Effects of Years of Rice Straw Return on Soil Nitrogen Components from Rice–Wheat Cropped Fields
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Sampling and Analysis
2.4. Statistical Analyses
3. Results
3.1. Soil Total Nitrogen
3.2. LFN and HFN
3.3. PN and MN
3.4. Variation of TN and Its Components
3.5. Wheat Yield
4. Discussion
4.1. The Effect of Straw Return Years on Soil TN
4.2. The Effect of Straw Return Years on Soil Nitrogen Components
4.3. Relationship between TN and Its Components
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Xie, D.; Ni, J.; Zeng, X. Conservation tillage practices reduce nitrogen losses in the sloping upland of the Three Gorges Reservoir area: No-till is better than mulch-till. Agric. Ecosyst. Environ. 2020, 300, 107003. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Y.; Yuan, J.; Zhen, G. Evaluating the risks of nitrogen fertilizer-related grain production processes to ecosystem health in China. Resour. Conserv. Recycl. 2022, 177, 105982. [Google Scholar] [CrossRef]
- Gai, X.P.; Liu, H.B.; Yang, B.; Wang, H.Y.; Zhai, L.M.; Lei, Q.L.; Wu, S.X.; Ren, T.Z. Responses of crop yields, soil carbon and nitrogen stocks to additional application of organic materials in different fertilization years. Sci. Agric. Sin. 2019, 52, 676–689, (In Chinese with English Abstract). [Google Scholar]
- Jug, D.; Đurđević, B.; Birkás, M.; Brozović, B.; Lipiec, J.; Vukadinović, V.; Jug, I. Effect of conservation tillage on crop productivity and nitrogen use efficiency. Soil Tillage Res. 2019, 194, 104327. [Google Scholar] [CrossRef]
- Pu, C.; Kan, Z.; Liu, P.; Ma, S.; Qi, J.; Zhao, X.; Zhang, H. Residue management induced changes in soil organic carbon and total nitrogen under different tillage practices in the North China Plain. J. Integr. Agric. 2019, 18, 1337–1347. [Google Scholar] [CrossRef]
- Huang, T.; Yang, N.; Lu, C.; Qin, X.; Siddique, K.H.M. Soil organic carbon, total nitrogen, available nutrients, and yield under different straw returning methods. Soil Tillage Res. 2021, 214, 105171. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, X.; Wei, T.; Yang, Z.; Jia, Z.; Yang, B.; Han, Q.; Ren, X. Effects of straw incorporation on the soil nutrient contents, enzyme activities, and crop yield in a semiarid region of China. Soil Tillage Res. 2016, 160, 65–72. [Google Scholar] [CrossRef]
- Cao, Y.; Sun, H.; Zhang, J.; Chen, G.; Zhu, H.; Zhou, S.; Xiao, H. Effects of wheat straw addition on dynamics and fate of nitrogen applied to paddy soils. Soil Tillage Res 2018, 178, 92–98. [Google Scholar] [CrossRef]
- Yang, J.; Gao, W.; Ren, S. Long-term effects of combined application of chemical nitrogen with organic materials on crop yields, soil organic carbon and total nitrogen in fluvo-aquic soil. Soil Till Res. 2015, 151, 67–74. [Google Scholar] [CrossRef]
- Martínez, J.M.; Galantini, J.A.; Duval, M.E.; López, F.M. Tillage effects on labile pools of soil organic nitrogen in a semi-humid climate of Argentina: A long-term field study. Soil Tillage Res. 2017, 169, 71–80. [Google Scholar] [CrossRef]
- Desrochers, J.; Brye, K.R.; Gbur, E.; Pollock, E.D.; Savin, M.C. Carbon and nitrogen properties of particulate organic matter fractions in an Alfisol in the mid-southern, USA. Geoderma Reg. 2019, 20, e00248. [Google Scholar] [CrossRef]
- Andruschkewitsch, R.; Geisseler, D.; Koch, H.; Ludwig, B. Effects of tillage on contents of organic carbon, nitrogen, water-stable aggregates and light fraction for four different long-term trials. Geoderma 2013, 192, 368–377. [Google Scholar] [CrossRef]
- Pu, C.; Liu, P.; Kan, Z.R.; Qi, J.Y.; Ma, S.T.; Zhao, X.; Zhang, H.L. Effects of tillage and straw mulching on soil total nitrogen and its components in north China plain. Trans. CSAE 2018, 34, 160–166, (In Chinese with English Abstract). [Google Scholar]
- Domínguez, G.F.; Diovisalvi, N.V.; Studdert, G.A.; Monterubbianesi, M.G. Soil organic C and N fractions under continuous cropping with contrasting tillage systems on mollisols of the southeastern Pampas. Soil Tillage Res. 2009, 102, 93–100. [Google Scholar] [CrossRef]
- Guo, S.; Zhai, L.; Liu, J.; Liu, H.; Chen, A.; Wang, H.; Wu, S.; Lei, Q. Cross-ridge tillage decreases nitrogen and phosphorus losses from sloping farmlands in southern hilly regions of China. Soil Tillage Res. 2019, 191, 48–56. [Google Scholar] [CrossRef]
- Desrochers, J.; Brye, K.R.; Gbur, E.; Pollock, E.D.; Savin, M.C. Long-term residue and water management practice effects on particulate organic matter in a loessial soil in eastern Arkansas, USA. Geoderma 2019, 337, 792–804. [Google Scholar] [CrossRef]
- Qi, J.Y.; Wang, X.; Pu, C.; Ma, S.T.; Zhao, X.; Xue, J.F.; Zhang, H.L. Research advances on effects of conservation tillage practice on soil nitrogen component. Trans. CSAE 2018, 34, 222–229, (In Chinese with English Abstract). [Google Scholar]
- Li, X.; Yang, T.; Hicks, L.C.; Hu, B.; Liu, X.; Wei, D.; Wang, Z.; Bao, W. Latitudinal patterns of light and heavy organic matter fractions in arid and semi-arid soils. Catena 2022, 215, 106293. [Google Scholar] [CrossRef]
- Qiu, S.; Gao, H.; Zhu, P.; Hou, Y.; Zhao, S.; Rong, X.; Zhang, Y.; He, P.; Christie, P.; Zhou, W. Changes in soil carbon and nitrogen pools in a Mollisol after long-term fallow or application of chemical fertilizers, straw or manures. Soil Tillage Res. 2016, 163, 255–265. [Google Scholar] [CrossRef]
- Shu, X.; Zhu, A.N.; Zhang, J.B.; Chen, W.C.; Yang, W.L. Effects of Conservation Tillage on Organic Carbon and Nitrogen in Different Fractions of fluvo-aquic soil. Chin. J. Soil Sci. 2014, 45, 432–438, (In Chinese with English Abstract). [Google Scholar]
- Dong, L.L.; Wang, H.H.; Lu, Z.Y.; Jin, M.J.; Zhu, X.L.; Shen, Y.; Shen, M.X. 2019. Effects of straw returning amount and type on soil nitrogen and its composition. Chin. J. Appl. Ecol. 2019, 30, 1143–1150, (In Chinese with English Abstract). [Google Scholar]
- Hu, N.J.; Chen, Q.; Zhu, L.Q. Life cycle environmental impact assessment on rice-winter wheat rotation system in the middle and lower reaches of Yangtze River: A case study of Nanjing, Jiangsu province. Resour. Environ. Yangtze Basin 2019, 28, 1111–1120, (In Chinese with English Abstract). [Google Scholar]
- Zhang, S.; Zhang, G.; Wang, D.; Liu, Q. Abiotic and biotic effects of long-term straw retention on reactive nitrogen runoff losses in a rice–wheat cropping system in the Yangtze Delta region. Agric. Ecosyst. Environ. 2021, 305, 107162. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, X.; Wang, H.; Wei, W.; Zhou, J. Long-term straw return influenced ammonium ion retention at the soil aggregate scale in an Anthrosol with rice-wheat rotations in China. J. Integr. Agr 2022, 21, 521–531. [Google Scholar] [CrossRef]
- Gong, Z.T.; Zhang, G.L.; Chen, Z.C. Pedogenesis and Soil Taxonomy; Sciences Press: Beijing, China, 2007. (In Chinese) [Google Scholar]
- Shidan, B. Soil Agro-Chemistrical Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000; (In Chinese with English Abstract). [Google Scholar]
- Lee, J.H. An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol Bioproc 2013, 18, 431–439. [Google Scholar] [CrossRef]
- Roscoe, R.; Buurman, P. Tillage effects on soil organic matter in density fractions of a Cerrado Oxisol. Soil Tillage Res. 2003, 70, 107–119. [Google Scholar] [CrossRef]
- Plaza-Bonilla, D.; Álvaro-Fuentes, J.; Cantero-Martínez, C. Identifying soil organic carbon fractions sensitive to agricultural management practices. Soil Tillage Res. 2014, 139, 19–22. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.G.; Lin, S.; Li, B.G. Nitrogen cycling and management strategies in chinese agriculture. Sci. Agric. Sin. 2016, 49, 503–517, (In Chinese with English Abstract). [Google Scholar]
- Liu, S.; Wang, M.; Yin, M.; Chu, G.; Xu, C.; Zhang, X.; Abliz, B.; Tang, C.; Wang, D.; Chen, S. Fifteen years of crop rotation combined with straw management alters the nitrogen supply capacity of upland-paddy soil. Soil Tillage Res. 2022, 215, 105219. [Google Scholar] [CrossRef]
- Liu, X.; Dong, W.; Jia, S.; Liu, Q.; Li, Y.; Hossain, M.E.; Liu, E.; Kuzyakov, Y. Transformations of N derived from straw under long-term conventional and no-tillage soils: A 15N labelling study. Sci. Total Env. 2021, 786, 147428. [Google Scholar] [CrossRef]
- Chen, H.; Liang, Q.; Gong, Y.; Kuzyakov, Y.; Fan, M.; Plante, A.F. Reduced tillage and increased residue retention increase enzyme activity and carbon and nitrogen concentrations in soil particle size fractions in a long-term field experiment on Loess Plateau in China. Soil Tillage Res. 2019, 194, 104296. [Google Scholar] [CrossRef]
- Wang, S.L.; Wang, H.; Li, J.; Lv, W.; Chen, L.L.; Li, J. Effects of long-term straw mulching on soil organic carbon, nitrogen and moisture and spring maize yield on rain-fed croplands under different patterns of soil tillage practice. Chin. J. Appl. Ecol. 2016, 27, 1530–1540, (In Chinese with English Abstract). [Google Scholar]
- Zhang, D.; Fu, B.; Hu, W.L.; Zhai, L.M.; Liu, H.B.; Chen, A.Q.; Gai, X.P.; Zhang, Y.T.; Liu, J.; Wang, H.Y. Increasing soil nitrogen fixation capacity and crop yield of rice-rape rotation by straw returning. Trans. CSAE 2017, 33, 133–140, (In Chinese with English Abstract). [Google Scholar]
- Zhao, F.; Zhang, L.; Sun, J.; Ren, C.; Han, X.; Yang, G.; Pang, G.; Bai, H.; Wang, J. Effect of Soil C, N and P Stoichiometry on Soil Organic C Fractions, After Afforestation. Pedosphere 2017, 27, 705–713. [Google Scholar] [CrossRef]
- Wang, J. Mechanistic Insights into the Role of Sol Nitrogen Transformation Processes in Regulating Soil Nitrogen Fate; Normal University: Nanjing, China, 2017; (In Chinese with English Abstract). [Google Scholar]
- Zhang, J. Effects of Incorporation of Straw, Lignin and Biochar on Organic Carbon, Nitrogen and Microbial Diversity; Chinese Academy of Agricultural Sciences: Beijing, China, 2015; (In Chinese with English Abstract). [Google Scholar]
- Hao, M.; Hu, H.; Liu, Z.; Dong, Q.; Sun, K.; Feng, Y.; Li, G.; Ning, T. Shifts in microbial community and carbon sequestration in farmland soil under long-term conservation tillage and straw returning. Appl. Soil Ecol. 2019, 136, 43–54. [Google Scholar] [CrossRef]
- Jilling, A.; Kane, D.; Williams, A.; Yannarell, A.C.; Davis, A.; Jordan, N.R.; Koide, R.T.; Mortensen, D.A.; Smith, R.G.; Snapp, S.S.; et al. Rapid and distinct responses of particulate and mineral-associated organic nitrogen to conservation tillage and cover crops. Geoderma 2020, 359, 114001. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Yan, C.; Liu, E.; Chen, B. Soil nitrogen and its fractions between long-term conventional and no-tillage systems with straw retention in dryland farming in northern China. Geoderma 2016, 269, 138–144. [Google Scholar] [CrossRef]
2017 | 2018 | |||||||
---|---|---|---|---|---|---|---|---|
LFN | HFN | PN | MN | LFN | HFN | PN | MN | |
TN | 0.945 ** | 0.999 ** | 0.755 ** | 0.965 ** | 0.906 ** | 0.997 ** | 0.730 ** | 0.950 ** |
Soil Depth/cm | Treatment | 2017 | 2018 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TN/% | LFN/% | HFN/% | PN/% | MN/% | TN/% | LFN/% | HFN/% | PN/% | MN/% | ||
0–5 | NR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
SR1 | 1.75 | −2.37 | 1.90 | 4.92 | 1.14 | 4.81 | 9.38 | 4.65 | −0.97 | 6.11 | |
SR2 | 3.63 | 8.32 | 3.45 | 13.12 | 1.82 | 8.25 | 23.05 | 7.73 | 16.48 | 6.41 | |
SR3 | 9.44 | 31.14 | 8.60 | 36.62 | 4.24 | 11.10 | 40.34 | 10.06 | 37.71 | 5.14 | |
SR4 | 12.60 | 44.05 | 11.39 | 48.52 | 5.74 | 13.56 | 57.98 | 11.98 | 23.12 | 11.42 | |
SR5 | 22.83 | 80.02 | 20.62 | 55.95 | 16.50 | 17.09 | 80.38 | 14.85 | 30.41 | 14.11 | |
SR6 | 25.15 | 92.91 | 22.53 | 60.38 | 18.42 | 19.45 | 100.23 | 16.59 | 34.28 | 16.13 | |
SR7 | 26.62 | 114.23 | 23.24 | 59.27 | 20.38 | 18.66 | 118.33 | 15.13 | 30.93 | 15.92 | |
SR8 | / | / | / | / | / | 22.00 | 141.26 | 17.78 | 47.35 | 16.33 | |
5–10 | NR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
SR1 | 3.49 | 10.21 | 3.24 | 1.81 | 3.88 | 6.86 | 3.91 | 6.96 | 0.66 | 8.39 | |
SR2 | 6.59 | 24.73 | 5.93 | 8.23 | 6.20 | 13.49 | 17.88 | 13.33 | 10.34 | 14.27 | |
SR3 | 17.14 | 49.70 | 15.95 | 30.67 | 13.97 | 18.82 | 51.85 | 17.62 | 26.92 | 16.82 | |
SR4 | 23.93 | 80.10 | 21.89 | 49.01 | 18.06 | 20.57 | 65.88 | 18.92 | 22.27 | 20.14 | |
SR5 | 28.77 | 110.10 | 25.81 | 51.50 | 23.45 | 20.35 | 96.36 | 17.58 | 27.63 | 18.55 | |
SR6 | 31.75 | 123.57 | 28.40 | 66.47 | 23.61 | 26.12 | 114.02 | 22.91 | 52.59 | 19.57 | |
SR7 | 33.59 | 150.73 | 29.32 | 73.94 | 24.14 | 29.38 | 142.82 | 25.25 | 61.30 | 21.49 | |
SR8 | / | / | / | / | / | 28.62 | 137.22 | 24.66 | 60.68 | 20.69 | |
10–20 | NR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
SR1 | 6.60 | 3.29 | 6.70 | −4.34 | 9.31 | 5.15 | 1.89 | 5.26 | −5.63 | 7.83 | |
SR2 | 2.85 | 5.77 | 2.75 | 13.91 | 0.10 | 10.77 | 13.92 | 10.67 | 12.00 | 10.47 | |
SR3 | 17.72 | 43.45 | 16.89 | 40.98 | 11.94 | 12.65 | 37.27 | 10.71 | 31.16 | 7.12 | |
SR4 | 26.95 | 70.13 | 25.56 | 56.52 | 19.61 | 15.69 | 36.21 | 15.03 | 29.07 | 12.37 | |
SR5 | 25.08 | 94.29 | 22.84 | 60.85 | 16.20 | 14.88 | 44.83 | 13.39 | 34.06 | 9.01 | |
SR6 | 32.40 | 110.81 | 29.87 | 77.08 | 21.31 | 19.79 | 90.73 | 17.50 | 42.25 | 14.21 | |
SR7 | 38.10 | 115.34 | 35.61 | 79.97 | 27.71 | 20.49 | 87.88 | 18.32 | 57.02 | 11.42 | |
SR8 | / | / | / | / | / | 22.48 | 105.04 | 19.82 | 64.66 | 12.01 | |
Pearson correlation coefficients | |||||||||||
Variation of TN | 0.968 ** | 0.999 ** | 0.957 ** | 0.983 ** | / | 0.916 ** | 0.995 ** | 0.891 ** | 0.923 ** |
Soil Depth/cm | Nitrogen Components | Pearson’s Correlation Coefficients with Wheat Yield | Linear Regression Equation |
---|---|---|---|
0–5 | TN | 0.672 ** | y = 1885.6x + 4.5381, R2 = 0.452 |
LFN | 0.787 ** | y = 12,147.0x + 6.5195, R2 = 0.6201 | |
HFN | 0.638 ** | y = 2159.5x + 4.2800, R2 = 0.4075 | |
PN | 0.612 ** | y = 4377.3x + 6.1077, R2 = 0.374 | |
MN | 0.666 ** | y = 2873.4x + 3.8914, R2 = 0.4434 | |
5–10 | TN | 0.644 ** | y = 1567.8x + 5.1708, R2 = 0.4147 |
LFN | 0.772 ** | y = 11,461.0x + 6.5998, R2 = 0.5966 | |
HFN | 0.610 ** | y = 1751.9x + 5.0326, R2 = 0.3722 | |
PN | 0.720 ** | y = 4062.4x + 6.1620, R2 = 0.5185 | |
MN | 0.554 * | y = 2244.8x + 4.8963, R2 = 0.3073 | |
10–20 | TN | 0.627 ** | y = 1695.4x + 5.2890, R2 = 0.3926 |
LFN | 0.768 ** | y = 18,080.0x + 6.4977, R2 = 0.5894 | |
HFN | 0.599 * | y = 1801.9x + 5.2476, R2 = 0.3585 | |
PN | 0.692 ** | y = 3993.6x + 6.2658, R2 = 0.4829 | |
MN | 0.491 * | y = 2133.2x + 5.3588, R2 = 0.2361 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, S.; Zhu, X.; Cao, G. Effects of Years of Rice Straw Return on Soil Nitrogen Components from Rice–Wheat Cropped Fields. Agronomy 2022, 12, 1247. https://doi.org/10.3390/agronomy12061247
Cui S, Zhu X, Cao G. Effects of Years of Rice Straw Return on Soil Nitrogen Components from Rice–Wheat Cropped Fields. Agronomy. 2022; 12(6):1247. https://doi.org/10.3390/agronomy12061247
Chicago/Turabian StyleCui, Siyuan, Xinkai Zhu, and Guangqiao Cao. 2022. "Effects of Years of Rice Straw Return on Soil Nitrogen Components from Rice–Wheat Cropped Fields" Agronomy 12, no. 6: 1247. https://doi.org/10.3390/agronomy12061247
APA StyleCui, S., Zhu, X., & Cao, G. (2022). Effects of Years of Rice Straw Return on Soil Nitrogen Components from Rice–Wheat Cropped Fields. Agronomy, 12(6), 1247. https://doi.org/10.3390/agronomy12061247