Physicochemical Properties, Image Textures, and Relationships between Parameters of Red-Fleshed Apples Collected on Different Harvest Dates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Maturity and Quality of Apples at Harvest
2.3. Color Measurements
2.4. Image Analysis
2.5. Chemical Properties
2.5.1. Dry Matter
2.5.2. Analysis of Sugars
2.5.3. Analysis of Acids
2.5.4. Analysis of Phenolic Compounds
2.5.5. Analysis of Pectin
2.6. Statistical Analysis
2.7. Discrimination of Red-Fleshed Apples in Terms of Harvest Date
3. Results
3.1. Characteristics of Examined Red-Fleshed Apples in Terms of Fruit Size, Percentage of Blush, Maturity, and Fruit Firmness
3.2. Color Parameters of Red-Fleshed Apple Skin and Flesh
3.3. Flesh Image Textures
3.4. Chemical Properties of Red-Fleshed Apples
3.5. Relationship between Image Textures and Physicochemical Properties of Red-Fleshed Apples Collected on Different Harvest Dates
3.6. Discrimination of Red-Fleshed Apples in Terms of Harvest Date Based on Selected Texture Parameters of the Flesh Images
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ceci, A.T.; Bassi, M.; Guerra, W.; Oberhuber, M.; Robatscher, P.; Mattivi, F.; Franceschi, P. Metabolomic Characterization of Commercial, Old, and Red-Fleshed Apple Varieties. Metabolites 2021, 11, 378. [Google Scholar] [CrossRef]
- Catalán, Ú.; Pedret, A.; Yuste, S.; Rubió, L.; Piñol, C.; Sandoval-Ramírez, B.A.; Companys, J.; Foguet, E.; Herrero, P.; Canela, N.; et al. Red-Fleshed Apples Rich in Anthocyanins and White-Fleshed Apples Modulate the Aorta and Heart Proteome in Hypercholesterolaemic Rats: The AppleCOR Study. Nutrients 2022, 14, 1047. [Google Scholar] [CrossRef] [PubMed]
- Wojdyło, A.; Lech, K.; Nowicka, P. Effects of Different Drying Methods on the Retention of Bioactive Compounds, On-Line Antioxidant Capacity and Color of the Novel Snack from Red-Fleshed Apples. Molecules 2020, 25, 5521. [Google Scholar] [CrossRef] [PubMed]
- Slatnar, A.; Licznar-Malanczuk, M.; Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R. Long-Term Experiment with Orchard Floor Management Systems: Influence on Apple Yield and Chemical Composition. J. Agric. Food Chem. 2014, 62, 4095–4103. [Google Scholar] [CrossRef] [PubMed]
- Oszmiański, J.; Lachowicz, S.; Gławdel, E.; Cebulak, T.; Ochmian, I. Determination of phytochemical composition and antioxidant capacity of 22 old apple cultivars grown in Poland. Eur. Food Res. Technol. 2018, 244, 647–662. [Google Scholar] [CrossRef]
- Szot, I.; Lipa, T. Apple trees yielding and fruit quality depending on the crop load, branch type and position in the crown. Acta Sci. Pol. Hortorum Cultus 2019, 18, 205–215. [Google Scholar] [CrossRef]
- Juhart, J.; Medic, A.; Jakopic, J.; Veberic, R.; Hudina, M.; Stampar, F. Using HPLC-MS/MS to Determine the Loss of Primary and Secondary Metabolites in the Dehydration Process of Apple Slices. Foods 2023, 12, 1201. [Google Scholar] [CrossRef]
- Łata, B.; Tomala, K. Apple Peel as a Contributor to Whole Fruit Quantity of Potentially Healthful Bioactive Compounds. Cultivar and Year Implication. J. Agric. Food Chem. 2007, 55, 10795–10802. [Google Scholar] [CrossRef]
- Łata, B.; Trampczynska, A.; Paczesna, J. Cultivar variation in apple peel and whole fruit phenolic composition. Sci. Hortic. 2009, 121, 176–181. [Google Scholar] [CrossRef]
- Juhart, J.; Medic, A.; Veberic, R.; Hudina, M.; Jakopic, J.; Stampar, F. Phytochemical Composition of Red-Fleshed Apple Cultivar ‘Baya Marisa’ Compared to Traditional, White-Fleshed Apple Cultivar ‘Golden Delicious’. Horticulturae 2022, 8, 811. [Google Scholar] [CrossRef]
- Contessa, C.; Botta, R. Comparison of physicochemical traits of red-fleshed, commercial and ancient apple cultivars. Hortic. Sci. 2016, 43, 159–166. [Google Scholar] [CrossRef]
- Gago, C.M.; Guerreiro, A.C.; Miguel, G.; Panagopoulos, T.; Sánchez, C.; Antunes, M.D. Effect of harvest date and 1-MCP (SmartFresh™) treatment on ‘Golden Delicious’ apple cold storage physiological disorders. Postharvest Biol. Technol. 2015, 110, 77–85. [Google Scholar] [CrossRef]
- Tomala, K. Orchard factors affecting fruit storage quality and prediction harvest date of apples. In Proceedings of the International Symposium Effect of Pre-& Postharvest factors in Fruit Storage, Warsaw, Poland, 3–7 August 1997; Volume 485, pp. 373–382. [Google Scholar]
- Łysiak, G.; Kurlus, R.; Zydlik, Z.; Walkowiak-Tomczak, D. Apple skin colour changes during harvest as an indicator of maturity. Acta Sci. Pol. Hortorum Cultus 2014, 13, 71–83. [Google Scholar]
- Wani, N.R.; Hussain, S.Z.; Bej, G.; Naseer, B.; Beigh, M.; Fayaz, U.; Dey, T.; Pal, A.; Akuli, A.; Ghosh, A.; et al. Predicting the optimum harvesting dates for different exotic apple varieties grown under North Western Himalayan regions through acoustic and machine vision techniques. Food Chem. X 2023, 19, 100754. [Google Scholar] [CrossRef]
- Wellner, A.; Grimm, E.; Knoche, M. Effect of Orchard Management Factors on Flesh Color of Two Red-Fleshed Apple Clones. Horticulturae 2019, 5, 54. [Google Scholar] [CrossRef]
- Wang, B.; Jiang, S.; Wang, Y.; Xu, J.; Xu, M.; Sun, X.; Zhu, J.; Zhang, Y. Red-Fleshed Apple Anthocyanin Extract Reduces Furan Content in Ground Coffee, Maillard Model System, and Not-from-Concentrate Apple Juice. Foods 2021, 10, 2423. [Google Scholar] [CrossRef] [PubMed]
- Grimm, E.; Kuhnke, F.; Gajdt, A.; Ostermann, J.; Knoche, M. Accurate Quantification of Anthocyanin in Red Flesh Apples Using Digital Photography and Image Analysis. Horticulturae 2022, 8, 145. [Google Scholar] [CrossRef]
- Wagner, A.; Dussling, S.; Scansani, S.; Bach, P.; Ludwig, M.; Steingass, C.B.; Will, F.; Schweiggert, R. Comparative Evaluation of Juices from Red-Fleshed Apples after Production with Different Dejuicing Systems and Subsequent Storage. Molecules 2022, 27, 2459. [Google Scholar] [CrossRef]
- Khaled, A.Y.; Ekramirad, N.; Donohue, K.D.; Villanueva, R.T.; Adedeji, A.A. Non-Destructive Hyperspectral Imaging and Machine Learning-Based Predictive Models for Physicochemical Quality Attributes of Apples during Storage as Affected by Codling Moth Infestation. Agriculture 2023, 13, 1086. [Google Scholar] [CrossRef]
- Peirs, A.; Schenk, A.; Nicolaï, B.M. Effect of natural variability among apples on the accuracy of VIS-NIR calibration models for optimal harvest date predictions. Postharvest Biol. Technol. 2005, 35, 1–13. [Google Scholar] [CrossRef]
- Jung, S.-K.; Watkins, C. Internal ethylene concentrations in apple fruit at harvest affect persistence of inhibition of ethylene production after1-methylcyclopropene treatment. Postharvest Biol. Technol. 2014, 96, 1–6. [Google Scholar] [CrossRef]
- Szczypiński, P.M.; Strzelecki, M.; Materka, A. Mazda—A software for texture analysis. In Proceedings of the 2007 International Symposium on Information Technology Convergence (ISITC 2007), Jeonju, Republic of Korea, 23–24 November 2007; pp. 245–249. [Google Scholar]
- Szczypiński, P.M.; Strzelecki, M.; Materka, A.; Klepaczko, A. MaZda—A software package for image texture analysis. Comput. Methods Programs Biomed. 2009, 94, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Strzelecki, M.; Szczypiński, P.; Materka, A.; Klepaczko, A. A software tool for automatic classification and segmentation of 2D/3D medical images. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 702, 137–140. [Google Scholar] [CrossRef]
- Tsao, R.; Yang, R. Optimization of a new mobile phase to know the complex and real polyphenolic composition: Towards a total phenolic index using high-performance liquid chromatography. J. Chromatogr. A 2003, 1018, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Witten, I.H.; Frank, E. Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed.; Elsevier: San Francisco, CA, USA, 2005. [Google Scholar]
- Bouckaert, R.R.; Frank, E.; Hall, M.; Kirkby, R.; Reutemann, P.; Seewald, A.; Scuse, D. WEKA Manual for Version 3-9-1; University of Waikato: Hamilton, New Zealand, 2016. [Google Scholar]
- Frank, E.; Hall, M.A.; Witten, I.H. The WEKA Workbench. Online Appendix for Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann, 4th ed.; University of Waikato: Hamilton, New Zealand, 2016. [Google Scholar]
- Ropelewska, E.; Szwejda-Grzybowska, J. A comparative analysis of the discrimination of pepper (Capsicum annuum L.) based on the cross-section and seed textures determined using image processing. J. Food Process Eng. 2021, 44, e13694. [Google Scholar] [CrossRef]
- Ropelewska, E. Diversity of Plum Stones Based on Image Texture Parameters and Machine Learning Algorithms. Agronomy 2022, 12, 762. [Google Scholar] [CrossRef]
- Sabanci, K.; Aslan, M.F.; Ropelewska, E.; Unlersen, M.F. A convolutional neural network-based comparative study for pepper seed classification: Analysis of selected deep features with support vector machine. J. Food Process Eng. 2022, 45, e13955. [Google Scholar] [CrossRef]
- Matysiak, B.; Ropelewska, E.; Wrzodak, A.; Kowalski, A.; Kaniszewski, S. Yield and quality of romaine lettuce at different daily light integral in an indoor controlled environment. Agronomy 2022, 12, 1026. [Google Scholar] [CrossRef]
- Lakso, A.N.; Corelli Grappadelli, L.; Barnard, J.; Goffinet, M.C. An expolinear model of the growth pattern of the apple fruit. J. Hortic. Sci. 1995, 70, 389–394. [Google Scholar] [CrossRef]
- Zadravec, P.; Veberic, R.; Stampar, F.; Schmitzer, V.; Eler, K. Fruit Growth Patterns of Four Apple Cultivars Using Nonlinear Growth Models. Eur. J. Hort. Sci. 2014, 79, 52–59. [Google Scholar]
- Tijero, V.; Girardi, F.; Botton, A. Fruit Development and Primary Metabolism in Apple. Agronomy 2021, 11, 1160. [Google Scholar] [CrossRef]
- Blanpied, G.D. Measurements of internal ethylene concentration and studies of its efficacy as a predictor of Empire apple storage life. Acta Hortic. 1989, 258, 429–436. [Google Scholar] [CrossRef]
- Łysiak, G. Measurement of ethylene production as a method for determining the optimum harvest date of ‘Jonagored’ apples. Folia Hort. 2014, 26, 117–124. [Google Scholar] [CrossRef]
- Watkins, C.B. Principles and practices of postharvest handling and stress. In Apples: Crop Physiology, Production and Uses; Feree, D., Warrington, I.J., Eds.; CAB International: Wallingford, UK, 2003; pp. 585–614. [Google Scholar]
- Wang, X.; Li, C.; Liang, D.; Zou, Y.; Li, P.; Ma, F. Phenolic compounds and antioxidant activity in red-fleshed apples. J. Funct. Foods 2015, 18, 1086–1094. [Google Scholar] [CrossRef]
- Lemmens, E.; Alós, E.; Rymenants, M.; De Storme, N.; Keulemans, W.J. Dynamics of ascorbic acid content in apple (Malus x domestica) during fruit development and storage. Plant Physiol. Biochem. 2020, 151, 47–59. [Google Scholar] [CrossRef]
- Hoehn, E.; Gasser, F.; Guggenbühl, B.; Künsch, U. Efficacy of instrumental measurements for determination of minimum requirements of firmness, soluble solids, and acidity of several apple varieties in comparison to consumer expectations. Postharvest Biol. Technol. 2003, 27, 27–37. [Google Scholar] [CrossRef]
- Ornelas-Paz, J.; Quintana-Gallegos, B.M.; Escalante-Minakata, P.; Reyes-Hernandez, J.; Perez-Martınez, J.D.; Rios-Velasco, C. Saul Ruiz-Cruz Relationship between the firmness of Golden Delicious apples and the physicochemical characteristics of the fruits and their pectin during development and ripening. J. Food Sci. Technol. 2018, 55, 33–41. [Google Scholar] [CrossRef]
- Famiani, F.; Farinelli, D.; Palliotti, A.; Moscatello, S.; Battistelli, A.; Walker, R.P. Is stored malate the quantitatively most important substrate utilised by respiration and ethanolic fermentation in grape berry pericarp during ripening? Plant Physiol. Biochem. 2014, 76, 52–57. [Google Scholar] [CrossRef]
- Ropelewska, E. The Application of Machine Learning for Cultivar Discrimination of Sweet Cherry Endocarp. Agriculture 2021, 11, 6. [Google Scholar] [CrossRef]
- Vieria, M.; Argenta, L.; Mattheis, J.P. Relationship between dry matter content at harvest and maturity index and post-harvest quality of “Fuji” apples. Rev. Bras. Frutic. 2018, 40, e-596. [Google Scholar] [CrossRef]
- Borsani, J.; Budde, C.O.; Porrini, L.; Lauxmann, M.A.; Lombardo, V.A.; Murray, R.; Andreo, C.S.; Drincovich, M.F.; Lara, M.V. Carbon metabolism of peach fruit after harvest: Changes in enzymes involved in organic acid and sugar level modifications. J. Exp. Bot. 2009, 60, 1823–1837. [Google Scholar] [CrossRef] [PubMed]
- Bhat, M.Y.; Ahsan, H.; Banday, F.A.; Dar, M.A.; Wani, A.I.; Hassan, G.I. Effect of harvest dates, pre harvest calcium sprays and storage period on physico-chemical characteristics of pear cv. Bartlett. J. Agric. Res. Dev. 2012, 2, 101–106. [Google Scholar]
- Walker, R.P.; Battistelli, A.; Moscatello, S.; Chen, Z.H.; Leegood, R.C.; Famiani, F. Phosphoenolpyruvate carboxykinase in cherry (Prunus avium L.) fruit during development. J. Exp. Bot. 2011, 62, 5357–5365. [Google Scholar] [CrossRef]
- Famiani, F.; Walker, R.P. Changes in abundance of enzymes involved in organic acid, amino acid and sugar metabolism, and photosynthesis during the ripening of blackberry fruit. J. Am. Soc. Hortic. Sci. 2009, 134, 167–175. [Google Scholar] [CrossRef]
- Mahmood, T.; Anwar, F.; Abbas, M.; Boyce, M.C.; Saari, N. Compositional variation in sugars and organic acids at different maturity stages in selected small fruits from Pakistan. Int. J. Mol. Sci. 2012, 13, 1380–1392. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, J.; Xu, Z.; Sun, X.; Zhang, Y. Analysis of Antioxidant Activity and Flavonoids Metabolites in Peel and Flesh of Red-Fleshed Apple Varieties. Molecules 2020, 25, 1968. [Google Scholar] [CrossRef]
- Ropelewska, E.; Szwejda-Grzybowska, J. Relationship of Textures from Tomato Fruit Images Acquired Using a Digital Camera and Lycopene Content Determined by High-Performance Liquid Chromatography. Agriculture 2022, 12, 1495. [Google Scholar] [CrossRef]
- Ropelewska, E.; Szwejda-Grzybowska, J. The Estimation of Chemical Properties of Pepper Treated with Natural Fertilizers Based on Image Texture Parameters. Foods 2023, 12, 2123. [Google Scholar] [CrossRef]
- Walkowiak-Tomczak, D.; Idaszewska, N.; Łysiak, G.P.; Bieńczak, K. The Effect of Mechanical Vibration during Transport under Model Conditions on the Shelf-Life, Quality and Physico-Chemical Parameters of Four Apple Cultivars. Agronomy 2021, 11, 81. [Google Scholar] [CrossRef]
- Lipa, T.; Szot, I.; Dobrzański, B., Jr.; Kapłan, M. The assesment of ten apple cultivars and their susceptibility on bruising after storage and shelf-life of fruit treated with 1-MCP. Acta Sci. Pol. Hortorum Cultus 2019, 18, 129–140. [Google Scholar] [CrossRef]
Sample | Fruit Weight g | Percentage of Blush % | IEC ppm | Starch Index 1–10 | Fruit Firmness N |
---|---|---|---|---|---|
‘Alex Red’—I harvest date | 94.3 a | 100 a | 6.25 a | 6.1 a | 79.6 a |
‘Alex Red’—II harvest date | 105.9 b | 100 a | 9.17 a | 6.4 a | 75.6 a |
‘Trinity’—I harvest date | 96.3 a | 100 a | 14.59 a | 7.3 a | 78.6 a |
‘Trinity’—II harvest date | 114.5 b | 100 a | 18.34 a | 8.2 a | 69.8 a |
‘Roxana’—I harvest date | 117.0 a | 76.0 a | 0.12 a | 1.5 a | 109.0 a |
‘Roxana’—II harvest date | 122.5 a | 86.0 b | 0.50 b | 1.7 a | 102.1 a |
Sample | L* | a* | b* | ΔE |
---|---|---|---|---|
‘Alex Red’—I harvest date | 34.41 a | 21.57 a | 8.62 a | 4.93 |
‘Alex Red’—II harvest date | 33.06 a | 25.42 b | 11.39 b | |
‘Trinity’—I harvest date | 35.32 a | 22.65 a | 10.95 a | 4.94 |
‘Trinity’—II harvest date | 32.81 a | 26.81 b | 11.83 a | |
‘Roxana’—I harvest date | 40.05 a | 21.82 a | 18.67 a | 8.84 |
‘Roxana’—II harvest date | 39.37 a | 30.00 b | 21.95 b |
Sample | L* | a* | b* | ΔE |
---|---|---|---|---|
‘Alex Red’—I harvest date | 54.36 a | 29.06 a | 10.53 a | 5.54 |
‘Alex Red’—II harvest date | 50.50 b | 32.80 b | 11.88 a | |
‘Trinity’—I harvest date | 51.56 a | 32.96 a | 11.11 a | 5.84 |
‘Trinity’—II harvest date | 47.04 b | 36.30 b | 12.69 b | |
‘Roxana’—I harvest date | 71.91 a | 8.25 a | 11.80 a | 3.35 |
‘Roxana’—II harvest date | 69.52 b | 9.14 a | 13.97 b |
Sample | RHMean | GHMean | BHMean | LHMean | aHMean | bHMean | XHMean | YHMean | ZHMean | UHMean | VHMean | SHMean |
---|---|---|---|---|---|---|---|---|---|---|---|---|
‘Alex Red’—I harvest date | 227.6 a | 107.3 a | 92.1 a | 166.7 a | 161.1 a | 152.3 a | 102.7 a | 74.7 a | 35.3 a | 99.1 a | 188.3 a | 126.0 a |
‘Alex Red’—II harvest date | 236.5 b | 106.8 a | 91.8 a | 169.8 b | 163.4 b | 154.1 b | 110.2 b | 78.6 b | 35.4 a | 97.6 b | 193.1 b | 135.6 b |
‘Trinity’—I harvest date | 231.8 a | 111.4 a | 93.9 a | 169.9 a | 160.8 a | 153.1 a | 107.8 a | 79.4 a | 37.4 a | 97.9 a | 188.6 a | 127.4 a |
‘Trinity’—II harvest date | 236.3 b | 99.3 b | 82.4 b | 166.0 b | 165.6 b | 156.4 b | 106.3 a | 73.2 b | 28.9 b | 95.4 b | 196.9 b | 143.4 b |
‘Roxana’—I harvest date | 217.8 a | 178.4 a | 150.0 a | 200.9 a | 134.9 a | 143.2 a | 131.5 a | 129.3 a | 87.8 a | 106.2 a | 149.0 a | 58.4 a |
‘Roxana’—II harvest date | 227.9 b | 166.9 b | 141.3 b | 197.0 b | 141.7 b | 145.2 b | 133.1 a | 123.1 b | 79.3 b | 103.9 b | 159.6 b | 96.0 b |
Sample | Dry Mass % | Sucrose g·kg−1 | Glucose g·kg−1 | Fructose g·kg−1 | Sorbitol g·kg−1 | Total Sugars g·kg−1 | L-ascorbic Acid mg·100 g−1 | Malic Acid mg·100 g−1 | Citric Acid mg·100 g−1 | Total Acids mg·100 g−1 | Total Pectin mg·kg−1 |
---|---|---|---|---|---|---|---|---|---|---|---|
‘Alex Red’—I harvest date | 15.1 a | 48.8 a | 1.6 a | 31.7 a | 3.5 a | 85.6 a | 17.5 a | 2004.0 a | 23.1 a | 2044.6 a | 6278 a |
‘Alex Red’—II harvest date | 15.0 a | 54.2 b | 1.7 a | 30.3 b | 4.7 b | 90.9 b | 17.1 b | 1844.7 b | 17.7 b | 1879.4 b | 6008 b |
‘Trinity’—I harvest date | 15.7 a | 62.0 a | 3.3 a | 38.1 a | 8.8 a | 112.3 a | 20.0 a | 1556.3 a | 23.9 a | 1600.3 a | 6196 a |
‘Trinity’—II harvest date | 15.4 a | 71.1 b | 4.0 b | 39.5 b | 13.5 b | 128.0 b | 24.0 b | 1631.2 b | 21.8 a | 1676.9 b | 6401 b |
‘Roxana’—I harvest date | 20.8 a | 51.0 a | 1.8 a | 33.5 a | 4.0 a | 90.6 a | 17.8 a | 1935.7 a | 19.4 a | 1972.9 a | 5912 a |
‘Roxana’—II harvest date | 22.3 b | 53.7 b | 1.9 b | 31.0 b | 4.4 b | 90.9 a | 21.9 b | 1944.1 a | 21.7 a | 1987.6 a | 6807 b |
Sample | Flavanols mg kg−1 | Dihydrochalcones mg kg−1 | Phenolic Acids mg kg−1 | Flavonols mg kg−1 | Anthocyanins mg kg−1 | Total Phenolic Content mg kg−1 |
---|---|---|---|---|---|---|
‘Alex Red’—I harvest date | 75.4 a | 34.8 a | 59.6 a | 100.0 a | 266.3 a | 536.1 a |
‘Alex Red’—II harvest date | 76.2 a | 32.1 b | 58.0 a | 113.9 b | 221.6 b | 501.9 b |
‘Trinity’—I harvest date | 67.6 a | 35.3 a | 62.2 a | 102.6 a | 247.8 a | 515.5 a |
‘Trinity’—II harvest date | 91.6 b | 38.4 b | 57.6 b | 125.7 b | 260.0 a | 573.3 b |
‘Roxana’—I harvest date | 873.4 a | 51.6 a | 100.4 a | 50.2 a | 45.7 a | 1121.3 a |
‘Roxana’—II harvest date | 997.2 b | 50.2 b | 128.2 b | 72.4 b | 45.3 a | 1293.3 b |
Predicted Class (%) | Sample | Average Accuracy (%) | TPR | FPR | Precision | Recall | F-Measure | MCC | ROC Area | PRC Area | |
---|---|---|---|---|---|---|---|---|---|---|---|
‘Alex Red’—I harvest date | Alex Red’—II harvest date | ||||||||||
97 | 3 | ‘Alex Red’—I harvest date | 95.5 | 0.970 | 0.060 | 0.942 | 0.970 | 0.956 | 0.910 | 0.946 | 0.852 |
6 | 94 | ‘Alex Red’—II harvest date | 0.940 | 0.030 | 0.969 | 0.940 | 0.954 | 0.910 | 0.946 | 0.970 | |
‘Trinity’—I harvest date | ‘Trinity’—II harvest date | ||||||||||
93 | 7 | ‘Trinity’—I harvest date | 93.0 | 0.930 | 0.070 | 0.930 | 0.930 | 0.930 | 0.860 | 0.981 | 0.981 |
7 | 93 | ‘Trinity’—II harvest date | 0.930 | 0.070 | 0.930 | 0.930 | 0.930 | 0.860 | 0.981 | 0.981 | |
‘Roxana’—I harvest date | ‘Roxana’—II harvest date | ||||||||||
88 | 12 | ‘Roxana’—I harvest date | 90.0 | 0.880 | 0.080 | 0.917 | 0.880 | 0.898 | 0.801 | 0.966 | 0.974 |
8 | 92 | ‘Roxana’—II harvest date | 0.920 | 0.120 | 0.885 | 0.920 | 0.902 | 0.801 | 0.966 | 0.946 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ropelewska, E.; Szwejda-Grzybowska, J.; Mieszczakowska-Frąc, M.; Celejewska, K.; Kruczyńska, D.E.; Rutkowski, K.P.; Konopacka, D. Physicochemical Properties, Image Textures, and Relationships between Parameters of Red-Fleshed Apples Collected on Different Harvest Dates. Agronomy 2023, 13, 2452. https://doi.org/10.3390/agronomy13102452
Ropelewska E, Szwejda-Grzybowska J, Mieszczakowska-Frąc M, Celejewska K, Kruczyńska DE, Rutkowski KP, Konopacka D. Physicochemical Properties, Image Textures, and Relationships between Parameters of Red-Fleshed Apples Collected on Different Harvest Dates. Agronomy. 2023; 13(10):2452. https://doi.org/10.3390/agronomy13102452
Chicago/Turabian StyleRopelewska, Ewa, Justyna Szwejda-Grzybowska, Monika Mieszczakowska-Frąc, Karolina Celejewska, Dorota E. Kruczyńska, Krzysztof P. Rutkowski, and Dorota Konopacka. 2023. "Physicochemical Properties, Image Textures, and Relationships between Parameters of Red-Fleshed Apples Collected on Different Harvest Dates" Agronomy 13, no. 10: 2452. https://doi.org/10.3390/agronomy13102452
APA StyleRopelewska, E., Szwejda-Grzybowska, J., Mieszczakowska-Frąc, M., Celejewska, K., Kruczyńska, D. E., Rutkowski, K. P., & Konopacka, D. (2023). Physicochemical Properties, Image Textures, and Relationships between Parameters of Red-Fleshed Apples Collected on Different Harvest Dates. Agronomy, 13(10), 2452. https://doi.org/10.3390/agronomy13102452