Post-Tin-Mining Agricultural Soil Regeneration Using Local Resources, Reduces Drought Stress and Increases Crop Production on Bangka Island, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Soil Physicochemical Properties
2.4. Crop Yields
2.5. Carbon Isotope Discrimination as a Proxy for Drought Resistance
2.6. Statistical Analysis
3. Results
3.1. Effect of Soil Amendments on Crop Yields
3.2. Drought Stress Indication via Carbon Isotope Discrimination
3.3. Effect of Soil Amendments on Soil Properties
4. Discussion
4.1. Crop Yields
4.2. Drought Resistance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buta, M.; Blaga, G.; Paulette, L.; Păcurar, I.; Roșca, S.; Borsai, O.; Grecu, F.; Sînziana, P.E.; Negrușier, C. Soil Reclamation of Abandoned Mine Lands by Revegetation in Northwestern Part of Transylvania: A 40-Year Retrospective Study. Sustainability 2019, 11, 3393. [Google Scholar] [CrossRef] [Green Version]
- Worlanyo, A.S.; Jiangfeng, L. Evaluating the environmental and economic impact of mining for post-mined land restoration and land-use: A review. J. Environ. Manag. 2021, 279, 111623. [Google Scholar] [CrossRef] [PubMed]
- Sukarman; Gani, R.A. Asmarhansyah Tin mining process and its effects on soils in Bangka Belitung Islands Province, Indonesia. Sains Tanah 2020, 17, 180–189. [Google Scholar]
- Lestari, T.; Apriyadi, R. Genetic potential of cassava biodiversity in Bangka Island, Indonesia TRI. Cell Biol. Dev. 2017, 1, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Inonu, I. Pengelolaan Lahan Tailing Timah di Pulau Bangka : Penelitian yang Telah Dilakukan dan Prospek ke Depan. J. Enviagro 2008, 2. Available online: https://garuda.kemdikbud.go.id/documents/detail/273888 (accessed on 8 November 2022).
- Asmarhansyah, A. Improving Soil Properties and Yield of Corn (Zea mays L.) by Application of Organic Amendment on Abandoned Tin-Mining Land in Bangka Island. J. Trop. Soil 2016, 21, 141–151. [Google Scholar] [CrossRef]
- Budianta, D.; Gofar, N.; Andika, G.A. Improvement of Sand Tailing Fertility Derived from Post Tin Mining Using Leguminous Crop Applied by Compost and Mineral Soil. J. Tanah Trop. 2013, 18, 217–223. [Google Scholar]
- Ashraf, M.A.; Maah, M.J.; Yusoff, I. Analysis of physio-chemical parameters and distribution of heavy metals in soil and water of ex-mining area of Bestari Jaya, Peninsular Malaysia. Asian J. Chem. 2011, 23, 3493–3499. [Google Scholar]
- Nath, T.N. Soil texture and total organic matter content and its influences on soil water holding capacity of some selected tea growing soils in Sivasagar district of Assam, India. Int. J. Chem. Sci. 2014, 12, 1419–1429. [Google Scholar]
- Mulcahy, D.N.; Mulcahy, D.L.; Dietz, D. Biochar soil amendment increases tomato seedling resistance to drought in sandy soils. J. Arid Environ. 2013, 88, 222–225. [Google Scholar] [CrossRef]
- Avramova, V.; Meziane, A.; Bauer, E.; Blankenagel, S.; Eggels, S.; Gresset, S.; Grill, E.; Niculaes, C.; Ouzunova, M.; Poppenberger, B.; et al. Carbon isotope composition, water use efficiency, and drought sensitivity are controlled by a common genomic segment in maize. Theor. Appl. Genet. 2019, 132, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Christmann, A.; Weiler, E.W.; Steudle, E.; Grill, E. A hydraulic signal in root-to-shoot signalling of water shortage. Plant J. 2007, 52, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Tardieu, F.; Simonneau, T.; Muller, B. The Physiological Basis of Drought Tolerance in Crop Plants: A Scenario-Dependent Probabilistic Approach. Annu. Rev. Plant Biol. 2018, 69, 733–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Supriadi, A.; Oktaviani, K.; Kencono, A.W.; Prasetyo, B.E.; Kurniasih, T.N.; Kurniadi, C.B.; Kurniawan, F.; Alwendra, Y.; Rabbani, Q.; Aprillia, R.; et al. Analisis Pembentukan Harga di Bursa Timah Indonesia dan Dunia; Kementerian Energi Dan Sumber Daya Mineral: Jakarta, Indonesia, 2016. [Google Scholar]
- Zglinicki, K.; Małek, R.; Szamałek, K.; Wołkowicz, S. Mining Waste as a Potential Additional Source of HREE and U for the European Green Deal: A Case Study of Bangka Island (Indonesia). Minerals 2022, 12, 44. [Google Scholar] [CrossRef]
- Rozaki, Z. COVID-19, Agriculture, and Food Security in Indonesia. Rev. Agric. Sci. 2020, 8, 243–260. [Google Scholar] [CrossRef] [PubMed]
- Kral, R.M.; Maftukhah, R.; Mentler, A.; Murtiningrum, M.; Ngadisih, N.; Keiblinger, K.M. Citizen science in the field: Co-experimentation at pilot scale for sustainable use of natural resources. Sustainability 2020, 12, 7700. [Google Scholar] [CrossRef]
- Alvarenga, P.; Carneiro, J.P.; Fangueiro, D.; Cordovil, C.M.d.S.; Bernal, M.P. Chapter 5—Managing organic amendments in agroecosystems to enhance soil carbon storage and mitigate climate change. In Climate Change and Soil Interaction; Prasad, M.N.V., Pietrzykowski, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 89–141. [Google Scholar]
- Navarro-Pedreño, J.; Almendro-Candel, M.B.; Zorpas, A.A. The Increase of Soil Organic Matter Reduces Global Warming, Myth or Reality? Sci 2021, 3, 18. [Google Scholar] [CrossRef]
- Larney, F.J.; Angers, D.A. The role of organic amendments in soil reclamation: A review. Can. J. Soil Sci. 2012, 92, 19–38. [Google Scholar] [CrossRef]
- Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Appl. Soil Ecol. 2017, 119, 156–170. [Google Scholar] [CrossRef]
- Jeffery, S.; Abalos, D.; Prodana, M.; Bastos, A.C.; Van Groenigen, J.W.; Hungate, B.A.; Verheijen, F. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 2017. [CrossRef]
- Sandhu, S.S.; Kumar, S. Impact of Three Types of Biochar on the Hydrological Properties of Eroded and Depositional Landscape Positions. Soil Sci. Soc. Am. J. 2017, 81, 878–888. [Google Scholar] [CrossRef]
- Jeffery, S.; Meinders, M.B.J.; Stoof, C.R.; Bezemer, T.M.; van de Voorde, T.F.J.; Mommer, L.; van Groenigen, J.W. Biochar application does not improve the soil hydrological function of a sandy soil. Geoderma 2015, 251–252, 47–54. [Google Scholar] [CrossRef]
- Becher, H.H. Influence of long-term liming on aggregate stability of a loess-derived soil. Int. Agrophysics 2001, 15, 67–72. [Google Scholar]
- Keiblinger, K.M.; Bauer, L.M.; Deltedesco, E.; Holawe, F.; Unterfrauner, H.; Zehetner, F.; Peticzka, R. Quicklime application instantly increases soil aggregate stability. Int. Agrophysics 2016, 30, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Abd El Halim, A.A.; El Baroudy, A.A. Influence addition of fine sawdust on the physical properties of expansive soil in the middle Nile Delta, Egypt. J. Soil Sci. Plant Nutr. 2014, 14, 483–490. [Google Scholar] [CrossRef] [Green Version]
- FAO. Save and Grow: Cassava A Guide to Sustainable Production Intensification; FAO: Rome, Italy, 2013. [Google Scholar]
- Media Indonesia. Mentan SYL Genjot Industri Tepung Tapioka dan Sagu di Babel 2020. Available online: https://mediaindonesia.com/ekonomi/334997/mentan-syl-genjot-industri-tepung-tapioka-dan-sagu-di-babel (accessed on 8 November 2022).
- Burns, A.E.; Gleadow, R.M.; Zacarias, A.M.; Cuambe, C.E.; Miller, R.E.; Cavagnaro, T.R. Variations in the chemical composition of cassava (Manihot esculenta Crantz) leaves and roots as affected by genotypic and environmental variation. J. Agric. Food Chem. 2012, 60, 4946–4956. [Google Scholar] [CrossRef] [PubMed]
- Van Der Eng, P. Cassava in Indonesia: A historical re-appraisal of an enigmatic food crop. Southeast Asian Stud. 1998, 36, 3–31. [Google Scholar]
- El-Sharkawy, M.A. Cassava biology and physiology. Plant Mol. Biol. 2004, 56, 481–501. [Google Scholar] [CrossRef]
- Hairiah, K.; Van Noordwijk, M.; Cadisch, G. Crop yield, C and N balance of three types of cropping systems on an Ultisol in Northern Lampung. NJAS-Wagening. J. Life Sci. 2000, 48, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Islami, T.; Guritno, B.; Basuki, N.; Suryanto, A. Biochar for sustaining productivity of cassava based cropping systems in the degraded lands of East Java, Indonesia. J. Trop. Agric. 2011, 49, 40–46. [Google Scholar]
- Olson, K.R.; Ebelhar, S.A.; Lang, J.M. Cover crop effects on crop yields and soil organic carbon content. Soil Sci. 2010, 175, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Steenwerth, K.; Belina, K.M. Cover crops enhance soil organic matter, carbon dynamics and microbiological function in a vineyard agroecosystem. Appl. Soil Ecol. 2008, 40, 359–369. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Alva, A. Growing Cover Crops to Improve Biomass Accumulation and Carbon Sequestration: A Phytotron Study. J. Environ. Prot. 2010, 1, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Sanusi, R.O.; Lordbanjou, D.-T.; Ibrahim, A.O.; Abubakar, M.B.; Oke, O.O. Cassava Production Enterprise in the Tropics. In Tropical Plant Species and Technological Interventions for Improvement; Khan, D.M.S., Ed.; IntechOpen: Rijeka, Croatia, 2022. [Google Scholar]
- El-Sharkawy, M.A.; De Tafur, S.M. Comparative photosynthesis, growth, productivity, and nutrient use efficiency among tall- and short-stemmed rain-fed cassava cultivars. Photosynthetica 2010, 48, 173–188. [Google Scholar] [CrossRef]
- Fening, J.O.; Quansah, C.; Sarfo-Kantanka, A. Response of Three Forage Legumes To Soil. J. Sci. Technol. 2009, 29, 24–30. [Google Scholar]
- El-Sharkawy, M.A.; De Tafur, S.M. Genotypic and within canopy variation in leaf carbon isotope discrimination and its relation to short-term leaf gas exchange characteristics in cassava grown under rain-fed conditions in the tropics. Photosynthetica 2007, 45, 515–526. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Ehleringer, J.R.; Hubick, K.T. Carbon Isotope Discrimination and Photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1989, 40, 503–537. [Google Scholar] [CrossRef]
- Shaheen, R.; Hood-nowotny, R.C. Effect of drought and salinity on carbon isotope discrimination in wheat cultivars. Plant Sci. 2005, 168, 901–909. [Google Scholar] [CrossRef]
- Vantyghem, M.; Merckx, R.; Stevens, B.; Hood-Nowotny, R.; Swennen, R.; Dercon, G. The potential of stable carbon isotope ratios and leaf temperature as proxies for drought stress in banana under field conditions. Agric. Water Manag. 2022, 260, 107247. [Google Scholar] [CrossRef]
- BMKG Indonesia Data Online BMKG. Available online: https://dataonline.bmkg.go.id/home (accessed on 14 January 2020).
- IUSS Working Group WRB. World Reference Base for Soil Resources Update2015, International Soil Classification System for Naming Soils and Creating Legends for Soilmaps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- ÖNORM L 1061-1; Physical analysis of soils—Determination of particle size distribution in mineral soils used for agriculture and forestry—Part 1: Coarse soil. Austrian Standards International: Vienna, Austria, 2019; pp. 2–4.
- ÖNORM L 1061-2; Physical analysis of soils—Determination of particle size distribution in mineral soils used for agriculture and forestry—Part 2: Fine soil. Austrian Standards International: Vienna, Austria, 2019.
- ÖNORM L 1050; Soil as plant site—Terms, definitions and test methods. Austrian Standards International: Vienna, Austria, 2016.
- Eckelmann, W. Bodenkundliche Kartieranleitung. KA5; Sponagel, H., Grottenthaler, W., Hartmann, K.-J., Hartwich, R., Janetzko, P., Joisten, H., Kühn, D., Sabel, K.-J., Traidl, R., Eds.; Schweizerbart Science: Stuttgart, Germany, 2005. [Google Scholar]
- Dane, J.H.; Topp, C.; Campbell, G.S.; Horton, R.; Jury, W.A.; Nielsen, D.R.; van Es, H.M.; Wierenga, P. Methods of Soil Analysis. Part 4, Physical Methods; Soil Science Society of America, Inc.: Madison, WI, USA, 2002. [Google Scholar]
- ÖNORM L 1080; Chemical Analyses of Soils—Determination of Organic Carbon by Dry Combustion with and without Consideration of Carbonates. Austrian Standards International: Vienna, Austria, 2013.
- Brandstetter, A.; Sletten, R.S.; Mentler, A.; Wenzel, W.W. Estimating dissolved organic carbon in natural waters by UV absorbance (254 nm). J. Plant Nutr. Soil Sci. 1996, 159, 605–607. [Google Scholar] [CrossRef]
- ÖNORM L 1086-1; Chemical analyses of soils—Determination of exchangeable cations and of effective cations exchange capacity (CECeff) by extraction with bariumchloride solution. Austrian Standards International: Vienna, Austria, 2001.
- ÖNORM L 1085; Chemical analyses of soils—Acid digest for the determination of nutritive and toxic elements. Austrian Standards International: Vienna, Austria, 1999.
- ÖNORM L 1087; Chemical analysis of soils—Determination of “plant-available” phosphorus and potassium by the calcium-acetate-lactate (CAL)-method. Austrian Standards International: Vienna, Austria, 2001.
- Scripps Mauna Loa and South Pole Difference Graphic|Scripps CO2 Program. Available online: https://scrippsco2.ucsd.edu/ (accessed on 19 May 2021).
- Mair, P.; Wilcox, R. Robust statistical methods in R using the WRS2 package. Behav. Res. Methods 2020, 52, 464–488. [Google Scholar] [CrossRef]
- Suwarto; Parlindungan, E.S.; Asih, R. Potency legume cover crops as a source of organic material in situ and its effect on the growth and tuber yield of cassava (Manihot esculenta). Plant Arch. 2020, 20, 1484–1490. [Google Scholar]
- Krstić, Đ.; Vujić, S.; Jaćimović, G.; D’Ottavio, P.; Radanović, Z.; Erić, P.; Ćupina, B. The Effect of Cover Crops on Soil Water Balance in Rain-Fed Conditions. Atmosphere 2018, 9, 492. [Google Scholar] [CrossRef] [Green Version]
- Blanco-canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover Crops and Ecosystem Services : Insights from Studies in Temperate Soils. J. Agron. 2015, 107, 2449–2474. [Google Scholar] [CrossRef] [Green Version]
- Berriel, V.; Perdomo, C.; Monza, J. Carbon Isotope Discrimination and Water-Use Efficiency in Crotalaria Cover Crops under Moderate Water Deficit. J. Soil Sci. Plant Nutr. 2020, 20, 537–545. [Google Scholar] [CrossRef]
- Unger, P.W.; Vigil, M.F. Cover crop effects on soil water relationships. J. Water Soil Conserv. 1998, 53, 200–207. [Google Scholar]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Muirhead, B.; Wright, G.; Bird, M.I. Biochar and biochar-compost as soil amendments: Effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. Agric. Ecosyst. Environ. 2015, 213, 72–85. [Google Scholar] [CrossRef]
- Bezabeh, M.W.; Hailemariam, M.H.; Sogn, T.A.; Eich-Greatorex, S. Yield, nutrient uptake, and economic return of faba bean (Vicia faba L.) in calcareous soil as affected by compost types. J. Agric. Food Res. 2021, 6, 100237. [Google Scholar] [CrossRef]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’Neill, B.; Skjemstad, J.O.; Thies, J.; Luizão, F.J.; Petersen, J.; et al. Black Carbon Increases Cation Exchange Capacity in Soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Schulz, H.; Brandl, S.; Miehtke, H.; Huwe, B.; Glaser, B. Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions. J. Plant Nutr. Soil Sci. 2012, 175, 698–707. [Google Scholar] [CrossRef]
- Tammeorg, P.; Simojoki, A.; Mäkelä, P.; Stoddard, F.L.; Alakukku, L.; Helenius, J. Biochar application to a fertile sandy clay loam in boreal conditions: Effects on soil properties and yield formation of wheat, turnip rape and faba bean. Plant Soil 2014, 374, 89–107. [Google Scholar] [CrossRef]
- Topoliantz, S.; Ponge, J.F.; Ballof, S. Manioc peel and charcoal: A potential organic amendment for sustainable soil fertility in the tropics. Biol. Fertil. Soils 2005, 41, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Tian, G.; Kang, B.T.; Brussaard, L. Effect of mulch quality on earthworm activity and nutrient supply in the humid tropics. Soil Biol. Biochem. 1997, 29, 369–373. [Google Scholar] [CrossRef]
- Gouveia, C.S.S.; Ganança, J.F.T.; Slaski, J.; Lebot, V.; Pinheiro, M.Â.A.; Carvalho, D. Stable isotope natural abundances (δ 13 C and δ 15 N) and carbon-water relations as drought stress mechanism response of taro (Colocasia esculenta L.). J. Plant Physiol. 2019, 232, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, C.S.S.; Ganança, J.F.T.; Slaski, J.; Lebot, V.; Pinheiro, M.Â.A.; Carvalho, D. Variation of carbon and isotope natural abundances (δ 15 N and δ 13 C) of whole-plant sweet potato (Ipomoea batatas L.) subjected to prolonged water stress. J. Plant Physiol. 2019, 243, 153052. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhu, L.; Zhang, C.; Ning, Y.; Zhang, Y. Effect of water stress on dry mass accumulation and allocation in sweet potato based on stable isotope analysis. Can. J. Plant Sci. 2015, 95, 263–271. [Google Scholar] [CrossRef]
- Zheng, S.; Cui, N.; Gong, D.; Wang, Y.; Hu, X.; Feng, Y. Relationship between stable carbon isotope discrimination and water use efficiency under deficit drip irrigation of kiwifruit in the humid areas of South China. Agric. Water Manag. 2020, 240, 106300. [Google Scholar] [CrossRef]
- De Souza, C.; Maroco, J.; dos Santos, T.; Rodrigues, M.; Lopes, C.; Pereira, J.; Chaves, M. Impact of deficit irrigation on water use efficiency and carbon isotope composition (d 13 C) of field-grown grapevines under Mediterranean climate. J. Environ. Sci. (China) 2005, 56, 2163–2172. [Google Scholar]
- Tcherkez, G.; Nogués, S.; Bleton, J.; Cornic, G.; Badeck, F.; Ghashghaie, J. Metabolic origin of carbon isotope composition of leaf dark-respired CO2 in French bean. Plant Physiol. 2003, 131, 237–244. [Google Scholar] [CrossRef] [Green Version]
- O’Geen, A.T. Soil Water Dynamics. Nat. Educ. Knowl. 2013, 4, 9. [Google Scholar]
- Bednik, M.; Medyńska-Juraszek, A.; Dudek, M.; Kloc, S.; Kręt, A.; Łabaz, B.; Waroszewski, J. Wheat Straw Biochar and NPK Fertilization Efficiency in Sandy Soil Reclamation. Agronomy 2020, 10, 496. [Google Scholar] [CrossRef] [Green Version]
- Hudson, B.D. Soil organic matter and available water capacity. J. Soil Water Conserv. 1994, 49, 189–194. [Google Scholar]
- Cellier, A.; Gauquelin, T.; Baldy, V.; Ballini, C. Effect of organic amendment on soil fertility and plant nutrients in a post-fire Mediterranean ecosystem. Plant Soil 2014, 376, 211–228. [Google Scholar] [CrossRef]
- Ozores-hampton, M.; Stansly, P.A.; Salame, T.P.; Stansly, P.A.; Salame, T.P.; Ozores-hampton, M.; Stansly, P.A. Soil Chemical, Physical, and Biological Properties of a Sandy Soil Subjected to Long-Term Organic Amendments. J. Sustain. Agric. 2011, 35, 243–259. [Google Scholar] [CrossRef]
- Ullah, N.; Ditta, A.; Imtiaz, M.; Li, X.; Jan, A.U.; Mehmood, S.; Rizwan, M.S.; Rizwan, M. Appraisal for organic amendments and plant growth-promoting rhizobacteria to enhance crop productivity under drought stress: A review. J. Agron. Crop Sci. 2021, 207, 783–802. [Google Scholar] [CrossRef]
- Frimpong, K.A.; Phares, C.A.; Boateng, I.; Abban-Baidoo, E.; Apuri, L. One-time application of biochar influenced crop yield across three cropping cycles on tropical sandy loam soil in Ghana. Heliyon 2021, 7, e06267. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Texture | Sandy loam |
Sand (%) | 75.4 |
Silt (%) | 17.4 |
Clay (%) | 7.2 |
pH | 5.67 ± 0.03 |
CEC (mmol·kg−1) | 1.65 ± 0.14 |
TOC (%) | 0.57 ± 0.04 |
DOC (mg·L−1) | 13.59 ± 0.27 |
TP (mg·kg−1) | 12.34 ± 1.09 |
AP (mg·kg−1) | 5.04 ± 0.09 |
TK (mg·kg−1) | 23.67 ± 0.05 |
AK (mg·kg−1) | 5.34 ± 0.31 |
EC (S.m−1) | 0.001 ± 0.00 |
Parameters | Values |
---|---|
PWP (cm3 water·cm−3 soil) | 0.04 |
FC (cm3 water·cm−3 soil) | 0.19 |
PAW (cm3 water·cm−3 soil) | 0.15 |
Parameters | Sawdust | Dolomite | Charcoal | Compost |
---|---|---|---|---|
pH | 6.3 | 6.0 | 7.6 | 7.2 |
CEC (mmol·kg−1) | 55 | 277 | 345 | 1254 |
TN (%) | 0.04 | n.d | 0.38 | 1.65 |
TOC (%) | 45.96 | 0.54 | 74.35 | 22.67 |
Carbonate (%) | n.d | 12.29 | n.d | n.d |
CN Ratio | 1173 | - | 196 | 14 |
DOC (mg·L−1) | 302 | 1.69 | 206 | 749 |
TP (mg·kg−1) | n.d | 272 | 3603 | 23701 |
AP (mg·kg−1) | n.d | 89 | 2494 | 21631 |
TK (mg·kg−1) | 3097 | 81 | 15483 | 23102 |
AK (mg·kg−1) | 771 | 40 | 9155 | 17117 |
EC (S·m−1) | 0.03 | 0.01 | 0.31 | 0.67 |
∆13C (‰) | |
---|---|
Treatment | |
Control | 20.54 ± 0.25 b |
Dolomite | 21.17 ± 0.28 ab |
Compost | 20.99 ± 0.20 ab |
Charcoal | 21.48 ± 0.21 a |
Compost and charcoal | 20.66 ± 0.42 ab |
Charcoal and sawdust | 21.21 ± 0.26 ab |
Plant Part | |
Tuber | 20.22 ± 0.14 b |
Leaves | 21.16 ± 0.23 a |
Stem | 21.64 ± 0.09 a |
Robust ANOVA | |
Treatment (T) | 20.9843 * |
Plant part (T) | 89.7209 *** |
Treatment × Plant part (T × P) | 28.19 |
∆13C (‰) | |
---|---|
Treatment | |
Control | 21.68 ± 0.21 b |
Dolomite | 21.93 ± 0.23 ab |
Compost | 22.06 ± 0.21 ab |
Charcoal | 22.16 ± 0.21 ab |
Compost and charcoal | 22.74 ± 0.21 a |
Charcoal and sawdust | 22.04 ± 0.23 ab |
Season | |
First season | 22.64 ± 0.12 a |
Second season | 21.56 ± 0.13 b |
Two-way ANOVA | |
Treatment | 2.713ns |
Season | 37.018 *** |
Treatment × Season | 0.383ns |
Parameters | Control | Dolomite | Compost | Charcoal | Charcoal + Compost | Charcoal + Sawdust |
---|---|---|---|---|---|---|
pH | 5.73 ± 0.05 c | 6.88 ± 0.06 a | 6.20 ± 0.07 b | 5.88 ± 0.03 c | 5.95 ± 0.10 bc | 5.85 ± 0.03 c |
CEC (mmol kg−1) | 1.53 ± 0.50 c | 14.58 ± 1.29 a | 3.84 ± 0.43 bc | 3.09 ± 0.50 bc | 4.85 ± 0.50 b | 3.37 ± 0.61 bc |
TN (%) | 0.001 ± 0.00 | 0.002 ± 0.00 | 0.005 ± 0.00 | 0.005 ± 0.00 | 0.015 ± 0.00 | 0.005 ± 0.00 |
TOC (%) | 0.32 ± 0.05 b | 0.78 ± 0.08 ab | 0.67 ± 0.06 ab | 0.85 ± 0.16 a | 1.30 ± 0.24 a | 0.99 ± 0.16 a |
DOC (mg L−1) | 10.38 ± 0.95 c | 20.30 ± 0.84a | 14.19 ± 0.79 bc | 13.67 ± 0.98 bc | 18.04 ± 1.10 ab | 14.56 ± 1.18 bc |
TP (mg·kg−1) | 13.00 ± 2.53 b | 16.30 ± 3.56 b | 44.60 ± 4.86 a | 17.80 ± 2.80 b | 41.16 ± 2.20 a | 15.38 ± 2.99 b |
AP (mg·kg−1) | 3.21 ± 0.51 b | 6.83 ± 1.48 b | 20.52 ± 3.48 a | 9.31 ± 0.66 b | 23.65 ± 1.32 a | 15.85 ± 2.76 a |
TK (mg·kg−1) | 46.03 ± 5.89 | 55.25 ± 6.24 | 52.08 ± 6.30 | 56.64 ± 5.96 | 50.70 ± 5.34 | 50.35 ± 1.12 |
AK (mg·kg−1) | 4.94 ± 0.98 b | 5.79 ± 0.56 b | 13.98 ± 1.49 a | 14.85 ± 1.72 a | 14.46 ± 0.79 a | 13.68 ± 1.29 a |
EC (S·m−1) | 0.001 ± 0.00 b | 0.006 ± 0.00 a | 0.002 ± 0.00 b | 0.001 ± 0.00 b | 0.002 ± 0.00 b | 0.001 ± 0.00 b |
WHC (%) | 17.70 ± 0.24 b | 18.74 ± 1.69 ab | 22.29 ± 1.38 ab | 21.25 ± 1.13 ab | 23.40 ± 1.18 a | 20.47 ± 1.43 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maftukhah, R.; Kral, R.M.; Mentler, A.; Ngadisih, N.; Murtiningrum, M.; Keiblinger, K.M.; Gartner, M.; Hood-Nowotny, R. Post-Tin-Mining Agricultural Soil Regeneration Using Local Resources, Reduces Drought Stress and Increases Crop Production on Bangka Island, Indonesia. Agronomy 2023, 13, 50. https://doi.org/10.3390/agronomy13010050
Maftukhah R, Kral RM, Mentler A, Ngadisih N, Murtiningrum M, Keiblinger KM, Gartner M, Hood-Nowotny R. Post-Tin-Mining Agricultural Soil Regeneration Using Local Resources, Reduces Drought Stress and Increases Crop Production on Bangka Island, Indonesia. Agronomy. 2023; 13(1):50. https://doi.org/10.3390/agronomy13010050
Chicago/Turabian StyleMaftukhah, Rizki, Rosana M. Kral, Axel Mentler, Ngadisih Ngadisih, Murtiningrum Murtiningrum, Katharina M. Keiblinger, Michael Gartner, and Rebecca Hood-Nowotny. 2023. "Post-Tin-Mining Agricultural Soil Regeneration Using Local Resources, Reduces Drought Stress and Increases Crop Production on Bangka Island, Indonesia" Agronomy 13, no. 1: 50. https://doi.org/10.3390/agronomy13010050
APA StyleMaftukhah, R., Kral, R. M., Mentler, A., Ngadisih, N., Murtiningrum, M., Keiblinger, K. M., Gartner, M., & Hood-Nowotny, R. (2023). Post-Tin-Mining Agricultural Soil Regeneration Using Local Resources, Reduces Drought Stress and Increases Crop Production on Bangka Island, Indonesia. Agronomy, 13(1), 50. https://doi.org/10.3390/agronomy13010050