Optimal Drip Fertigation Regimes Improved Soil Micro-Environment, Root Growth and Grain Yield of Spring Maize in Arid Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Experimental Plots
2.2. Experimental Design
2.3. Measurements and Methods
2.3.1. Soil Water Content
2.3.2. Soil Temperature
2.3.3. Soil Nitrate Nitrogen Content
2.3.4. Root Sampling
2.3.5. Grain Yield
2.3.6. Crop Water Consumption
2.3.7. Water Use Efficiency (WUE)
2.3.8. Partial Factor Productivity (PFP)
2.4. Data Analysis
3. Results
3.1. Soil Water Content
3.2. Soil Temperature
3.3. Soil Nitrate Nitrogen
3.4. Root Length Density
3.5. Yield, Water Use Efficiency and Partial Factor Productivity
4. Discussion
4.1. Effects of Irrigation and Fertilization on Soil Water Content and Soil Temperature
4.2. Effects of Irrigation and Fertilization on Soil Nitrate Nitrogen Content
4.3. Effects of Irrigation and Fertilization on Root Growth of Spring Maize
4.4. Effects of Irrigation and Fertigation on Yield, Water Use Efficiency and Partial Factor Productivity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hao, B.Z.; Xue, Q.W.; Marek, T.H.; Jessup, K.E.; Hou, X.B.; Xu, X.X.; Bynum, E.D.; Bean, B.W. Soil water extraction, water use, and grain yield by drought-tolerant maize on the Texas High Plains. Agric. Water Manag. 2015, 155, 11–21. [Google Scholar] [CrossRef]
- Guo, X.; Feng, Q.; Wei, Y.; Li, Z.; Liu, W. An overview of precipitation isotopes over the Extensive Hexi Region in NW China. Arab. J. Geosci. 2015, 8, 4365–4378. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, J.M.; Simón, L.; González-Piqueras, J.; Montoya, F.; López-Urrea, R. Monitoring crop evapotranspiration and transpiration/evaporation partitioning in a drip-irrigated young almond orchard applying a two-source surface energy balance model. Water 2021, 13, 2073. [Google Scholar] [CrossRef]
- Pool, S.; Francés, F.; Garcia-Prats, A.; Pulido-Velazquez, M.; Sanchis-Ibor, C.; Schirmer, M. From flood to drip irrigation under climate change: Impacts on evapotranspiration and groundwater recharge in the Mediterranean region of Valencia (Spain). Earths Future 2021, 9, e2020EF001859. [Google Scholar] [CrossRef]
- Jamshidi, S.; Zand-Parsa, S.; Niyogi, D. Physiological responses of orange trees subject to regulated deficit irrigation and partial root drying. Irrig. Sci. 2021, 39, 441–455. [Google Scholar] [CrossRef]
- Lin, W.; Liu, W.; Zhou, S.; Liu, C. Influence of plastic film mulch on maize water use efficiency in the Loess Plateau of China. Agric. Water Manag. 2019, 224, 105710. [Google Scholar] [CrossRef]
- Ma, G.J.; Liu, J.D.; Lin, D.; Chen, N.L. Status of water use and its eco-environmental effects in shiyanghe river basin. J. Desert Res. 2008, 28, 592–597. [Google Scholar]
- Filipovic, V.; Romic, D.; Romic, M.; Borosic, J.; Filipovic, L.; Mallmann, F.J.; Robinson, D.A. Plastic mulch and nitrogen fertigation in growing vegetables modify soil temperature, water and nitrate dynamics: Experimental results and a modeling study. Agric. Water Manag. 2016, 176, 100–110. [Google Scholar] [CrossRef] [Green Version]
- Jayakumar, M.; Janapriya, S.; Surendran, U. Effect of drip fertigation and polythene mulching on growth and productivity of coconut (Cocos nucifera L.), water, nutrient use efficiency and economic benefits. Agric. Water Manag. 2017, 182, 87–93. [Google Scholar]
- Guo, Y.; Huang, G.; Guo, Q.; Peng, C.; Liu, Y.; Zhang, M.; Duan, L. Increase in root density induced by coronatine improves maize drought resistance in North China. Crop J. 2022, in press. [CrossRef]
- Shao, J.; Liu, P.; Zhao, B.; Zhang, J.; Zhao, X.; Ren, B. Combined effects of high temperature and waterlogging on yield and stem development of summer maize. Crop J. 2022, in press. [CrossRef]
- Zhou, L.F.; Feng, H.; Zhao, Y.; Qi, Z.J.; Zhang, T.B.; He, J.Q.; Dyck, M. Drip irrigation lateral spacing and mulching affects the wetting pattern, shoot-root regulation, and yield of maize in a sand-layered soil. Agric. Water Manag. 2017, 184, 114–123. [Google Scholar] [CrossRef]
- Yang, H.; Chai, Q.; Yin, W.; Hu, F.; Qin, A.; Fan, Z.; Fan, H. Yield photosynthesis and leaf anatomy of maize in inter-and mono-cropping systems at varying plant densities. Crop J. 2022, 10, 893–903. [Google Scholar] [CrossRef]
- Vázquez, N.; Pardo, A.; Suso, M.L.; Quemada, M. Drainage and nitrate leaching under processing tomato growth with drip irrigation and plastic mulching. Agric. Ecosyst. Environ. 2006, 112, 313–323. [Google Scholar] [CrossRef]
- Gu, X.B.; Li, Y.N.; Du, Y.D. Biodegradable film mulching improves soil temperature, moisture and seed yield of winter oilseed rape (Brassica napus L.). Soil Till. Res. 2017, 171, 42–50. [Google Scholar] [CrossRef]
- Wang, X.K.; Li, Z.B.; Xing, Y.Y. Effects of mulching and nitrogen on soil temperature, water content, nitrate-N content and maize yield in the Loess Plateau of China. Agric. Water Manag. 2015, 161, 53–64. [Google Scholar]
- Li, S.E.; Kang, S.Z.; Li, F.S.; Zhang, L. Evapotranspiration and crop coefficient of spring maize with plastic mulch using eddy covariance in northwest China. Agric. Water Manag. 2008, 95, 1214–1222. [Google Scholar] [CrossRef]
- Abou Lila, T.S.; Berndtsson, R.; Persson, M.; Somaida, M.; El-Kiki, M.; Hamed, Y.; Mirdan, A. Numerical evaluation of subsurface trickle irrigation with brackish water. Irrig. Sci. 2013, 31, 1125–1137. [Google Scholar] [CrossRef]
- Skaggs, T.H.; Trout, T.J.; Rothfuss, Y. Drip Irrigation Water Distribution Patterns: Effects of Emitter Rate, Pulsing, and Antecedent Water. Soil Sci. Soc. Am. J. 2010, 74, 1886–1896. [Google Scholar] [CrossRef] [Green Version]
- Van Donk, S.J.; Petersen, J.L.; Davison, D.R. Effect of amount and timing of subsurface drip irrigation on corn yield. Irrig. Sci. 2013, 31, 599–609. [Google Scholar] [CrossRef]
- Sharmasarkar, E.C.; Sharmasarkar, S.; Miller, S.D.; Vance, G.F.; Zhang, R. Assessment of drip and flood irrigation on water and fertilizer use efficiencies for sugarbeets. Agric. Water Manag. 2001, 46, 241–251. [Google Scholar] [CrossRef]
- Bozkurt, Y.; Yazar, A.; Gencel, B.; Sezen, M.S. Optimum lateral spacing for drip-irrigated corn in the Mediterranean Region of Turkey. Agric. Water Manag. 2006, 85, 113–120. [Google Scholar] [CrossRef]
- Chilundo, M.; Joel, A.; Wesstrom, I.; Brito, R.; Messing, I. Response of maize root growth to irrigation and nitrogen management strategies in semi-arid loamy sandy soil. Field Crop. Res. 2017, 200, 143–162. [Google Scholar] [CrossRef]
- Li, X.Y.; Šimůnek, J.; Shi, H.B.; Yan, J.W.; Peng, Z.Y.; Gong, X.W. Spatial distribution of soil water, soil temperature, and plant roots in a drip-irrigated intercropping field with plastic mulch. Eur. J. Agron. 2017, 83, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Rajput, T.B.S.; Kumar, R.; Patel, N. Water and nitrate dynamics in baby corn (Zea mays L.) under different fertigation frequencies and operating pressures in semi-arid region of India. Agric. Water Manag. 2016, 163, 263–274. [Google Scholar] [CrossRef]
- Wang, X.; Shi, Y.; Guo, Z.J.; Zhang, Y.L.; Yu, Z.W. Water use and soil nitrate nitrogen changes under supplemental irrigation with nitrogen application rate in wheat field. Field Crops Res. 2015, 183, 117–125. [Google Scholar] [CrossRef]
- Wang, D.; Shannon, M.C.; Grieve, C.M.; Yates, S.R. Soil water and temperature regimes in drip and sprinkler irrigation, and implications to soybean emergence. Agric. Water Manag. 2000, 43, 15–28. [Google Scholar] [CrossRef]
- Yaghi, T.; Arslan, A.; Naoum, F. Cucumber (Cucumis sativus L.) water use efficiency (WUE) under plastic mulch and drip irrigation. Agric. Water Manag. 2013, 128, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Ceccon, C.; Panzacchi, P.; Scandellari, F.; Prandi, L.; Ventura, M.; Russo, B.; Millard, P.; Tagliavini, M. Spatial and temporal effects of soil temperature and moisture and the relation to fine root density on root and soil respiration in a mature apple orchard. Plant Soil. 2011, 342, 195–206. [Google Scholar] [CrossRef]
- Miller, A.J.; Fan, X.; Orsel, M. Nitrate transport and signalling. J. Exp. Bot. 2007, 58, 2297–2306. [Google Scholar] [CrossRef]
- Barati, V.; Ghadiri, H.; Zand-Parsa, S.; Karimian, N. Nitrogen and water use efficiencies and yield response of barley cultivars under different irrigation and nitrogen regimes in a semi-arid Mediterranean climate. Arch. Agron. Soil Sci. 2015, 61, 15–32. [Google Scholar] [CrossRef]
- Gu, L.M.; Liu, T.N.; Zhao, J.; Dong, S.T.; Liu, P.; Zhang, J.W.; Zhao, B. Nitrate leaching of winter wheat grown in lysimeters as affected by fertilizers and irrigation on the North China Plain. J. Integr. Agr. 2015, 14, 374–388. [Google Scholar] [CrossRef]
- Ali Reza, S.; Tafteh, A. Yield and nitrogen leaching in rapeseed field under different nitrogen rates and water saving irrigation. Agric. Water Manag. 2012, 112, 55–62. [Google Scholar]
- Qi, D.; Hu, T. Effects of nitrogen application rates and irrigation regimes on root growth and nitrogen-use efficiency of maize under alternate partial root-zone irrigation. J. Soil. Sci. Plant Nutr. 2022, 22, 2793–2804. [Google Scholar] [CrossRef]
- Fang, J.; Su, Y. Effects of soils and irrigation volume on maize yield, irrigation water productivity, and nitrogen uptake. Sci. Rep. 2019, 9, 7740. [Google Scholar] [CrossRef] [Green Version]
- Bar-Yosef, B.; Stemmers, C.; Sagir, B. Growth of trickle–irrigated tomato as related to rooting volume and uptake of N and water. Agron. J. 1980, 72, 815–822. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, K.L.; Dong, S.T.; Liu, P.; Zhao, B.; Zhang, J.W. Effects of integrated agronomic practices management on root growth and development of summer maize. Eur. J. Agron. 2017, 84, 140–151. [Google Scholar] [CrossRef]
- Sui, J.; Wang, J.D.; Gong, S.H.; Xu, D.; Zhang, Y.Q.; Qin, Q.M. Assessment of maize yield-increasing potential and optimum N level under mulched drip irrigation in the Northeast of China. Field Crops Res. 2018, 215, 132–139. [Google Scholar] [CrossRef]
- Yang, H.; Du, T.S.; Qiu, R.J.; Chen, J.L.; Wang, F.X.; Li, Y.; Wang, C.X.; Gao, L.H.; Kang, S.Z. Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China. Agric. Water Manag. 2017, 171, 162–172. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Wang, F.X.; Shock, C.C.; Yang, K.J.; Kang, S.Z.; Qin, J.T.; Li, S.N. Effects of plastic mulch on the radiative and thermal conditions and potato growth under drip irrigation in arid Northwest China. Soil Till. Res. 2017, 172, 1–11. [Google Scholar] [CrossRef]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop evapotranspiration guidelines for computing crop requirements. FAO Irrig. Drain. Report modeling and application. J. Hydrol. 1998, 285, 19–40. [Google Scholar]
- Wang, H.; Wu, L.; Cheng, M.; Fan, J.; Zhang, F.; Zou, Y.; Chau, H.W.; Gao, Z.; Wang, X. Coupling effects of water and fertilizer on yield, water and fertilizer use efficiency of drip-fertigated cotton in northern Xinjiang, China. Field Crop. Res. 2018, 219, 169–179. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Oliveira, M.R.G. Tomato root distribution, yield and fruit quality under different subsurface drip irrigation regimes and depths. Irrig. Sci. 2005, 24, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Ren, D.Y.; Xu, X.; Hao, Y.Y.; Huang, G.H. Modeling and assessing field irrigation water use in a canal system of Hetao, upper Yellow River basin: Application to maize, sunflower and watermelon. J. Hydrol. 2016, 532, 122–139. [Google Scholar] [CrossRef]
- Feddes, R.; Kowalik, P.; Kolii-Malinka, K.; Zaradny, H. Simulation of field water uptake by plants using A soil water dependent root extraction function. J. Hydrol. 1976, 31, 13–26. [Google Scholar] [CrossRef]
- Pivonia, S.; Cohen, R.; Cohen, S.; Kigel, J.; Levita, R.; Katan, J. Effect of irrigation regimes on disease expression in melon plants infected with monosporascus cannonballus. Eur. J. Plant Pathol. 2004, 110, 155–161. [Google Scholar] [CrossRef]
- Hunt, H.W.; Fountain, A.G.; Doran, P.T.; Basagic, H. A dynamic physical model for soil temperature and water in Taylor Valley, Antarctica. Antarct. Sci. 2010, 22, 419–434. [Google Scholar] [CrossRef] [Green Version]
- Awal, M.A.; Koshi, H.; Ikeda, T. Radiation interception and use by maize/peanut intercrop canopy. Agric. For. Meteorol. 2006, 139, 74–83. [Google Scholar] [CrossRef]
- Gärdenäs, A.I.; Hopmans, J.W.; Hanson, B.R.; Simunek, J. Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation. Agric. Water Manag. 2005, 74, 219–242. [Google Scholar] [CrossRef]
- Jia, X.C.; Sha, L.J.; Liu, P.; Zhao, B.Q.; Gu, L.M.; Dong, S.T.; Bing, S.H.; Zhang, J.W.; Zhao, B. Effect of different nitrogen and irrigation treatments on yield and nitrate leaching of summer maize (Zea mays L.) under lysimeter conditions. Agric. Water Manag. 2014, 137, 92–103. [Google Scholar] [CrossRef]
- Qiu, Z.J.; Li, J.S.; Zhao, W.X. Effects of lateral depth and irrigation level on nitrate and Escherichia coli leaching in the North China Plain for subsurface drip irrigation applying sewage effluent. Irrig. Sci. 2017, 35, 469–482. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Li, Y. Effects of drip irrigation system uniformity and nitrogen applied on deep percolation and nitrate leaching during growing seasons of spring maize in semi-humid region. Irrig. Sci. 2014, 32, 221–236. [Google Scholar] [CrossRef]
- Hou, X.; Fan, J.; Zhang, F.; Hu, W.; Yan, F.; Xiao, C.; Li, Y.; Cheng, H. Determining water use and crop coefficients of drip-irrigated cotton in south Xinjiang of China under various irrigation amounts. Ind. Crop. Prod. 2022, 176, 114376. [Google Scholar] [CrossRef]
- Pasternak, T.; Rudas, V.; Potters, G.; Jansen, M.A.K. Morphogenic effects of abiotic stress: Reorientation of growth in seedlings. Environ. Exp. Bot. 2005, 53, 299–314. [Google Scholar] [CrossRef]
- Jin, X.; Chen, M.; Fan, Y.; Yan, L.; Wang, F. Effects of mulched drip Irrigation on soil moisture and groundwater recharge in the Xiliao River Plain, China. Water 2018, 10, 1755. [Google Scholar] [CrossRef]
- Irmak, S.; Djaman, K.; Rudnick, D.R. Effect of full and limited irrigation amount and frequency on subsurface drip-irrigated maize evapotranspiration, yield, water use efficiency and yield response factors. Irrig. Sci. 2016, 34, 271–286. [Google Scholar] [CrossRef]
Treatment | Soil Layer in 2015 (cm) | Treatment | Soil Layer in 2016 (cm) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0–20 | 20–40 | 40–60 | 60–80 | 80–100 | 100–120 | 0–20 | 20–40 | 40–60 | 60–80 | 80–100 | 100–120 | ||
Irrigation | Irrigation | ||||||||||||
I60 | 0.193 a | 0.188 a | 0.213 a | 0.211 ab | 0.229 c | 0.225 c | I60 | 0.187 ab | 0.192 ab | 0.212 b | 0.198 c | 0.214 d | 0.213 d |
I75 | 0.186 ab | 0.182 ab | 0.206 ab | 0.216 ab | 0.241 b | 0.245 b | I80 | 0.185 ab | 0.187 b | 0.204 bc | 0.21 b | 0.226 c | 0.226 c |
I90 | 0.177 b | 0.173 b | 0.196 b | 0.205 b | 0.243 b | 0.247 b | I100 | 0.182 b | 0.173 c | 0.195 c | 0.204 bc | 0.236 b | 0.234 b |
I105 | 0.179 b | 0.18 ab | 0.198 ab | 0.221 a | 0.252 a | 0.268 a | I120 | 0.194 a | 0.201 a | 0.229 a | 0.228 a | 0.246 a | 0.246 a |
Location | Location | ||||||||||||
P1 | 0.183 b | 0.181 b | 0.206 b | 0.215 b | 0.242 a | 0.247 a | P1 | 0.183 b | 0.183 b | 0.209 b | 0.209 b | 0.232 a | 0.232 a |
P2 | 0.18 b | 0.175 b | 0.196 b | 0.21 b | 0.242 a | 0.245 a | P2 | 0.18 b | 0.182 b | 0.208 b | 0.208 b | 0.231 a | 0.231 a |
P3 | 0.176 b | 0.178 b | 0.198 b | 0.209 b | 0.241 a | 0.245 a | P3 | 0.181 b | 0.184 b | 0.204 b | 0.204 b | 0.228 a | 0.23 a |
P4 | 0.181 b | 0.179 b | 0.205 b | 0.21 b | 0.244 a | 0.247 a | P4 | 0.185 b | 0.188 b | 0.21 b | 0.21 b | 0.229 a | 0.229 a |
P5 | 0.196 a | 0.191 a | 0.212 a | 0.223 a | 0.239 a | 0.248 a | P5 | 0.206 a | 0.205 a | 0.219 a | 0.219 a | 0.232 a | 0.227 b |
Treatment | Soil Layer in 2015 (cm) | Treatment | Soil Layer in 2016 (cm) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0–20 | 20–40 | 40–60 | 60–80 | 80–100 | 100–120 | 0–20 | 20–40 | 40–60 | 60–80 | 80–100 | 100–120 | ||
Irrigation | Irrigation | ||||||||||||
I60 | 17.74 a | 14.99 a | 35.6 a | 29.3 a | 37.34 a | 25.66 c | I60 | 19.15 a | 24.94 a | 39.7 a | 37.81 a | 28.74 a | 27.9 b |
I75 | 14.32 b | 13.26 b | 26.83 b | 24.38 b | 32.29 b | 32.82 b | I80 | 9.97 c | 18.74 b | 29.52 b | 35.74 b | 28.06 a | 23.5 c |
I90 | 9.58 c | 12.38 c | 9.86 c | 22.62 b | 26.13 c | 37.36 a | I100 | 8.88 d | 7.23 d | 15.65 c | 22.34 c | 13.12 c | 33.95 a |
I105 | 9.66 c | 13.38 b | 8.72 c | 12.82 c | 20.8 d | 27.87 c | I120 | 14.59 b | 10.69 c | 12.3 d | 15.66 d | 19.62 b | 25.66 bc |
Location | Location | ||||||||||||
P1 | 10.03 d | 15.38 a | 19.06 bc | 23.14 c | 30.96 a | 34.29 a | P1 | 9.89 d | 13.97 c | 21.87 cd | 27.98 a | 21.92 abc | 30.98 a |
P2 | 6.61 e | 11.06 c | 16.06 c | 20.64 d | 31.09 a | 33.58 a | P2 | 9.25 d | 13.33 c | 20.7 d | 27.82 ab | 20.86 c | 27.28 bc |
P3 | 12.99 c | 11.71 c | 18.37 bc | 16.29 e | 27.52 b | 27.06 c | P3 | 11.1 c | 13.97 c | 23.09 bc | 28.4 a | 21.58 bc | 28.35 b |
P4 | 14.96 b | 12.9 b | 19.87 b | 26.43 a | 29.84 ab | 31.04 b | P4 | 15.3 b | 16.94 b | 24.58 b | 26.16 b | 23.58 ab | 24.86 c |
P5 | 19.55 a | 16.48 a | 27.49 a | 24.88 b | 26.3 b | 28.69 c | P5 | 20.21 a | 18.78 a | 31.23 a | 29.06 a | 23.97 a | 27.31 bc |
In 2015 | In 2016 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | 100-Grain Weight (g) | Yield /(t ha−1) | Water Consumption (mm) | WUE /(kg m−3) | PFP /(kg kg−1) | Treatment | 100-Grain Weight (g) | Yield /(t ha−1) | Water Consumption (mm) | WUE (kg m−3) | PFP (kg kg−1) |
I60F180 | 34.4 b | 13.08 de | 458.81 bc | 2.85 bc | 36.33 bc | I60F180 | 33.6 c | 14.31 d | 437.31 c | 3.27 b | 39.76 c |
I75F180 | 35.8 ab | 15.92 bc | 497.15 b | 3.2 ab | 44.23 ab | I80F180 | 34.8 bc | 17.77 bc | 505.37 bc | 3.52 ab | 49.36 b |
I90F180 | 37.1 ab | 18.26 a | 549.6 a | 3.32 a | 50.73 a | I100F180 | 36.3 ab | 20.53 a | 513.88 ab | 3.99 a | 57.02 a |
I105F180 | 39.1 a | 18.81 a | 595.72 a | 3.16 ab | 52.26 a | I120F180 | 36.7 ab | 18.78 abc | 567.06 a | 3.31 b | 52.18 ab |
I60F240 | 34.45 b | 11.71 e | 446.28 c | 2.62 c | 24.4 d | I60F240 | 34.28 bc | 13.04 d | 431.73 c | 3.02 c | 27.17 d |
I75F240 | 36.13 ab | 15.22 cd | 491.08 bc | 3.1 b | 31.7 cd | I80F240 | 35.12 b | 17.17 c | 492.13 bc | 3.49 ab | 35.77 c |
I90F240 | 37.57 ab | 17.47 ab | 541.09 a | 3.23 ab | 36.4 bc | I100F240 | 36.66 ab | 19.6 ab | 505.81 ab | 3.88 ab | 40.84 c |
I105F240 | 38.75 ab | 17.95 ab | 591.44 a | 3.03 bc | 37.39 bc | I120F240 | 37.07 a | 17.81 bc | 564.15 a | 3.16 bc | 37.1 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Zou, H.; Lai, Z.; Zhang, F.; Fan, J. Optimal Drip Fertigation Regimes Improved Soil Micro-Environment, Root Growth and Grain Yield of Spring Maize in Arid Northwest China. Agronomy 2023, 13, 227. https://doi.org/10.3390/agronomy13010227
Li Z, Zou H, Lai Z, Zhang F, Fan J. Optimal Drip Fertigation Regimes Improved Soil Micro-Environment, Root Growth and Grain Yield of Spring Maize in Arid Northwest China. Agronomy. 2023; 13(1):227. https://doi.org/10.3390/agronomy13010227
Chicago/Turabian StyleLi, Zhijun, Haiyang Zou, Zhenlin Lai, Fucang Zhang, and Junliang Fan. 2023. "Optimal Drip Fertigation Regimes Improved Soil Micro-Environment, Root Growth and Grain Yield of Spring Maize in Arid Northwest China" Agronomy 13, no. 1: 227. https://doi.org/10.3390/agronomy13010227
APA StyleLi, Z., Zou, H., Lai, Z., Zhang, F., & Fan, J. (2023). Optimal Drip Fertigation Regimes Improved Soil Micro-Environment, Root Growth and Grain Yield of Spring Maize in Arid Northwest China. Agronomy, 13(1), 227. https://doi.org/10.3390/agronomy13010227