Water Demand Pattern and Irrigation Decision-Making Support Model for Drip-Irrigated Tomato Crop in a Solar Greenhouse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Experimental Site
2.2. Experimental Materials
2.3. Experimental Design
2.4. Main Measurement Items
- Soil water monitoring
- 2.
- Chlorophyll index (SPAD) assessment
- 3.
- Measurement of photosynthetic parameters
- 4.
- Stem flow rate (SFR)
- 5.
- Meteorology
2.5. Irrigation Decision-Making Model Construction
2.5.1. Fuzzy Decision Theory
2.5.2. Improved D–S Evidence Theory BPA Synthesis Method
2.6. Data Analysis
3. Results and Analysis
3.1. Analysis of Soil Water Content Indicators
3.2. Analysis of Crop Physiological and Ecological Indicators
3.2.1. Effect of Different Irrigation Rates on Tomato Stem Flow Rate
3.2.2. Effect of Different Irrigation Water Treatments on Net Photosynthetic and Transpiration Rate of Tomato
3.3. Analysis of Greenhouse Environmental Indicators
3.3.1. Microclimate Changes in the Solarium during the Tomatoes’ Reproductive Period
3.3.2. Relationship between SFR, NPR, TR, and Meteorological Factors
3.4. Construction and Validation of Fuzzy Decision Irrigation Model
4. Discussion and Conclusions
4.1. Discussion
4.2. Conclusions
- The variation of soil water content under different degrees of deficit irrigation and water content in soil layers below 20 cm was proportional to the irrigation water. The soil variation coefficient was shallow > middle > deep, and the tomato absorbed water mainly from 0 to 60 cm in the soil layers. The indicators related to the water deficit in tomatoes included SFR, NPR, and TR. SFR, NPR, and TR were positively correlated with irrigation water under different degrees of water deficit irrigation.
- Pearson’s correlation coefficient method calculated the correlation coefficients between the four meteorological data and SFR, NPR, and TR. The key indicators of irrigation decisions suitable for greenhouse tomatoes were selected.
- We created a multi-data fusion irrigation decision model using fuzzy set theory for soil water content, SFR, NPR, and TR. We then validated the viability of the model for four irrigation decision indicators. Finally, we improved the D–S algorithm to get the best decision accuracy for synthesizing the BPA matrix for fuzzy decisions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Felföldi, Z.; Ranga, F.; Roman, I.A.; Sestras, A.F.; Vodnar, D.C.; Prohens, J.; Sestras, R.E. Analysis of Physico-Chemical and Organoleptic Fruit Parameters Relevant for Tomato Quality. Agronomy 2022, 12, 1232. [Google Scholar] [CrossRef]
- Tilahun, S.; Choi, H.-R.; Baek, M.-W.; Cheol, L.-H.; Kwak, K.-W.; Park, D.-S.; Solomon, T.; Jeong, C.-S. Antioxidant Properties, γ-Aminobutyric Acid (GABA) Content, and Physicochemical Characteristics of Tomato Cultivars. Agronomy 2021, 11, 1204. [Google Scholar] [CrossRef]
- Liu, H.; Li, H.; Ning, H.; Zhang, X.; Li, S.; Pang, J.; Wang, G.; Sun, J. Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato. Agric. Water Manag. 2019, 226, 105787. [Google Scholar] [CrossRef]
- Salokhe, V.M.; Babel, M.S.; Tantau, H.J. Water requirement of drip irrigated tomatoes grown in greenhouse in tropical environment. Agric. Water Manag. 2005, 71, 225–242. [Google Scholar] [CrossRef]
- Abraham, N.; Hema, P.S.; Saritha, E.K.; Subramannian, S. Irrigation automation based on soil electrical conductivity and leaf temperature. Agric. Water Manag. 2000, 45, 145–157. [Google Scholar] [CrossRef]
- Pawlowski, A.; Sánchez-Molina, J.A.; Guzmán, J.L.; Rodríguez, F.; Dormido, S. Evaluation of event-based irrigation system control scheme for tomato crops in greenhouses. Agric. Water Manag. 2017, 183, 16–25. [Google Scholar] [CrossRef]
- Daly, E.; Katul, G.; Porporato, A. Ecohydrology: Modeling Water, Carbon, and Nutrient Cycling within the Soil–Plant Atmosphere Continuum. In The Handbook of Groundwater Engineering; CRC Press: Boca Raton, FL, USA, 2016; pp. 739–764. [Google Scholar]
- Passioura, J.B. Water in the soil-plant-atmosphere continuum. In Physiological Plant Ecology II; Springer: Cham, Switzerland, 1982; pp. 5–33. [Google Scholar]
- Changming, L.; Qingchen, D. Method of Evapotranspiration Estimation in Soil-Plant-Atmosphere Continuum (SPAC). Adv. Water Sci. 1992, 4, 255–263. [Google Scholar]
- Lu, J.; Lu, H. Enhanced Cd transport in the soil-plant-atmosphere continuum (SPAC) system by tobacco (Nicotiana tabacum L.). Chemosphere 2019, 225, 395–405. [Google Scholar] [CrossRef]
- Lin, L.; Gu, W.; Li, X.; Shen, G. Soil Moisture Monitoring System based on Wireless Sensor Network. In Proceedings of the 2017 2nd International Symposium on Advances in Electrical, Electronics and Computer Engineering (ISAEECE 2017), Guangzhou, China, 25–26 March 2017; Atlantis Press: Amsterdam, The Netherlands, 2017; pp. 379–385. [Google Scholar]
- Liu, X.; Zhu, X.; Pan, Y.; Li, S.; Liu, Y.; Ma, Y. Agricultural drought monitoring: Progress, challenges, and prospects. J. Geogr. Sci. 2016, 26, 750–767. [Google Scholar] [CrossRef] [Green Version]
- Kahraman, C. Fuzzy Multi-Criteria Decision Making: Theory and Applications with Recent Developments; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; Volume 16. [Google Scholar]
- Wang, S.; Liu, D.; Meng, P.; Wang, K.; Li, H. Fuzzy comprehensive evaluation on yield and water consumption of winter wheat with different cropping patterns. Trans. Chin. Soc. Agric. Eng. 2016, 32, 161–166. [Google Scholar]
- Wang, S.; Liu, D.; Wang, K.; Meng, P. Fuzzy comprehensive evaluation on water consumption characteristics and yield of summer corn under different furrow irrigation patterns. Trans. Chin. Soc. Agric. Eng. 2015, 31, 89–94. [Google Scholar]
- Giusti, E.; Marsili-Libelli, S. A fuzzy decision support system for irrigation and water conservation in agriculture. Environ. Model. Softw. 2015, 63, 73–86. [Google Scholar] [CrossRef]
- Navarro-Hellín, H.; Martinez-del-Rincon, J.; Domingo-Miguel, R.; Soto-Valles, F.; Torres-Sánchez, R. A decision support system for managing irrigation in agriculture. Comput. Electron. Agric. 2016, 124, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Touati, F.; Al-Hitmi, M.; Benhmed, K.; Tabish, R. A fuzzy logic based irrigation system enhanced with wireless data logging applied to the state of Qatar. Comput. Electron. Agric. 2013, 98, 233–241. [Google Scholar] [CrossRef]
- Cheng, C.Y.; Qian, X. Evaluation of emergency planning for water pollution incidents in reservoir based on fuzzy comprehensive assessment. Procedia Environ. Sci. 2010, 2, 566–570. [Google Scholar] [CrossRef] [Green Version]
- Forio, M.A.E.; Mouton, A.; Lock, K.; Boets, P.; Nguyen, T.H.T.; Ambarita, M.N.D.; Musonge, P.L.S.; Dominguez-Granda, L.; Goethals, P.L. Fuzzy modelling to identify key drivers of ecological water quality to support decision and policy making. Environ. Sci. Policy 2017, 68, 58–68. [Google Scholar] [CrossRef]
- Bamberger, S. Determining the Suitability of Yak-Based Agriculture in Illinois: A Site Suitability Analysis Using Fuzzy Overlay. Ph.D. Thesis, University of Southern California, Los Angeles, CA, USA, 2017. [Google Scholar]
- Feng, Y.; Yang, Q.; Tong, X.; Chen, L. Evaluating land ecological security and examining its relationships with driving factors using GIS and generalized additive model. Sci. Total Environ. 2018, 633, 1469–1479. [Google Scholar] [CrossRef]
- Hahn, F. Fuzzy controller decreases tomato cracking in greenhouses. Comput. Electron. Agric. 2011, 77, 21–27. [Google Scholar] [CrossRef]
- Ramos-Fernández, J.C.; Balmat, J.-F.; Márquez-Vera, M.A.; Lafont, F.; Pessel, N.; Espinoza-Quesada, E.S. Fuzzy modeling vapor pressure deficit to monitoring microclimate in greenhouses. IFAC-PapersOnLine 2016, 49, 371–374. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, R.; Zhang, C.; Wang, S.; Xu, T. Intelligent irrigation strategy based on regulated deficit theory and fuzzy control for rice in cold region. Trans. Chin. Soc. Agric. Eng. 2016, 32, 52–58. [Google Scholar]
- Chen, Z.; Zhao, C.; Wu, H.; Miao, Y. A Water-saving Irrigation Decision-making Model for Greenhouse Tomatoes based on Genetic Optimization TS Fuzzy Neural Network. KSII Trans. Internet Inf. Syst. TIIS 2019, 13, 2925–2948. [Google Scholar]
- Chen, Z.; Wang, J.; Sun, J.; Song, N.; Wu, X. Irrigation Decision-making Methods Based on Multi-source Irrigation Information Fusion. In Proceedings of the 2015 3rd International Conference on Advances in Energy and Environmental Science, Zhuhai, China, 25–26 July 2015; Atlantis Press: Amsterdam, The Netherlands, 2015; pp. 1025–1034. [Google Scholar]
- Wang, J.; Cai, H.; Li, H.; Chen, X. Study and Evaluation of the Calculation Methods of Reference Crop Evapotranspiration in Solar-heated Greenhouse. J. Irrig. Drain. 2006, 6, 11–14. [Google Scholar]
- Netto, A.T.; Campostrini, E.; De Oliveira, J.G.; Bressan-Smith, R.E. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Sci. Hortic. 2005, 104, 199–209. [Google Scholar] [CrossRef]
- Baker, J.M.; Van Bavel, C.H.M. Measurement of mass flow of water in the stems of herbaceous plants. Plant Cell Environ. 1987, 10, 777–782. [Google Scholar] [CrossRef]
- Smith, D.M.; Allen, S.J. Measurement of sap flow in plant stems. J. Exp. Bot. 1996, 47, 1833–1844. [Google Scholar] [CrossRef] [Green Version]
- Nădăban, S.; Dzitac, S.; Dzitac, I. Fuzzy TOPSIS: A general view. Procedia Comput. Sci. 2016, 91, 823–831. [Google Scholar] [CrossRef] [Green Version]
- Venturin, A.Z.; Guimarães, C.M.; De Sousa, E.F.; Machado Filho, J.A.; Rodrigues, W.P.; de Araujo Serrazine, Í.; Bressan-Smith, R.; Marciano, C.R.; Campostrini, E. Using a crop water stress index based on a sap flow method to estimate water status in conilon coffee plants. Agric. Water Manag. 2020, 241, 106343. [Google Scholar] [CrossRef]
- Dursun, M.; Ozden, S. A wireless application of drip irrigation automation supported by soil moisture sensors. Sci. Res. Essays 2011, 6, 1573–1582. [Google Scholar]
- Shaw, D.A.; Pittenger, D.R. Performance of landscape ornamentals given irrigation treatments based on reference evapotranspiration. In Proceedings of the IV International Symposium on Irrigation of Horticultural Crops 664, Davis, CA, USA, 1–6 December 2003; pp. 607–614. [Google Scholar]
Depth cm | Soil Type | Soil Particle Size Distribution | Volume Weight g/cm3 | Field Capacity cm3/cm3 | Saturated Water Content cm3/cm3 | ||
---|---|---|---|---|---|---|---|
Viscous % | Powder % | Sand % | |||||
0–20 | clay | 33.88 | 30.00 | 36.12 | 0.95 | 0.28 | 0.56 |
20–40 | clay | 45.88 | 40.00 | 14.12 | 1.33 | 0.27 | 0.47 |
40–60 | clay | 35.88 | 28.00 | 36.12 | 1.36 | 0.24 | 0.34 |
60–80 | clay | 35.88 | 52.00 | 12.12 | 1.55 | 0.22 | 0.20 |
Spring Crop | Autumn Crop | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Indicator | Unit | Mean | Standard Deviation | Min | Median | Max | Mean | Standard Deviation | Min | Median | Max |
Soil moisture (0–20 cm) | % | 12.24 | 4.47 | 7.30 | 10.54 | 23.83 | 12.66 | 6.72 | 7.22 | 9.27 | 27.77 |
Soil moisture (20–40 cm) | % | 21.71 | 3.88 | 16.40 | 22.57 | 31.52 | 22.08 | 4.78 | 15.82 | 21.42 | 32.73 |
Soil moisture (40–60 cm) | % | 23.75 | 4.23 | 14.11 | 24.49 | 32.57 | 22.29 | 4.49 | 16.64 | 23.02 | 32.96 |
Soil moisture (60–80 cm) | % | 28.56 | 1.69 | 24.68 | 28.30 | 32.28 | 24.51 | 4.15 | 17.91 | 24.18 | 31.86 |
Net radiation (Rs) | W/m2 | 94.57 | 53.49 | 9.91 | 91.07 | 188.33 | 59.44 | 29.87 | 0.73 | 52.20 | 179.83 |
Air temperature (Temp) | °C | 25.22 | 2.75 | 17.80 | 25.79 | 31.4 | 17.88 | 3.74 | 10.41 | 17.45 | 26.18 |
Vapor pressure deficit (VPD) | KPa | 0.91 | 0.41 | 0.12 | 0.91 | 2.09 | 0.47 | 0.31 | 0.09 | 0.36 | 1.46 |
Relative humidity (RH) | % | 72.09 | 11.71 | 48.4 | 72.07 | 95.70 | 79.05 | 9.26 | 50.79 | 81.61 | 94.75 |
ET0 | mm | 3.29 | 1.59 | 0.46 | 3.12 | 6.09 | 1.90 | 1.04 | 0.37 | 1.55 | 5.54 |
Net photosynthetic rate (NPR) | μmol/(m2·s) | 12.29 | 7.86 | −2.81 | 13.12 | 30.62 | 11.95 | 5.48 | −2.10 | 12.35 | 20.82 |
Transpiration rate (TR) | mmol/(m2·s) | 6.27 | 1.64 | 3.50 | 6.32 | 10.35 | 5.62 | 1.77 | 3.10 | 5.42 | 9.91 |
Stem flow rate (SFR) | g/h | 24.79 | 39.63 | 0 | 0 | 186.05 | 18.18 | 29.56 | 0 | 0 | 134.03 |
Crop | Moisture Gradient | Soil Depth | Mean | |||
---|---|---|---|---|---|---|
0–20 cm | 20–40 cm | 40–60 cm | 60–80 cm | |||
Spring | T1 | 0.14 | 0.07 | 0.09 | 0.02 | 0.08 |
T2 | 0.10 | 0.07 | 0.06 | 0.02 | 0.06 | |
T3 | 0.12 | 0.11 | 0.10 | 0.02 | 0.09 | |
T4 | 0.13 | 0.09 | 0.08 | 0.01 | 0.08 | |
Autumn | T1 | 0.33 | 0.12 | 0.11 | 0.15 | 0.18 |
T2 | 0.47 | 0.17 | 0.18 | 0.14 | 0.24 | |
T3 | 0.47 | 0.19 | 0.16 | 0.16 | 0.25 | |
T4 | 0.33 | 0.19 | 0.16 | 0.16 | 0.21 |
Crop Seasons | Stage | Data | Net Radiation (Rs, W/m2) | Air Temperature (Temp, °C) | Vapor Pressure Deficit (VPD, KPa) | Relative Humidity (RH, %) | ET0 (mm) |
---|---|---|---|---|---|---|---|
Spring | Flowering period | 19 April 2018 | 101.35 | 23.2 | 0.86 | 68.65 | 3.44 |
Fruiting period | 17 May 2018 | 127.13 | 24.9 | 1.22 | 66.93 | 4.22 | |
Ripening period | 5 June 2018 | 68.17 | 26.7 | 0.94 | 77.83 | 2.55 | |
Full fertility period | - | 94.57 | 25.2 | 0.98 | 72.33 | 3.29 | |
Autumn | Flowering period | 15 September 2018 | 94.69 | 22.0 | 0.88 | 67.47 | 3.24 |
Fruiting period | 11 October 2018 | 58.53 | 19.58 | 0.48 | 79.41 | 1.92 | |
Ripening period | 9 November 2018 | 43.49 | 15.12 | 0.28 | 84.26 | 1.27 | |
Full fertility period | - | 59.44 | 17.89 | 0.47 | 79.05 | 1.90 |
Indicator | Stem Flow Rate (SFR) | Net Photosynthetic Rate (NPR) | Transpiration Rate (TR) |
---|---|---|---|
Temp (X1) | 0.3399 | 0.3083 | 0.3294 |
VPD (X2) | 0.4772 | 0.3474 | 0.2173 |
RH (X3) | −0.4549 | 0.9140 | 0.7679 |
Rs (X4) | 0.9441 | −0.1516 | −0.1024 |
Indicator | Simple Correlation Coefficient with Stem Flow Rate | Direct Path Coefficient | Indirect Path Coefficient | Decision Coefficient | ||
---|---|---|---|---|---|---|
X2 (Vapor Pressure Deficit) | X3 (Relative Humidity) | X4 (Net Radiation) | ||||
X2 (vapor pressure deficit) | 0.4772 | 0.799 | - | −0.646 | 0.324 | 0.1242 |
X3 (relative humidity) | −0.4549 | 0.666 | −0.422 | - | −0.346 | −1.0495 |
X4 (net radiation) | 0.9441 | 0.913 | 0.283 | −0.253 | - | 0.8904 |
Indicator | Simple Correlation Coefficient with Net Photosynthetic Rate | Direct Path Coefficient | Indirect Path Coefficient | Decision Coefficient | |
---|---|---|---|---|---|
X2 (Vapor Pressure Deficit) | X3 (Relative Humidity) | ||||
X2 (vapor pressure deficit) | 0.3474 | −0.0531 | - | 0.4004 | −0.0397 |
X3 (relative humidity) | 0.9140 | 0.9367 | −0.0227 | - | 0.8349 |
Indicator | Simple Correlation Coefficient with Transpiration Rate | Direct Path Coefficient | Indirect Path Coefficient | Decision Coefficient | |
---|---|---|---|---|---|
X2 (Vapor Pressure Deficit) | X3 (Relative Humidity) | ||||
X2 (vapor pressure deficit) | 0.2173 | −0.1311 | - | 0.3485 | −0.0742 |
X3 (relative humidity) | 0.7679 | 0.8234 | −0.0555 | - | 0.5866 |
Indicator | Lower Bound (d1) | Upper Bound (d2) | Interval (d2–d1) |
---|---|---|---|
Soil water content | 16.4163 | 17.8201 | 1.4039 |
Stem flow rate (SFR) | 12.7908 | 48.7600 | 35.9692 |
Transpiration rate (TR) | 4.4191 | 6.1302 | 1.7111 |
Net photosynthetic rate (NPR) | 13.1747 | 23.5600 | 10.3853 |
Date | Indicator | Needs Irrigation | No Irrigation | Uncertain | Conflict Coefficient (K) |
---|---|---|---|---|---|
14 May | Soil Moisture | 0.8361 | 0.0073 | 0.1566 | 0.7501 |
SFR | 0.6271 | 0.0325 | 0.3404 | ||
TR | 0.6328 | 0.0418 | 0.3254 | ||
NPR | 0.7407 | 0.0194 | 0.2399 | ||
24 May | Soil Moisture | 0.0061 | 0.8503 | 0.1436 | 0.7302 |
SFR | 0.0423 | 0.6277 | 0.3292 | ||
TR | 0.0267 | 0.6997 | 0.2735 | ||
NPR | 0.0241 | 0.7135 | 0.2623 |
Date | Algorithm | Need Irrigation | No Irrigation | Uncertain |
---|---|---|---|---|
14 May | Averaging algorithm | 0.7092 | 0.0119 | 0.2656 |
D–S theory of evidence | 0.9833 | 0.0001 | 0.0166 | |
Improved D–S algorithm | 0.9885 | 0 | 0.0115 | |
24 May | Averaging algorithm | 0.0248 | 0.7228 | 0.25215 |
D–S theory of evidence | 0.0001 | 0.9874 | 0.0125 | |
Improved D–S algorithm | 0 | 0.9916 | 0.0084 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, S.; Yang, F.; Yang, Y.; Huang, Y.; Zhangzhong, L.; Wei, X.; Yu, J. Water Demand Pattern and Irrigation Decision-Making Support Model for Drip-Irrigated Tomato Crop in a Solar Greenhouse. Agronomy 2022, 12, 1668. https://doi.org/10.3390/agronomy12071668
An S, Yang F, Yang Y, Huang Y, Zhangzhong L, Wei X, Yu J. Water Demand Pattern and Irrigation Decision-Making Support Model for Drip-Irrigated Tomato Crop in a Solar Greenhouse. Agronomy. 2022; 12(7):1668. https://doi.org/10.3390/agronomy12071668
Chicago/Turabian StyleAn, Shunwei, Fuxin Yang, Yingru Yang, Yuan Huang, Lili Zhangzhong, Xiaoming Wei, and Jingxin Yu. 2022. "Water Demand Pattern and Irrigation Decision-Making Support Model for Drip-Irrigated Tomato Crop in a Solar Greenhouse" Agronomy 12, no. 7: 1668. https://doi.org/10.3390/agronomy12071668
APA StyleAn, S., Yang, F., Yang, Y., Huang, Y., Zhangzhong, L., Wei, X., & Yu, J. (2022). Water Demand Pattern and Irrigation Decision-Making Support Model for Drip-Irrigated Tomato Crop in a Solar Greenhouse. Agronomy, 12(7), 1668. https://doi.org/10.3390/agronomy12071668