; Marini, M.C. Peach Fruit Quality Is Affected by Shade during Final Swell of Fruit Growth. J. Am. Soc. Hortic. Sci. 1991, 116, 383–389. [Google Scholar] [CrossRef]
- Lewallen, K.S.; Marini, R.P. Relationship between Flesh Firmness and Ground Colour in Peaches as Influenced by Light and Canopy Position. J. Am. Soc. Hortic. Sci. 2003, 128, 163–170. [Google Scholar] [CrossRef]
- Gullo, G.; Motisi, A.; Zappia, R.; Dattola, A.; Diamanti, J.; Mezzetti, B. Rootstock and Fruit Canopy Position Affect Peach [Prunus persica (L.) Batsch] (Cv. Rich May) Plant Productivity and Fruit Sensorial and Nutritional Quality. Food Chem. 2014, 153, 234–242. [Google Scholar] [CrossRef]
- Smith, G.S.; Gravett, I.M.; Edwards, C.M.; Curtis, J.; Buwalda, J.G. Spatial Analysis of the Canopy of Kiwifruit Vines as It Relates to the Physical, Chemical and Postharvest Attributes of the Fruit. Ann. Bot. 1994, 73, 99–111. [Google Scholar] [CrossRef]
- Pyke, N.; Hopkirk, O.; Alspach, P.A.; Cooper, K.M. Variation in Harvest and Storage Quality of Fruit from Different Positions on Kiwifruits Vines. New Zeal. J. Crop Hortic. Sci. 1996, 24, 39–46. [Google Scholar] [CrossRef]
- Izumi, H.; Ito, T.; Yoshida, Y. Changes in the Fruit Quality of ‘Satsuma’ Mandarin during Storage after Harvest Form Exterior and Interior Canopy of Trees. J. Japanese Soc. Hortic. Sci. 1990, 15, 51–58. [Google Scholar]
- Agabbio, M.; D’hallewin, G.; Mura, M.; Schirra, M.; Lovicu, G.; Pala, M. Fruit Canopy Position Effects on Quality and Storage Response of ‘Tarocco’ Oranges. Acta Hortic. 1999, 485, 19–23. [Google Scholar] [CrossRef]
- Syvertsen, J.P.; Albrigo, L.G. Some Effects of Grapefruit Tree Canopy Position on Microclimate, Water Relationship, Fruit Yield and Juice Quality. J. Am. Soc. Hortic. Sci. 1980, 105, 454–459. [Google Scholar] [CrossRef]
- Fallahi, E.; Moon, J.W., Jr. Fruit Quality and Mineral Nutrient from Exposed Verses Internal Canopy Positions of Four Citrus Varieties. J. Plant Nutr. 1989, 12, 523–534. [Google Scholar] [CrossRef]
- Kader, A.A. Fruit Maturity, Ripening, and Quality Relationships. Acta Hortic. 1999, 485, 203–208. [Google Scholar] [CrossRef]
- Krishnaprakash, M.S.; Aravindaprasad, B.; Krishnaprasad, C.A.; Narasimham, P.; Ananthakrishna, S.M.; Dhanaraj, S.; Govindarajan, V.S. Effect of Apple Position on Tree Maturity and Quality. J. Hortic. Sci. 1983, 58, 31–36. [Google Scholar] [CrossRef]
- Basile, B.; Giaccone, M.; Cirillo, C.; Ritieni, A.; Graziani, G.; Shahak, Y.; Forlani, M. Photo-Selective Hail Nets Affect Fruit Size and Quality in Hayward Kiwifruit. Sci. Hortic. 2012, 141, 91–97. [Google Scholar] [CrossRef]
- Vuković, M.; Jurić, S.; Vinceković, M.; Levaj, B.; Fruk, G.; Jemrić, T. Effect of Yellow and Stop Drosophila Normal Anti-Insect Photoselective Nets on Vegetative, Generative and Bioactive Traits of Peach (Cv. Suncrest). J. Agric. Sci.—Tarım Bilim. Derg. 2023, 29, 111–121. [Google Scholar] [CrossRef]
- Awad, M.A.; Wagenmakers, P.S.; Jager, A.D. Effects of Light on Flavonoid and Chlorogenic Acid Levels in the Skin of ‘Jonagold’ Apples. Sci. Hortic. 2001, 88, 289–298. [Google Scholar] [CrossRef]
- Awad, M.A.; de Jager, A.; van Westing, L.M. Flavonoid and Chlorogenic Acid Levels in Apple Fruit: Characterisation of Variation. Sci. Hortic. 2000, 83, 249–263. [Google Scholar] [CrossRef]
- Jemrić, T.; Brkljača, M.; Vinceković, M.; Antolković, A.M.; Mikec, D.; Vuković, M. Generative and Vegetative Traits of the ‘Granny Smith’ Apple Grown under an Anti-Insect Photoselective Red Net. Poljoprivreda 2021, 27, 34–42. [Google Scholar] [CrossRef]
- Bakhshi, D.; Arakawa, O. Induction of Phenolic Compounds Biosynthesis with Light Irradiation in the Flesh of Red and Yellow Apples. J. Appl. Hortic. 2006, 8, 101–104. [Google Scholar] [CrossRef]
- Zoratti, L.; Karppinen, K.; Escobar, A.L.; Häggman, H.; Jaakola, L. Light-Controlled Flavonoid Biosynthesis in Fruits. Front. Plant Sci. 2014, 5, 534. [Google Scholar] [CrossRef]
- Anić, M.; Osrečak, M.; Andabaka, Ž.; Tomaz, I.; Večenaj, Ž.; Jelić, D.; Kozina, B.; Kontić, J.K.; Karoglan, M. The Effect of Leaf Removal on Canopy Microclimate, Vine Performance and Grape Phenolic Composition of Merlot (Vitis vinifera L.) Grapes in the Continental Part of Croatia. Sci. Hortic. 2021, 285, 110161. [Google Scholar] [CrossRef]
- Arakawa, O.; Hori, Y.; Ogata, R. Relative Effectiveness and Interaction of Ultraviolet-B, Red and Blue Light in Anthocyanin Synthesis of Apple Fruit. Physiol. Plant. 1985, 64, 323–327. [Google Scholar] [CrossRef]
- Hofman, P.J.; Smith, L.G. Preharvest Effects on Postharvest Quality of Subtropical and Tropical Fruit. In Proceedings of the Postharvest Handling of Tropical Fruits: Proceedings of an International Conference, Chiang Mai, Thailand, 19–23 July 1993; Champ, B.R., Highley, E., Johnson, G.I., Eds.; ACIAR Proceedings: Chiang Mai, Thailand, 1994; pp. 261–268. [Google Scholar]
- Khalid, S.; Malik, A.U.; Saleem, B.A.; Khan, A.S.; Khalid, M.S.; Amin, M. Tree Age and Canopy Position Affect Rind Quality, Fruit Quality and Rind Nutrient Content of “Kinnow” Mandarin (Citrus Nobilis Lour × Citrus Deliciosa Tenora). Sci. Hortic. 2012, 135, 137–144. [Google Scholar] [CrossRef]
Year | Harvest Date | Canopy Position | CIE Color Variables | ||||
---|---|---|---|---|---|---|---|
L* | a* | b* | C* | h° | |||
1 | 1 | Inside | 68.16 ± 2.33 n.s. | −8.91 ± 2.12 *** | 38.90 ± 2.93 | 39.94 ± 3.30 | 102.79 ± 2.05 |
Outside | 67.36 ± 2.76 | −13.02 ± 1.79 | 44.24 ± 2.01 *** | 46.14 ± 2.17 *** | 106.38 ± 2.05 *** | ||
2 | Inside | 66.21 ± 2.63 n.s. | −7.92 ± 2.79 | 39.32 ± 3.47 * | 40.18 ± 3.75 * | 101.28 ± 3.36 * | |
Outside | 66.02 ± 2.85 | −6.44 ± 1.87 ** | 37.58 ± 3.44 | 38.17 ± 3.53 | 99.66 ± 2.68 | ||
2 | 1 | Inside | 66.84 ± 2.61 | −6.69 ± 2.16 *** | 38.68 ± 3.16 | 39.31 ± 3.28 | 99.74 ± 2.93 |
Outside | 67.21 ± 3.40 n.s. | −10.69 ± 4.28 | 41.60 ± 5.45 ** | 43.10 ± 5.89 *** | 104.00 ± 5.35 *** | ||
2 | Inside | 66.30 ± 3.45 | −7.63 ± 1.33 | 37.93 ± 2.81 | 38.72 ± 2.74 | 101.44 ± 2.25 ** | |
Outside | 67.47 ± 3.89 n.s. | −6.59 ± 2.06 ** | 38.78 ± 2.67 n.s. | 39.38 ± 2.81 n.s. | 99.57 ± 2.78 | ||
ANOVA | |||||||
Year (Y) | 0.00 n.s. | 18.25 *** | 4.08 * | 5.97 * | 14.91 *** | ||
Harvest date (H) | 6.90 ** | 95.97 *** | 42.11 *** | 56.33 *** | 62.52 *** | ||
Canopy position (C) | 0.16 n.s. | 26.06 *** | 23.75 *** | 29.02 *** | 9.92 ** | ||
Y × H | 4.89 * | 16.25 *** | 3.12 n.s. | 4.56 * | 15.67 *** | ||
Y × C | 3.47 n.s. | 0.10 n.s. | 0.01 n.s. | 0.03 n.s. | 0.09 n.s. | ||
H × C | 1.09 n.s. | 94.20 *** | 36.54 *** | 50.00 *** | 66.88 *** | ||
Y × H × C | 0.02 n.s. | 0.25 n.s. | 10.98 *** | 10.03 ** | 0.43 n.s. |
Year | Harvest Date | Canopy Position | CIE Color Variables | ||||
---|---|---|---|---|---|---|---|
L* | a* | b* | C* | h° | |||
1 | 1 | Inside | 52.55 ± 5.92 *** | 10.43 ± 5.66 *** | 24.36 ± 4.26 | 27.28 ± 2.64 | 66.14 ± 13.81 |
Outside | 47.20 ± 3.44 | 5.68 ± 1.88 | 32.48 ± 4.60 *** | 33.05 ± 4.39 *** | 79.73 ± 4.06 *** | ||
2 | Inside | 49.62 ± 5.55 *** | 12.68 ± 5.31 | 22.88 ± 5.83 *** | 27.03 ± 3.85 *** | 59.55 ± 14.17 *** | |
Outside | 42.21 ± 3.29 | 17.20 ± 1.95 *** | 15.47 ± 4.45 | 23.48 ± 2.64 | 41.27 ± 10.18 | ||
2 | 1 | Inside | 45.71 ± 6.38 n.s. | 14.55 ± 4.02 *** | 22.97 ± 4.59 | 27.70 ± 2.91 | 57.04 ± 11.40 |
Outside | 43.63 ± 4.58 | 5.55 ± 6.39 | 27.33 ± 8.49 ** | 29.20 ± 6.03 n.s. | 75.67 ± 20.16 *** | ||
2 | Inside | 47.78 ± 5.30 *** | 13.17 ± 4.34 | 21.85 ± 4.66 n.s. | 26.11 ± 3.09 | 58.00 ± 11.80 * | |
Outside | 43.42 ± 5.59 | 15.29 ± 4.79 * | 20.76 ± 5.85 | 26.59 ± 3.76 n.s. | 52.31 ± 13.56 | ||
ANOVA | |||||||
Year (Y) | 23.22 *** | 1.59 n.s. | 0.85 n.s. | 0.54 n.s. | 0.39 n.s. | ||
Harvest date (H) | 7.00 ** | 117.93 *** | 113.06 *** | 67.58 *** | 132.66 *** | ||
Canopy position (C) | 70.34 *** | 12.2 *** | 2.61 n.s. | 6.04 * | 1.99 n.s. | ||
Y × H | 18.29 *** | 7.03 ** | 19.25 *** | 10.82 ** | 14.95 *** | ||
Y × C | 7.66 ** | 10.63 ** | 1.08 n.s. | 0.02 n.s. | 9.07 ** | ||
H × C | 3.59 n.s. | 99.88 *** | 72.65 *** | 36.67 *** | 92.09 *** | ||
Y × H × C | 0.01 n.s. | 0.82 n.s. | 16.75 *** | 23.64 *** | 1.67 n.s. |
Year | Harvest Date | Canopy Position | Physico-Chemical Properties | ||||
---|---|---|---|---|---|---|---|
Fruit Mass (g) | Firmness (kg cm−2) | SSC (%Brix) | TA (g L−1) (as Malic Acid) | SSC/TA | |||
1 | 1 | Inside | 217.69 ± 28.95 * | 8.62 ± 0.40 | 12.03 ± 0.86 | 0.48 ± 0.09 | 25.53 ± 3.79 * |
Outside | 204.30 ± 25.95 | 8.75 ± 0.49 n.s. | 12.49 ± 0.76 n.s. | 0.57 ± 0.10 * | 22.32 ± 3.65 | ||
2 | Inside | 195.33 ± 34.67 n.s. | 8.64 ± 0.54 n.s. | 11.17 ± 0.82 | 0.42 ± 0.06 | 26.96 ± 4.11 | |
Outside | 188.71 ± 38.09 | 8.62 ± 0.49 | 13.05 ± 0.93 *** | 0.42 ± 0.06 n.s. | 31.71 ± 5.26 * | ||
2 | 1 | Inside | 171.95 ± 28.53 | 8.08 ± 0.48 | 12.71 ± 1.05 | 0.53 ± 0.06 | 24.34 ± 3.68 |
Outside | 187.19 ± 31.49 * | 8.81 ± 0.67 ** | 12.83 ± 0.52 n.s. | 0.57 ± 0.08 n.s. | 22.92 ± 2.85 n.s. | ||
2 | Inside | 168.23 ± 24.82 | 8.50 ± 0.72 | 12.19 ± 0.36 | 0.50 ± 0.06 | 24.97 ± 2.98 | |
Outside | 178.23 ± 30.19 n.s. | 8.15 ± 0.85 n.s. | 12.40 ± 0.49 n.s. | 0.52 ± 0.08 n.s. | 24.54 ± 3.70 n.s. | ||
ANOVA | |||||||
Year (Y) | 53.81 *** | 6.33 * | 6.23 * | 14.72 *** | 12.23 *** | ||
Harvest date (H) | 13.67 *** | 0.64 n.s. | 5.20 * | 30.18 *** | 22.04 *** | ||
Canopy position (C) | 0.15 n.s. | 1.22 n.s. | 23.15*** | 7.39 ** | 0.01 n.s. | ||
Y × H | 3.40 n.s. | 0.07 n.s. | 1.37 n.s. | 5.33 * | 79.48 ** | ||
Y × C | 10.93 ** | 0.39 n.s. | 13.18 *** | 0.32 n.s. | 1.47 n.s. | ||
H × C | 0.01 n.s. | 8.14 ** | 7.49 ** | 4.03 * | 10.33 ** | ||
Y × H × C | 0.77 n.s. | 4.52 * | 5.64 * | 1.83 n.s. | 6.23 * |
Year | Harvest Date | Canopy Position | Bioactive Compounds | ||
---|---|---|---|---|---|
AOP (µmol TE·100 g−1 of Fw) | TPC (mg GAE·100 g−1 of Fw) | TFC (mg QE·100 g−1 of Fw) | |||
1 | 1 | Inside | 188.75 ± 8.05 | 287.60 ± 80.02 | 44.53 ± 6.24 |
Outside | 224.03 ± 4.28 ** | 348.11 ± 49.66 n.s. | 74.92 ± 9.63 *** | ||
2 | Inside | 201.60 ± 21.85 | 439.66 ± 35.61 | 51.36 ± 5.79 | |
Outside | 240.35 ± 20.08 ** | 497.93 ± 26.42 ** | 104.84 ± 7.23 *** | ||
2 | 1 | Inside | 207.17 ± 31.63 | 365.01 ± 41.48 | 70.29 ± 10.10 |
Outside | 272.82 ± 21.46 *** | 489.57 ± 21.04 *** | 97.92 ± 18.85 *** | ||
2 | Inside | 268.24 ± 17.90 | 456.84 ± 31.10 | 73.72 ± 13.75 | |
Outside | 338.82 ± 44.17 *** | 549.54 ± 66.32 *** | 120.75 ± 23.63 *** | ||
ANOVA | |||||
Year (Y) | 46.74 *** | 35.23 *** | 40.47 *** | ||
Harvest date (H) | 21.14 *** | 87.62 *** | 21.22 *** | ||
Canopy position (C) | 38.28 *** | 48.07 *** | 134.29 *** | ||
Y × H | 8.30 ** | 9.59 ** | 0.59 n.s. | ||
Y × C | 3.35 n.s. | 4.13 * | 0.45 n.s. | ||
H × C | 0.06 n.s. | 0.50 n.s. | 9.64 ** | ||
Y × H × C | 0.00 n.s. | 0.37 n.s. | 0.07 n.s. |
Canopy Position | Mn | Fe | Ni | Cu | Zn | Rb | Sr | K | Ca | K/Ca |
---|---|---|---|---|---|---|---|---|---|---|
Year (Y) | 1.12 n.s. | 97.36 *** | 26.49 *** | 45.79 *** | 0.23 n.s. | 3.81 n.s. | 0.30 n.s. | 2.66 n.s. | 4.49 * | 9.76 ** |
Harvest date (H) | 1.87 n.s. | 22.19 *** | 3.70 n.s. | 24.20 *** | 2.23 n.s. | 0.85 n.s. | 37.37 *** | 29.44 *** | 0.46 n.s. | 20.62 *** |
Canopy position (C) | 0.17 n.s. | 9.44 ** | 8.46 ** | 2.09 n.s. | 16.96 *** | 2.10 n.s. | 10.63 ** | 0.32 n.s. | 13.72 ** | 25.32 *** |
Y × H | 1.74 n.s. | 20.09 *** | 24.05 *** | 18.31 *** | 1.58 n.s. | 2.69 n.s. | 11.39 ** | 2.91 n.s. | 0.37 n.s. | 6.87 * |
Y × C | 9.09 ** | 37.14 *** | 11.82 ** | 2.44 n.s. | 3.42 n.s. | 5.79 * | 7.57 * | 1.97 n.s. | 1.65 n.s. | 9.24 ** |
H × C | 1.48 n.s. | 6.53 * | 0.02 n.s. | 0.17 n.s. | 0.52 n.s. | 0.36 n.s. | 3.33 n.s. | 5.91 * | 2.86 n.s. | 0.13 n.s. |
Y × H × C | 0.15 n.s. | 16.45 *** | 2.15 n.s. | 0.32 n.s. | 4.00 n.s. | 1.69 n.s. | 1.78 n.s. | 0.32 n.s. | 4.40 * | 3.9 n.s. |
Year | Harvest Date | Canopy Position | Mineral Concentration (µg/g) Dry Matter | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mn | Fe | Ni | Cu | Zn | Rb | Sr | K | Ca | K/Ca | |||
1 | 1 | Inside | 6.60 ± 1.76 | 55.40 ± 6.70 | 2.63 ± 0.13 | 7.58 ± 1.88 | 3.57 ± 0.62 | 43.25 ± 0.95 ** | 1.33 ± 0.39 | 7415.00 ± 405.00 * | 174.00 ± 9.00 | 42.61 ± 0.12 * |
Outside | 7.40 ± 1.43 n.s. | 60.30 ± 1.10 n.s. | 3.83 ± 0.75 n.s. | 7.16 ± 0.86 n.s. | 4.47 ± 0.69 n.s. | 30.50 ± 4.20 | 2.37 ± 0.33 * | 6420.00 ± 160.00 | 293.50 ± 99.50 n.s. | 24.51 ± 7.76 | ||
2 | Inside | 7.46 ± 2.32 | 60.35 ± 6.25 | 3.95 ± 0.99 | 11.57 ± 2.04 | 3.57 ± 1.11 | 25.67 ± 4.92 | 1.55 ± 0.27 | 5076.67 ± 818.19 | 211.50 ± 1.50 | 27.76 ± 3.33 ** | |
Outside | 10.8 ± 2.02 n.s. | 90.60 ± 1.56 ** | 5.97 ± 1.05 n.s. | 12.10 ± 1.21 n.s. | 4.87 ± 0.97 n.s. | 21.70 ± 5.94 n.s. | 2.22 ± 0.47 n.s. | 5050.00 ± 226.27 n.s. | 313.00 ± 9.00 *** | 16.13 ± 0.26 | ||
2 | 1 | Inside | 8.90 ± 1.29 n.s. | 48.98 ± 6.99 | 3.29 ± 0.83 n.s. | 6.85 ± 1.03 | 3.79 ± 0.54 | 33.64 ± 2.20 n.s. | 1.85 ± 0.07 | 7004.00 ± 366.10 | 309.33 ± 58.18 | 23.90 ± 4.77 |
Outside | 5.51 ± 3.29 | 46.07 ± 5.78 n.s. | 3.26 ± 0.57 | 5.46 ± 1.67 n.s. | 4.06 ± 0.65 n.s. | 32.25 ± 2.73 | 1.71 ± 0.44 n.s. | 6617.50 ± 919.40 n.s. | 246.25 ± 76.56 n.s. | 23.24 ± 1.63 n.s. | ||
2 | Inside | 8.27 ± 2.04 n.s. | 52.30 ± 2.26 ** | 2.64 ± 0.33 n.s. | 7.73 ± 1.33 | 3.60 ± 0.61 | 29.15 ± 4.83 n.s. | 1.77 ± 0.60 | 5432.50 ± 242.26 | 227.00 ± 73.26 | 25.22 ± 7.64 n.s. | |
Outside | 6.21 ± 1.50 | 43.63 ± 4.47 | 2.17 ± 0.55 | 5.70 ± 0.12 * | 2.79 ± 0.94 n.s. | 29.13 ± 2.36 | 2.49 ± 0.23 n.s. | 6430.00 ± 1153.43 n.s. | 364.50 ± 64.32 * | 17.10 ± 3.26 |
PC1 | PC2 | PC3 | |
---|---|---|---|
AOP | 0.33 | −0.28 | −0.04 |
TPC | 0.36 | −0.15 | −0.33 |
TFC | 0.35 | −0.17 | 0.06 |
Mn | 0.05 | 0.30 | −0.06 |
Fe | 0.15 | 0.46 | 0.11 |
Ni | 0.16 | 0.44 | 0.03 |
Cu | 0.09 | 0.45 | −0.13 |
Zn | 0.07 | 0.30 | 0.50 |
Rb | 0.34 | −0.15 | 0.18 |
Sr | 0.32 | −0.05 | 0.45 |
K | 0.26 | −0.17 | 0.52 |
Ca | 0.33 | −0.17 | 0.31 |
K/Ca | 0.42 | 0.07 | −0.05 |
Eigenvalue | 4.94 | 3.58 | 1.41 |
Variability (%) | 37.99 | 27.51 | 10.81 |
Cumulative % | 37.99 | 65.50 | 76.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaučić, M.; Vuković, M.; Gašpar, L.; Fruk, G.; Vidrih, R.; Nečemer, M.; Fruk, M.; Jatoi, M.A.; Fu, D.; Kobav, M.B.; et al. The Effect of Canopy Position on the Fruit Quality Parameters and Contents of Bioactive Compounds and Minerals in ‘Braeburn’ Apples. Agronomy 2023, 13, 2523. https://doi.org/10.3390/agronomy13102523
Kaučić M, Vuković M, Gašpar L, Fruk G, Vidrih R, Nečemer M, Fruk M, Jatoi MA, Fu D, Kobav MB, et al. The Effect of Canopy Position on the Fruit Quality Parameters and Contents of Bioactive Compounds and Minerals in ‘Braeburn’ Apples. Agronomy. 2023; 13(10):2523. https://doi.org/10.3390/agronomy13102523
Chicago/Turabian StyleKaučić, Mislav, Marko Vuković, Luka Gašpar, Goran Fruk, Rajko Vidrih, Marijan Nečemer, Mladen Fruk, Mushtaque A. Jatoi, Daqi Fu, Matej Bernard Kobav, and et al. 2023. "The Effect of Canopy Position on the Fruit Quality Parameters and Contents of Bioactive Compounds and Minerals in ‘Braeburn’ Apples" Agronomy 13, no. 10: 2523. https://doi.org/10.3390/agronomy13102523
APA StyleKaučić, M., Vuković, M., Gašpar, L., Fruk, G., Vidrih, R., Nečemer, M., Fruk, M., Jatoi, M. A., Fu, D., Kobav, M. B., & Jemrić, T. (2023). The Effect of Canopy Position on the Fruit Quality Parameters and Contents of Bioactive Compounds and Minerals in ‘Braeburn’ Apples. Agronomy, 13(10), 2523. https://doi.org/10.3390/agronomy13102523