Next Article in Journal
Effects of Years of Rice Straw Return on Soil Nitrogen Components from Rice–Wheat Cropped Fields
Previous Article in Journal
Tall Fescue (Festuca arundinacea Schreb.) Shows Intraspecific Variability in Response to Temperature during Germination
Article

Effects of Soil Water Regulation on the Cotton Yield, Fiber Quality and Soil Salt Accumulation under Mulched Drip Irrigation in Southern Xinjiang, China

1
College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
2
Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of Ministry of Education, Northwest A&F University, Xianyang 712100, China
*
Author to whom correspondence should be addressed.
Academic Editors: Ricardo Aroca, Doan Trung Luu, Janusz J. Zwiazek and Gabriela Amodeo
Agronomy 2022, 12(5), 1246; https://doi.org/10.3390/agronomy12051246
Received: 5 April 2022 / Revised: 17 May 2022 / Accepted: 19 May 2022 / Published: 23 May 2022
(This article belongs to the Topic Plant Responses and Tolerance to Salinity Stress)
To optimize suitable water-saving and soil salt-controlling irrigation needed for the high yield and good quality of cotton in southern Xinjiang, a field experiment was carried out to study the effects of soil water lower limits on water consumption, water use efficiency (WUE), yield, cotton fiber quality and soil salt accumulation under mulched drip irrigation in Korla, Xinjiang. The field capacity (FC) was regarded as the upper limit of soil moisture, and five soil water lower limits (85% FC, 75% FC, 65% FC, 55% FC, 45% FC, referred as T1~T5, respectively) were designed during the cotton growth period. The results indicated that the irrigation frequency and irrigation quota of cotton were gradually increased with the increase in the soil water lower limit, while the water consumption modulus for T2 treatment during the critical period of water demand arrived at the maximum value. Moreover, with the decrease in the soil water lower limit, the WUE, fiber micronaire value and fiber maturity index of cotton increased, whereas the yield, nitrogen partial factor productivity (PFPN) and fiber breaking elongation of cotton decreased. However, when the soil water lower limit exceeded 75% FC, the increase had little effect on the cotton yield increase and PFPN improvement, and the yield and PFPN for T2 treatment were 7146.4 kg∙hm2 and 23.82 kg∙kg1, respectively, In addition, the decrease in the soil water lower limit was unfavorable for an increase in fiber length, but it was conducive to the enhancement of fiber strength. Furthermore, soil salt accumulated inside and outside the film for the designed soil water lower limits, and the amount of accumulated salt in 0~100 cm followed T3 > T5 > T1 > T2 > T4. Based on a comprehensive analysis with the entropy TOPSIS method, the findings of the present study suggested that the suitable soil water lower limit for cotton under mulched drip irrigation was 75% FC in southern Xinjiang, China. View Full-Text
Keywords: soil water lower limit; water consumption modulus; fiber quality; soil salt accumulation; entropy TOPSIS method soil water lower limit; water consumption modulus; fiber quality; soil salt accumulation; entropy TOPSIS method
Show Figures

Figure 1

MDPI and ACS Style

He, P.; Yu, S.; Zhang, F.; Ma, T.; Ding, J.; Chen, K.; Chen, X.; Dai, Y. Effects of Soil Water Regulation on the Cotton Yield, Fiber Quality and Soil Salt Accumulation under Mulched Drip Irrigation in Southern Xinjiang, China. Agronomy 2022, 12, 1246. https://doi.org/10.3390/agronomy12051246

AMA Style

He P, Yu S, Zhang F, Ma T, Ding J, Chen K, Chen X, Dai Y. Effects of Soil Water Regulation on the Cotton Yield, Fiber Quality and Soil Salt Accumulation under Mulched Drip Irrigation in Southern Xinjiang, China. Agronomy. 2022; 12(5):1246. https://doi.org/10.3390/agronomy12051246

Chicago/Turabian Style

He, Pingru, Shuang’en Yu, Fucang Zhang, Tao Ma, Jihui Ding, Kaiwen Chen, Xin Chen, and Yan Dai. 2022. "Effects of Soil Water Regulation on the Cotton Yield, Fiber Quality and Soil Salt Accumulation under Mulched Drip Irrigation in Southern Xinjiang, China" Agronomy 12, no. 5: 1246. https://doi.org/10.3390/agronomy12051246

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop