GrasProg: Pasture Model for Predicting Daily Pasture Growth in Intensive Grassland Production Systems in Northwest Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Experimental Sites
2.3. Model Description
2.4. Model Calibration and Statistical Analysis
3. Results
3.1. Growth Rates and Annual Dry-Matter Production
3.2. GrasProg Calibration
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dierschke, H.; Briemle, G. Kulturgrasland–Ökosysteme Mitteleuropas aus Geobotanischer Sicht; Eugen Ulmer: Stuttgart, Germany, 2008. [Google Scholar]
- van den Pol-van Dasselaar, A.; Hennessy, D.; Isselstein, J. Grazing of Dairy Cows in Europe—An In-Depth Analysis Based on the Perception of Grassland Experts. Sustainability 2020, 12, 1098. [Google Scholar] [CrossRef] [Green Version]
- Taube, F.; Gierus, M.; Hermann, A.; Loges, R.; Schonbach, P. Grassland and globalization–challenges for north-west European grass and forage research. Grass Forage Sci. 2014, 69, 2–16. [Google Scholar] [CrossRef]
- Vogeler, C.S.; Hornung, J.; Bandelow, N.C. Farm animal welfare policymaking in the European Parliament—A social identity perspective on voting behaviour. J. Environ. Policy Plan. 2020, 22, 518–530. [Google Scholar] [CrossRef]
- Clay, N.; Garnett, T.; Lorimer, J. Dairy intensification: Drivers, impacts and alternatives. Ambio 2020, 49, 35–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schils, R.; Philipsen, B.; Hoekstra, N.; Holshof, G.; Zom, R.; Hoving, I.; van Reenen, K.; Stienezen, M.; Klootwijk, C.; van der Werf, J.; et al. Amazing Grazing: A Public and Private Partnership to Stimulate Grazing Practices in Intensive Dairy Systems. Sustainability 2019, 11, 5868. [Google Scholar] [CrossRef] [Green Version]
- Eurostat. LUCAS the EU’s Land Use and Land Cover Survey. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=LUCAS_-_Land_use_and_land_cover_survey (accessed on 15 April 2022).
- Destatis. Bodennutzung der Betriebe-Landwirtschaftlich Genutzte Flächen-Fachserie 3 Reihe 3.1.2–2019. 2019. Available online: https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Publikationen/Bodennutzung/landwirtschaftliche-nutzflaeche-2030312197004.html (accessed on 15 April 2022).
- Smit, H.J.; Metzger, M.J.; Ewert, F. Spatial distribution of grassland productivity and land use in Europe. Agric. Syst. 2008, 98, 208–219. [Google Scholar] [CrossRef]
- Dellar, M.; Topp, C.; Banos, G.; Wall, E. A meta-analysis on the effects of climate change on the yield and quality of European pastures. Agric. Ecosyst. Environ. 2018, 265, 413–420. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Lee, M.R.F.; Rivero, M.J.; Chamberlain, A.T. Some challenges and opportunities for grazing dairy cows on temperate pastures. Grass Forage Sci. 2019, 75, 1–17. [Google Scholar] [CrossRef]
- White, S.L.; Benson, G.; Washburn, S.; Green, J. Milk Production and Economic Measures in Confinement or Pasture Systems Using Seasonally Calved Holstein and Jersey Cows. J. Dairy Sci. 2002, 85, 95–104. [Google Scholar] [CrossRef]
- Loges, R.; Mues, S.; Kluß, C.; Reinsch, T.; Lorenz, H.; Humphreys, J.; Taube, F. Eco-efficient milk production in northern Germany inspired by the Irish rotational grazing system. In Sustainable Meat and Milk Production from Grasslands, Proceedings of the 27th General Meeting of the European Grassland Federation, Cork, Ireland, 17–21 June 2018; Horan, B., Hennessy, D., O’Donovan, M., O’Donovan, O., Kennedy, E., McCarthy, B., Finn, J.A., O’Brien, B., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018. [Google Scholar]
- Reinsch, T.; Loza, C.; Malisch, C.S.; Vogeler, I.; Kluß, C.; Loges, R.; Taube, F. Proceedings of the New Zealand Society of Animal Production toward Specialized or Integrated Systems in Northwest Europe: On-Farm Eco-Efficiency of Dairy Farming in Germany. Front. Sustain. Food Syst. 2021, 5, 167. [Google Scholar]
- Dillon, P. Achieving high dry-matter intake from pasture with grazing dairy cows. Frontis 2007, 1–26. [Google Scholar]
- Taube, F. Growth Characteristics of Contrasting Varieties of Perennial Ryegrass (Lolium perenne L.). J. Agron. Crop Sci. 1990, 165, 159–170. [Google Scholar] [CrossRef]
- Wingler, A.; Hennessy, D. Limitation of grassland productivity by low temperature and seasonality of growth. Front. Plant Sci. 2016, 7, 1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jewiss, O.R. Tillering in grasses—Its significance and control. Grass Forage Sci. 1972, 27, 65–82. [Google Scholar] [CrossRef]
- Peyraud, J.; Delagarde, R. Managing variations in dairy cow nutrient supply under grazing. Animal 2013, 7 (Suppl. S1), 57–67. [Google Scholar] [CrossRef] [Green Version]
- Vibart, R.; Vogeler, I.; Dennis, S.; Kaye-Blake, W.; Monaghan, R.; Burggraaf, V.; Beautrais, J.; Mackay, A. A regional assessment of the cost and effectiveness of mitigation measures for reducing nutrient losses to water and greenhouse gas emissions to air from pastoral farms. J. Environ. Manag. 2015, 156, 276–289. [Google Scholar] [CrossRef] [PubMed]
- Köhler, B.; Thurner, S.; Diepolder, M.; Spiekers, H. Effiziente Futterwirtschaft und Eiweißbereitstellung in Futterbaubetrieben. In LfL-Schriftenreihe; Bayerische Landesanstalt für Landwirtschaft (LfL): Freising, Germany, 2014; ISSN 1611-4159. [Google Scholar]
- Fulkerson, W.J.; Donaghy, D.J. Plant-soluble carbohydrate reserves and senescence-Key criteria for developing an effective grazing management system for ryegrass-based pastures: A review. Aust. J. Exp. Agric. 2001, 41, 261. [Google Scholar] [CrossRef]
- Barrett, P.D.; Laidlaw, A.S.; Mayne, C.S. An evaluation of selected perennial ryegrass growth models for development and integration into a pasture management decision support system. J. Agric. Sci. 2004, 142, 327–334. [Google Scholar] [CrossRef]
- Thornley, J.H.M. Grassland Dynamics: An Ecosystem Simulation Model; CAB International: Wallingford, UK, 1998. [Google Scholar]
- Schapendonk, A.; Stol, W.; van Kraalingen, D.; Bouman, B. LINGRA, a sink/source model to simulate grassland productivity in Europe. Eur. J. Agron. 1998, 9, 87–100. [Google Scholar] [CrossRef]
- Duru, M.; Adam, M.; Cruz, P.; Martin, G.; Ansquer, P.; Ducourtieux, C.; Jouany, C.; Theau, J.; Viegas, J. Modelling above-ground herbage mass for a wide range of grassland community types. Ecol. Model. 2009, 220, 209–225. [Google Scholar] [CrossRef]
- Brereton, A.J.; O’Riordan, E. A comparison of grass growth models. In Agrometeorological Modelling: Principles, Data and Applications; AGMET: Dublin, Ireland, 2001; pp. 136–155. [Google Scholar]
- Barrett, P.D.; Laidlaw, A.S.; Mayne, C.S. GrazeGro: A European herbage growth model to predict pasture production in perennial ryegrass swards for decision support. Eur. J. Agron. 2005, 23, 37–56. [Google Scholar] [CrossRef]
- Ruelle, E.; Hennessy, D.; Delaby, L. Development of the Moorepark St Gilles grass growth model (MoSt GG model): A predictive model for grass growth for pasture based systems. Eur. J. Agron. 2018, 99, 80–91. [Google Scholar] [CrossRef]
- Hanrahan, L.; Geoghegan, A.; O’Donovan, M.; Griffith, V.; Ruelle, E.; Wallace, M.; Shalloo, L. PastureBase Ireland: A grassland decision support system and national database. Comput. Electron. Agric. 2017, 136, 193–201. [Google Scholar] [CrossRef]
- Petersen-Fredrich, E.C.; Kornher, A.; Taube, F. Ertragsbildung unterschiedlicher Sortentypen des Deutschen Weidelgrases im Vegetationsablauf in Abhaengigkeit vom Nutyungsregime. 2. Mitteilung: Modellberechnungen. Das Wirtsch. Futter 1989, 35, 289–300. [Google Scholar]
- Herrmann, A.; Kelm, M.; Kornher, A.; Taube, F. Performance of grassland under different cutting regimes as affected by sward composition, nitrogen input, soil conditions and weather—A simulation study. Eur. J. Agron. 2005, 22, 141–158. [Google Scholar] [CrossRef]
- Hartwich, R.; Haase, G.; Richter, A.; Roeschmann, G.; Schmidt, R. Bodenübersichtskarte von Deutschland 1:1.000.000. 1998. Available online: https://www.bgr.bund.de/DE/Themen/Boden/Produkte/Karten/Downloads/BUEK1000.pdf?__blob=publicationFile&v=2 (accessed on 8 May 2022).
- Ernst, P.; Loeper, E.G. Temperaturentwicklung und Vegetationsbeginn auf dem Grünland. Aus der Grünlandlehranstalt und Marschversuchsstation für Niedersachsen. Das Wirtsch. Futter 1976, 22, 5–11. [Google Scholar]
- Corrall, A.J.; Fenlon, J.S. A comparative method for describing the seasonal distribution of production from grasses. J. Agric. Sci. 1978, 91, 61–67. [Google Scholar] [CrossRef]
- Trott, H.; Ingwersen, B.; Wachendorf, M.; Taube, F. Estimation of dry matter yield on permanent grassland by means of height assessment. Pflanzenbauwissenschaften 2002, 6, 78–83. [Google Scholar]
- DLG. Düngung von Wiesen. DLG-Merkblatt 433. 2018. Available online: https://www.dlg.org/de/landwirtschaft/themen/pflanzenbau/pflanzenernaehrung/dlg-merkblatt-433-duengung-von-wiesen-weiden-und-feldfutter?msclkid=50888a50cf8b11ec88df3ba18bba181b (accessed on 7 May 2022).
- Whitehead, D.C. Nutrient Elements in Grassland: Soil-Plant-Animal Relationships; CABI Publishing: Wallingford, UK, 2000. [Google Scholar]
- Torssell, B.W.R.; Kornher, A.; Svensson, A. Optimization of Parameters in a Yield Prediction Model for Temporary Grasslands; Swedish University of Agricultural Sciences: Uppsala, Sweden, 1982. [Google Scholar]
- Kornher, A.; Torssell, B.W.R. Estimation of parameters in a yield prediction model for temporary grasslands using regional experimental data. Swed. J. Agric. Res. 1983, 13, 137–144. [Google Scholar]
- Kornher, A.; Torssell, B.W.R. Simulation of weather x management interactions in temporary grasslands in Sweden. Swed. J. Agric. Res. 1983, 13, 145–155. [Google Scholar]
- Kornher, A.; Torssell, B.W.R. Validation of a yield prediction model for temporary grasslands. Swed. J. Agric. Res. 1983, 13, 125–136. [Google Scholar]
- Herrmann, A.; Kornher, A.; Ernst, P.; Löpmeier, F.-J.; Taube, F. Reifeprüfung Grünland–Einführung des Prognosemodells in Nordrhein-Westfalen. In 46. Jahrestagung vom 29. bis 31. August 2002 in Rostock, Referate und Poster; Im Auftrag der Arbeitsgemeinschaft für Grünland und Futterbau in der Gesellschaft für Pflanzenbauwissenschaften: Rostock, Germany, 2002; pp. 222–225. [Google Scholar]
- Taube, F.; Kornher, A.; Petersen-Fredrich, E.C. Ertragsbildung unterschiedlicher Sortentypen des Deutschen Weidelgrases im Vegetationsablauf in Abhaengigkeit vom Nutyungsregime. 1. Mitteilung: Ergebnisse eines Feldversuches. Das Wirtsch. Futter 1989, 35, 278–288. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 11 April 2022).
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Parsons, A.J.; Chapman, D.F. The principles of pasture growth and utilization. In Grass: Its Production and Utilization; Hopkins, A., Ed.; Blackwell Science: Oxford, UK, 2000; pp. 31–89. [Google Scholar]
- Cashman, P.A.; McEvoy, M.; Gilliland, T.J.; O’Donovan, M. A comparison between cutting and animal grazing for dry-matter yield, quality and tiller density of perennial ryegrass cultivars. Grass Forage Sci. 2016, 71, 112–122. [Google Scholar] [CrossRef]
- Enriquez-Hidalgo, D.; Gilliland, T.J.; Hennessy, D. Herbage and nitrogen yields, fixation and transfer by white clover to companion grasses in grazed swards under different rates of nitrogen fertilization. Grass Forage Sci. 2016, 71, 559–574. [Google Scholar] [CrossRef]
- Vogeler, I.; Thomas, S.; van der Weerden, T. Effect of irrigation management on pasture yield and nitrogen losses. Agric. Water Manag. 2019, 216, 60–69. [Google Scholar] [CrossRef]
- Korte, C.J. Tillering in ‘Grasslands Nui’ perennial ryegrass swards 2. Seasonal pattern of tillering and age of flowering tillers with two mowing frequencies. N. Z. J. Agric. Res. 1986, 29, 629–638. [Google Scholar] [CrossRef]
- Grant, S.A.; Barthram, G.T.; Torvell, L. Components of regrowth in grazed and cut Lolium perenne swards. Grass Forage Sci. 1981, 36, 155–168. [Google Scholar] [CrossRef]
- Whitehead, D.C. The Role of Nitrogen in Grassland Productivity. A Review of Information from Temperate Regions; Commonwealth Agricultural Bureaux: Farnham Royal, UK, 1970. [Google Scholar]
- Deenen, P.J.A.G.; Middelkoop, N. Effects of cattle dung and urine on nitrogen uptake and yield of perennial ryegrass. Neth. J. Agric. Sci. 1992, 40, 469–482. [Google Scholar] [CrossRef]
- Rueda-Ayala, V.P.; Peña, J.M.; Höglind, M.; Bengochea-Guevara, J.M.; Andújar, D. Comparing UAV-based technologies and RGB-D reconstruction methods for plant height and biomass monitoring on grass ley. Sensors 2019, 19, 535. [Google Scholar] [CrossRef] [Green Version]
- Cosgrove, G.P.; Betteridge, K.; Thomas, V.J.; Corson, D.C. A sampling strategy for estimating dairy pasture quality. In Proceedings of the New Zealand Society of Animal Production; New Zealand Society of Animal Production: Online, 1998; Volume 58, pp. 25–28. [Google Scholar]
Site | Landscape | Soil Classification FAO | Soil Type | Texture (%) Clay/Silt/Sand | PAW (mm) | C:N |
---|---|---|---|---|---|---|
1 | Marshland | Kleimarsch (Eutric Fluvisols) | clayey loam | 30/50/20 | 84 | 9 |
2 | Geest | Podsol-Gley/Gley-Podsol; Gley-Treposol | sandy sand | 5/9/86 | 42 | 13 |
3 | Eastern Hills | Parabraunerde (Haplic Luvisols) | loamy sand | 15/24/61 | 80 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peters, T.; Kluß, C.; Vogeler, I.; Loges, R.; Fenger, F.; Taube, F. GrasProg: Pasture Model for Predicting Daily Pasture Growth in Intensive Grassland Production Systems in Northwest Europe. Agronomy 2022, 12, 1667. https://doi.org/10.3390/agronomy12071667
Peters T, Kluß C, Vogeler I, Loges R, Fenger F, Taube F. GrasProg: Pasture Model for Predicting Daily Pasture Growth in Intensive Grassland Production Systems in Northwest Europe. Agronomy. 2022; 12(7):1667. https://doi.org/10.3390/agronomy12071667
Chicago/Turabian StylePeters, Tammo, Christof Kluß, Iris Vogeler, Ralf Loges, Friederike Fenger, and Friedhelm Taube. 2022. "GrasProg: Pasture Model for Predicting Daily Pasture Growth in Intensive Grassland Production Systems in Northwest Europe" Agronomy 12, no. 7: 1667. https://doi.org/10.3390/agronomy12071667