Plant Performance and Soil Fungal Community Impacts of Enhancing Dioscorea opposita with Spraying Foliar Fertilizer with Different Nutrient Element Combinations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Field Experiment Design and Sampling
2.3. Plant Biomass and Morphological Parameters
2.4. Root Protein, Amino Acid, and Polysaccharide Contents
2.5. Root Chemical Element Contents
2.6. Soil Parameters
2.7. Molecular Analysis
2.8. Bioinformatics Analysis
2.9. Abundance and Diversity Analysis
2.10. Statistical Methods
3. Results
3.1. Growth Parameters and Chemical Composition of Chinese Yam
3.2. Soil Parameters
3.3. Soil Fungal Community Composition
3.4. Variation Partitioning of Fungal Community
3.5. Correlation Analysis
4. Discussion
4.1. Effects of Foliar Fertilizer on the Growth and Chemical Composition of Chinese Yam
4.2. Effect of Foliar Fertilizer on Soil Parameters of Chinese Yam Rhizosphere
4.3. Effect of Foliar Fertilizer on Fungal Community in Rhizosphere Soil of Chinese Yam
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, F.Y.; Zhang, Y.; Wen, Y.R.; Yao, Y.N.; Zhu, J.H.; Liu, X.H.; Bell, A.; Tikkanen-Kaukanen, C. Emulsification properties of polysaccharides from Dioscorea opposita Thunb. Food Chem. 2017, 221, 919–925. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Bai, B.; Liu, X.; Wang, Y.; Li, M.; Zhao, D. A-Glucosidase inhibitors from Chinese yam (Dioscorea opposita Thunb.). Food Chem. 2011, 126, 203–206. [Google Scholar] [CrossRef]
- Zheng, K.Y.; Zhang, Z.; Zhou, W.; Cao, H.; Xiang, F. New phenanthrene glycosides from Dioscorea opposita. J. Asian Nat. Prod. Res. 2014, 16, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.S.; Ng, T.B. A lectin with highly potent inhibitory activity toward breast cancer cells from edible tubers of Dioscorea opposita cv. nagaimo. PLoS ONE 2013, 8, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.; Deng, J.; Chang, H.; Chen, Y.; Lee, M.; Hou, W.; Lee, C.; Huang, S.; Huang, G. Antioxidant and anti-inflammatory properties of Taiwanese yam (Dioscorea japonica Thunb.var. pseudojaponica (Hayata) Yamam.) and its reference compounds. Food Chem. 2013, 141, 1087–1096. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Khanac, M.Z.H.; Yuan, T.T.; Zhang, Y.W.; Liu, X.H.; Du, Z.L.; Zhao, Y.Y. Preparation and characterization of Dioscorea opposita Thunb polysaccharide-zinc inclusion complex and evaluation of anti-diabetic activities. Int. J. Biol. Macromol. 2019, 121, 1029–1036. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.H.; Liu, C.; Huang, M.L.; Liu, K.Z.; Yan, D.Y. Effects of foliar fertilization: A review of current status and future perspectives. J. Soil Sci. Plant Nut. 2021, 21, 104–118. [Google Scholar] [CrossRef]
- Nasiri, Y.; Zehtab-Salmasi, S.; Nasrullahzadeh, S.; Najafi, N.; Ghassemi-Golezani, K. Effects of foliar application of micronutrients (Fe and Zn) on flower yield and essential oil of chamomile (Matricaria chamomilla L.). J. Med. Plants Res. 2010, 4, 1733–1737. [Google Scholar] [CrossRef]
- Marzouk, N.M.; Abd-Alrahman, H.A.; Tanahy, E.L.; Mohmouud, S.H. Impact of foliar spraying of nano micronutrient fertilizers on the growth, yield, physical quality, and nutritional value of two snap bean cultivars in sandy soils. Bull. Natl. Res. Cent. 2019, 43, 84. [Google Scholar] [CrossRef]
- Reuvevi, R.; Reuveni, M. Foliar-fertilizer therapy—A concept in integrated pest management. Crop Prot. 1998, 17, 111–118. [Google Scholar] [CrossRef]
- Dong, S.F.; Cheng, L.L.; Carolyn, F.S.; Fuchigami, L.H. Nitrogen absorption, translocation and distribution from urea applied in autumn to leaves of young potted apple (Malus domestica) trees. Tree Physiol. 2002, 22, 1305–1310. [Google Scholar] [CrossRef]
- Anees, M.A.; Ali, A.; Shakoor, U.; Ahmed, F.; Hasnain, Z.; Hussain, A. Foliar applied potassium and zinc enhances growth and yield performance of maize under rainfed conditions. Int. J. Agric. Biol. 2016, 18, 1025–1032. [Google Scholar] [CrossRef]
- JanuškaItIenė, I.; kacIenė, G. The effects of foliar spray fertilizers on the tolerance of Hordeum vulgare to UV-B radiation and drought stress. Cereal Res. Commun. 2017, 45, 390–400. [Google Scholar] [CrossRef]
- Ali, M.M.E.; Petropoulos, S.A.; Selim, D.A.H.; Elbagory, M.; Othman, M.M.; Omara, A.E.D.; Mohamed, M.H. Plant growth, yield and quality of potato crop in relation to potassium fertilization. Agronomy 2021, 11, 675. [Google Scholar] [CrossRef]
- Sun, L.; He, C.L. The effects of reducing fertilizer application on tomato production, quality and soil nitrate in Chaohu lake basin. Chin. Agric. Sci. Bull. 2011, 27, 250–255. [Google Scholar]
- Moon, J.Y.; Min, B.K.; Shin, J.H.; Choi, Y.C.; Cho, H.J.; Lee, Y.H.; Min, S.R.; Heo, J.Y. Influence of foliar fertilization with monopotassium phosphate on growth and yield of sweet potato (Ipomoea batatas L.). Korean J. Soil Sci. Fert. 2019, 52, 217–225. [Google Scholar] [CrossRef]
- Amerany, F.F.; Meddich, A.; Wahbi, S.; Porzel, A.; Taourirte, M.; Rhazi, M.; Hause, B. Foliar Application of chitosan increases tomato growth and influences mycorrhization and expression of endochitinase-encoding genes. Int. J. Mol. Sci. 2020, 21, 535. [Google Scholar] [CrossRef]
- Khan, M.H.; Meghvansi, M.K.; Gupta, R.; Veer, V.; Singh, L.; Kalita, M.C. Foliar spray with vermiwash modifies the arbuscular mycorrhizal dependency and nutrient stoichiometry of Bhut Jolokia. PLoS ONE 2014, 9, e92318. [Google Scholar] [CrossRef]
- Aghaei, K.; Pirbalouti, A.G.; Mousavi, A.; Badi, H.N.; Mehnatkesh, A. Effects of foliar spraying of L-phenylalanine and application of biofertilizers on growth, yield, and essential oil of hyssop [Hyssopus officinalis L. subsp. angustifolius (Bieb.)]. Biocatal. Agri. Biotechnol. 2019, 21, 101318. [Google Scholar] [CrossRef]
- Butler, J.L.; Williams, M.A.; Bottomley, P.J.; Bottomley, P.J.; Myrold, D.D. Microbial community dynamics associated with rhizosphere carbon flow. Appl. Environ. Microbiol. 2003, 69, 6793–6800. [Google Scholar] [CrossRef]
- Cosme, M.; Wurst, S. Interactions between arbuscular mycorrhizal fungi, rhizobacteria, soil phosphorus and plant cytokinin deficiency change the root morphology, yield and quality of tobacco. Soil Biol. Biochem. 2013, 57, 436–443. [Google Scholar] [CrossRef]
- Garbeva, P.; van Elsas, J.D.; van Veen, J.A. Rhizosphere microbial community and its response to plant species and soil history. Plant Soil 2008, 302, 19–32. [Google Scholar] [CrossRef]
- Wu, Z.X.; Hao, Z.P.; Sun, Y.Q.; Guo, L.P.; Huang, L.Q.; Zeng, Y.; Wang, Y.; Yang, L.; Chen, B.D. Comparison on the structure and function of the rhizosphere microbial community between healthy and root-rot Panax notoginseng. Appl. Soil Ecol. 2016, 107, 99–107. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, L.M.; Zheng, Y.M.; Di, H.J.; He, J.Z. Abundance and community composition of methanotrophs in a Chinese paddy soil under long-term fertilization practices. J. Soils Sediments 2008, 8, 406–414. [Google Scholar] [CrossRef]
- Hu, J.L.; Lin, X.G.; Wang, J.H.; Dai, J.; Chen, R.R.; Zhang, J.B.; Wong, M.H. Microbial functional diversity, metabolic quotient, and invertase activity of a sandy loam soil as affected by long-term application of organic amendment and mineral fertilizer. J. Soils Sediments 2011, 11, 271–280. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Chen, L.; Huang, G.; Hu, J. Preparation, deproteinization, characterisation, and antioxidant activity of polysaccharide from cucumber (Cucumis saticus L.). Int. J. Biol. Macromol. 2018, 108, 408–411. [Google Scholar] [CrossRef]
- Liu, Q.; Ge, X.; Chen, L.; Cheng, D.; Yun, Z.; Xu, W.; Shao, R. Purification and analysis of the composition and antioxidant activity of polysaccharides from Helicteres angustifolia L. Int. J. Biol. Macromol. 2018, 107, 2262–2268. [Google Scholar] [CrossRef]
- Bao, S.D. Agrochemical Analysis of Soil; Chinese Agricultural Press: Beijing, China, 2000; pp. 44–49. [Google Scholar]
- Rowell, D.L. Soil Science: Methods and Applications; Longman Group: London, UK, 1994. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; USDA Circular; US Department of Agriculture: Washington, DC, USA, 1954; Volume 939, pp. 1–18.
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1973; pp. 38–56. [Google Scholar]
- Hoffmann, G.G.; Teicher, K. A colorimetric technique for determining urease activity in soil. Dung Boden 1961, 95, 55–63. [Google Scholar] [CrossRef]
- Tarafdar, J.C.; Marschner, H. Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biol. Biochem. 1994, 26, 387–395. [Google Scholar] [CrossRef]
- Adams, R.I.; Miletto, M.; Taylor, J.W.; Bruns, T.D. Dispersal in microbes: Fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. ISME J. 2013, 7, 1262–1273. [Google Scholar] [CrossRef] [PubMed]
- Huson, D.H.; Auch, A.F.; Qi, J.; Schuster, S.C. MEGAN analysis of metagenomic data. Genome Res. 2007, 17, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Maughan, H.; Wang, P.W.; Diaz Caballero, J.; Fung, P.; Gong, Y.; Donaldson, S.L.; Yuan, L.J.; Keshavjee, S.; Zhang, Y.; Yau, Y.C.W. Analysis of the cystic fibrosis lung microbiota via serial Illumina sequencing of bacterial 16S rRNA hypervariable regions. PLoS ONE. 2012, 7, e45791. [Google Scholar] [CrossRef]
- Chen, B.; Teh, B.S.; Sun, C.; Hu, S.; Lu, X.; Boland, W.; Shao, Y.Q. Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera Litt. Sci. Rep. 2016, 6, 29505. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D. Vegan: Community Ecology Package, R package version.2016.2.4–1; Available online: http://cran.r-project.org/package=vegan.
- Goslee, S.C.; Urban, D.L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 2007, 22, 1–19. [Google Scholar] [CrossRef]
- Fageria, N.K.; Barbosa Filho, M.P.; Moreira, A.; Guimarães, C.M. Foliar fertilization of crop plants. J. Plant Nutr. 2009, 32, 1044–1064. [Google Scholar] [CrossRef]
- Jarecki, W. The reaction of winter oilseed rape to different foliar fertilization with macro- and micronutrients. Agriculture 2021, 11, 515. [Google Scholar] [CrossRef]
- Kentelky, E.; Szekely-Varga, Z. Impact of foliar fertilization on growth, flowering, and corms production of five Gladiolus varieties. Plants 2021, 10, 1963. [Google Scholar] [CrossRef]
- Fernández, V.; Brown, P.H. From plant surface to plant metabolism: The uncertain fate of foliar-applied nutrients. Front. Plant Sci. 2013, 4, 289. [Google Scholar] [CrossRef]
- Jabborova, D.; Sayyed, R.Z.; Azimov, A.; Jabbarov, Z.; Matchanov, A.; Enakiev, Y.; Baazeem, A.; Sabagh, A.E.L.; Danish, S.; Datta, R. Impact of mineral fertilizers on mineral nutrients in the ginger rhizome and on soil enzymes activities and soil properties. Saudi J. Biol. Sci. 2021, 28, 5268–5274. [Google Scholar] [CrossRef]
- Pettigrew, W.T.; Meredith, W.R.J.; Young, L.D. Potassium fertilization effects on cotton lint yield, yield components and reniform nematode populations. Argon. J. 2005, 97, 1245–1251. [Google Scholar] [CrossRef]
- Khalid, K.A. Effect of NP and foliar spray on growth and chemical compositions of some medicinal Apiaceae plants grow in arid regions in Egypt. J. Soil Sci. Plant Nutr. 2012, 12, 617–632. [Google Scholar] [CrossRef]
- Gaj, R.; Borowski-Beszta, J. Effects of foliar fertilization with potassium and micronutrients on potato yield and quality. Eur. J. Hortic. Sci. 2020, 85, 394–400. [Google Scholar] [CrossRef]
- Singh, P.; Dwivedi, P. Micronutrients zinc and boron enhance stevioside content in Stevia rebaudiana plants while maintaining genetic fidelity. Ind. Crop Prod. 2019, 140, 111646. [Google Scholar] [CrossRef]
- Raliya, R.; Franke, C.; Chavalmane, S.; Nair, R.; Reed, N.; Biswas, P. Quantitative understanding of nanoparticle uptake in watermelon. Front. Plant Sci. 2016, 7, 1288. [Google Scholar] [CrossRef]
- Dijkstra, F.A.; Carrillo, Y.; Pendall, E.; Morgan, J.A. Rhizosphere priming: A nutrientperspective. Front. Microbiol. 2013, 4, 216. [Google Scholar] [CrossRef]
- Zhou, W.X.; Duan, Y.Y.; Zhang, Y.J.; Wang, H.; Huang, D.H.; Zhang, M.D. Effects of foliar selenium application on growth and rhizospheric soil micro-ecological environment of Atractylodes macrocephala Koidz. S. Afr. J. Bot. 2021, 137, 98–109. [Google Scholar] [CrossRef]
- Srinivasan, V.; Thankamani, C.K.; Dinesh, R.; Kandiannan, K.; Hamza, S.; Leela, N.K.; Zachariah, T.J. Variations in soil properties, rhizome yield, and quality as influenced by different nutrient management schedules in rainfed ginger. Agric. Res. 2019, 8, 218–230. [Google Scholar] [CrossRef]
- Niewiadomska, A.; Sulewska, H.; Wolna-Maruwka, A.; Ratajczak, K.; Waraczewska, Z.; Budka, A. The influence of bio-stimulants and foliar fertilizers on yield, plant features, and the level of soil biochemical activity in white lupine (Lupinus albus L.) cultivation. Agronomy 2020, 10, 150. [Google Scholar] [CrossRef]
- Bana, R.S.; Grover, M.; Kumar, V.; Jat, G.S.; Kuri, B.R.; Singh, D.; Kumar, H.; Bamboriya, S.D. Multi-micronutrient foliar fertilization in eggplant under diverse fertility scenarios: Effects on productivity, nutrient biofortification and soil microbial activity. Sci. Hort. 2022, 294, 110781. [Google Scholar] [CrossRef]
- Saha, A.; Pipariya, A.; Bhaduri, D. Enzymatic activities and microbial biomass in peanut field soil as affected by the foliar application of tebuconazole. Environ. Earth Sci. 2016, 75, 558. [Google Scholar] [CrossRef]
- Latkovic, D.; Maksimovic, J.; Dinic, Z.; Pivic, R.; Stanojkovic, A.; Stanojkovic-Sebic, A. Case study upon foliar application of biofertilizers affecting microbial biomass and enzyme activity in soil and yield related properties of maize and wheat grains. Biology 2020, 9, 452. [Google Scholar] [CrossRef] [PubMed]
- Zuppinger-Dingley, D.; Schmid, B.; Petermann, J.S.; Yadav, V.; De Deyn, G.B.; Flynn, D.F. Selection for niche differentiation in plant communities increases biodiversity effects. Nature 2014, 515, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Z.; Xu, J.; Riera, N.; Jin, T.; Li, J.Y.; Wang, N.A. Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome. Microbiome 2017, 5, 97. [Google Scholar] [CrossRef] [PubMed]
- Suleiman, M.K.; Dixon, K.; Commander, L.; Nevill, P.; Quoreshi, A.M.; Bhat, N.R.; Manuvel, A.J.; Sivadasan, M.T. Assessment of the diversity of fungal community composition associated with Vachellia pachyceras and its rhizosphere soil from Kuwait Desert. Front. Microbiol. 2019, 10, 63. [Google Scholar] [CrossRef]
- He, C.; Zeng, Q.; Chen, Y.L.; Chen, C.X.; Wang, W.Q.; Hou, J.L.; Li, X.E. Colonization by dark septate endophytes improves the growth and rhizosphere soil microbiome of licorice plants under different water treatments. Appl. Soil Ecol. 2021, 166, 103993. [Google Scholar] [CrossRef]
- Bakker, M.G.; Chaparro, J.M.; Manter, D.K.; Vivanco, J.M. Impacts of bulk soil microbial community structure on rhizosphere microbiomes of Zea mays. Plant Soil 2015, 392, 115–126. [Google Scholar] [CrossRef]
- Guo, Q.X.; Yan, L.J.; Korpelainen, H.; Niinemets, U.; Li, C.Y. Plant-plant interactions and N fertilization shape soil bacterial and fungal communities. Soil Biol. Biochem. 2019, 128, 127–138. [Google Scholar] [CrossRef]
- Esteves, A.R.; MunozPinto, M.F.; Nunes-Costa, D.; Candeias, E.; Silva, D.F.; Magalhães, J.D.; Pereira-Santos, A.R.; Ferreira, I.L.; Alarico, S.; Tiago, I.; et al. Footprints of a microbial toxin from the gut microbiome to mesencephalic mitochondria. Gut 2021, 1–17. [Google Scholar] [CrossRef]
- Kohn, N.; Szopinska-Tokov, J.; Llera Arenas, A.; Beckmann, C.F.; Arias-Vasquez, A.; Aarts, E. Multivariate associative patterns between the gut microbiota and large-scale brain network connectivity. Gut Microbes 2021, 13, e2006586. [Google Scholar] [CrossRef]
MAE | MIE | MAE × MIE | ||||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
Plant height (cm) | 8.21 | ** | 2.02 | NS | 9.08 | ** |
Leaf number (No.) | 2.87 | NS | 1.86 | NS | 5.74 | * |
Root biomass (g) | 7.99 | ** | 2.24 | NS | 2.61 | NS |
Root diameter (mm) | 5.48 | * | 0.42 | NS | 1.15 | NS |
Polysaccharide content (mg/g) | 8.11 | ** | 5.82 | * | 0.89 | NS |
Protein content(g/100 g) | 7.92 | ** | 1.73 | NS | 1.69 | NS |
Total amino acids content (mg/g) | 10.48 | *** | 5.02 | * | 2.86 | NS |
Total N content (mg/g) | 7.69 | ** | 3.33 | NS | 5.24 | * |
Total P content (mg/g) | 6.84 | * | 1.14 | NS | 5.18 | * |
Total K content (mg/g) | 9.56 | ** | 0.76 | NS | 8.71 | ** |
Fe content (μg/g) | 5.28 | * | 9.02 | ** | 7.57 | ** |
Mn content (μg/g) | 1.49 | NS | 6.08 | * | 6.15 | * |
Zn content (μg/g) | 5.55 | * | 8.16 | ** | 7.84 | ** |
MAE | MIE | MAE × MIE | ||||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
Soil organic matter (mg/g) | 6.03 | * | 9.58 | ** | 0.41 | NS |
Soil pH | 5.02 | * | 1.02 | NS | 2.57 | NS |
Soil available N (mg/kg) | 2.98 | NS | 0.87 | NS | 2.15 | NS |
Soil available P (mg/kg) | 0.55 | NS | 0.73 | NS | 1.01 | NS |
Soil available K (mg/kg) | 5.57 | * | 0.62 | NS | 0.89 | NS |
Soil Fe (g/kg) | 6.45 | * | 6.66 | * | 5.20 | * |
Soil Mn (g/kg) | 5.02 | * | 5.82 | * | 118 | NS |
Soil Zn (g/kg) | 5.71 | * | 6.24 | * | 6.05 | * |
Acid phosphatase (μg/g/h) | 8.48 | ** | 4.71 | NS | 5.09 | * |
Alkaline phosphatase (μg/g/h) | 9.21 | ** | 1.08 | NS | 9.27 | ** |
Urease (μg/g/h) | 5.60 | * | 1.67 | NS | 0.58 | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, C.; Zhang, L.; Li, X. Plant Performance and Soil Fungal Community Impacts of Enhancing Dioscorea opposita with Spraying Foliar Fertilizer with Different Nutrient Element Combinations. Agronomy 2022, 12, 2017. https://doi.org/10.3390/agronomy12092017
He C, Zhang L, Li X. Plant Performance and Soil Fungal Community Impacts of Enhancing Dioscorea opposita with Spraying Foliar Fertilizer with Different Nutrient Element Combinations. Agronomy. 2022; 12(9):2017. https://doi.org/10.3390/agronomy12092017
Chicago/Turabian StyleHe, Chao, Lu Zhang, and Xianen Li. 2022. "Plant Performance and Soil Fungal Community Impacts of Enhancing Dioscorea opposita with Spraying Foliar Fertilizer with Different Nutrient Element Combinations" Agronomy 12, no. 9: 2017. https://doi.org/10.3390/agronomy12092017