Germination and Growth Performance of Water-Saving and Drought-Resistant Rice Enhanced by Seed Treatment with Wood Vinegar and Biochar under Dry Direct-Seeded System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Setup
2.2.1. Growth Chamber Experiment
Screening the Effective Concentration of Wood Vinegar Priming
Screening the Efficient Ratio of Biochar Coating
Optimum Seed Treatments and Treatment Combination
2.2.2. Field Experiment
2.3. Data Collection
2.3.1. Germination and Seedling Attributes
2.3.2. Measurement of Seedling Root Morphology
2.3.3. Determination of α-Amylase Activity, Soluble Sugar, and Soluble Protein
2.3.4. Gas Exchange Parameters and Physiological Indicators
2.3.5. Measurement of Agronomic Traits
2.3.6. Yield and Yield Components
2.4. Statistical Analysis
3. Results
3.1. Seedling Attributes and Seedling Growth
3.1.1. Screening the Effective Concentration of Wood Vinegar Priming
3.1.2. Screening the Efficient Ratio of Biochar Coating
3.1.3. Optimum Seed Treatments and Treatment Combination
3.2. α-Amylase Activity, Soluble Sugar, and Soluble Protein
3.3. Gas Exchange Parameters and Physiological Indicators
3.4. Plant Height, Tillers, LAI, and Total Dry Weight
3.5. Yield and Yield Components
4. Discussion
4.1. Effect of WV Seed Priming on Germination and Seedling Growth
4.2. Effect of BC Seed Coating on Germination and Seedling Growth
4.3. Effect of Co-Treatment WV + BC on Germination and Seedling Growth
4.4. Sustainability and Circular Economy in Agriculture
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Khir, R.; Pan, Z. Chapter 2-Rice. In Integrated Processing Technologies for Food and Agricultural By-Products; Pan, Z., Zhang, R., Zicari, S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 21–58. [Google Scholar]
- Chakraborty, D.; Ladha, J.K.; Rana, D.S.; Jat, M.L.; Gathala, M.K.; Yadav, S.; Rao, A.N.; Ramesha, M.S.; Raman, A. A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production. Sci. Rep. 2017, 7, 9342. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, A.; Farooq, M.; Lal, R.; Rehman, A.; Hussain, T.; Nadeem, A. Influence of sesbania brown manuring and rice residue mulch on soil health, weeds and system productivity of conservation rice–wheat systems. Land Degrad. Dev. 2017, 28, 1078–1090. [Google Scholar] [CrossRef]
- Hussain, S.; Peng, S.; Fahad, S.; Khaliq, A.; Huang, J.; Cui, K.; Nie, L. Rice management interventions to mitigate greenhouse gas emissions: A review. Environ. Sci. Pollut. 2015, 22, 3342–3360. [Google Scholar] [CrossRef]
- Liu, H.; Hussain, S.; Zheng, M.; Peng, S.; Huang, J.; Cui, K.; Nie, L. Dry direct-seeded rice as an alternative to transplanted-flooded rice in central China. Agron. Sustain. Dev. 2015, 35, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Hussain, S.; Zheng, M.; Sun, L.; Fahad, S.; Huang, J.; Cui, K.; Nie, L. Progress and constraints of dry direct-seeded rice in China. J. Food Agric. Environ. 2014, 12, 465–472. [Google Scholar]
- Saha, S.; Munda, S.; Singh, S.; Kumar, V.; Jangde, H.K.; Mahapatra, A.; Chauhan, B.S. Crop Establishment and Weed Control Options for Sustaining Dry Direct Seeded Rice Production in Eastern India. Agronomy 2021, 11, 389. [Google Scholar] [CrossRef]
- Kumar, V.; Ladha, J.K. Direct Seeding of Rice: Recent Developments and Future Research Needs. Adv. Agron. 2011, 111, 297–413. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Hill, J.E. Direct seeding of rice in Asia: Emerging issues and strategic research needs for the 21st century. In Direct Seeding: Research Strategies and Opportunities; Pandey, S., Mortimer, M., Wade, L., Tuong, T.P., Lopez, K., Hardy, B., Eds.; International Rice Research Institute: Los Baños, PH, USA, 2002; pp. 15–39. [Google Scholar]
- Kaya, M.D.; Okçu, G.; Atak, M.; Cıkılı, Y.; Kolsarıcı, Ö. Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur. J. Agron. 2006, 24, 291–295. [Google Scholar] [CrossRef]
- Murillo-Amador, B.; López-Aguilar, R.; Kaya, C.; Larrinaga-Mayoral, J.; Flores-Hernández, A. Comparative effects of NaCl and polyethylene glycol on germination, emergence and seedling growth of cowpea. J. Agron. Crop Sci. 2002, 188, 235–247. [Google Scholar] [CrossRef]
- Nawaz, F.; Ashraf, M.Y.; Ahmad, R.; Waraich, E.A. Selenium (Se) seed priming induced growth and biochemical changes in wheat under water deficit conditions. Biol. Trace Elem. Res. 2013, 151, 284–293. [Google Scholar] [CrossRef]
- Heydecker, W. Stress and seed germination: An agronomic view. In Physiology and Biochemistry of Seed Dormancy and Germination; North-Holland: Amsterdam, The Netherlands, 1977. [Google Scholar]
- Khan, M.N.; Zhang, J.; Luo, T.; Liu, J.; Rizwan, M.; Fahad, S.; Xu, Z.; Hu, L. Seed priming with melatonin coping drought stress in rapeseed by regulating reactive oxygen species detoxification: Antioxidant defense system, osmotic adjustment, stomatal traits and chloroplast ultrastructure perseveration. Ind. Crops Prod. 2019, 140, 111597. [Google Scholar] [CrossRef]
- Majda, C.; Khalid, D.; Aziz, A.; Rachid, B.; Badr, A.-S.; Lotfi, A.; Mohamed, B. Nutri-priming as an efficient means to improve the agronomic performance of molybdenum in common bean (Phaseolus vulgaris L.). Sci. Total Environ. 2019, 661, 654–663. [Google Scholar] [CrossRef]
- Shah, T.; Latif, S.; Khan, H.; Munsif, F.; Nie, L. Ascorbic Acid Priming Enhances Seed Germination and Seedling Growth of Winter Wheat under Low Temperature Due to Late Sowing in Pakistan. Agronomy 2019, 9, 757. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Sun, C.; Hou, X.; Wu, M.; Yao, Y.; Li, F. Pyrolysis of Arundo donax L. to produce pyrolytic vinegar and its effect on the growth of dinoflagellate Karenia brevis. Bioresour. Technol. 2018, 247, 273–281. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, L.; Song, Q.; Wang, S.; Wang, Y.; Ge, Y. Root Proteomics Reveals the Effects of Wood Vinegar on Wheat Growth and Subsequent Tolerance to Drought Stress. Int. J. Mol. Sci. 2019, 20, 943. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Wang, Z.; Meki, K.; Wang, X.; Liu, B.; Zheng, H.; You, X.; Li, F. Effect of co-application of wood vinegar and biochar on seed germination and seedling growth. J. Soils Sediments 2019, 63, 3934–3944. [Google Scholar] [CrossRef]
- Adak, T.; Kumar, J.; Shakil, N.A.; Pandey, S. Role of nano-range amphiphilic polymers in seed quality enhancement of soybean and imidacloprid retention capacity on seed coatings. J. Sci. Food Agric. 2016, 96, 4351–4357. [Google Scholar] [CrossRef]
- Su, L.-Q.; Li, J.-G.; Xue, H.; Wang, X.-F. Super absorbent polymer seed coatings promote seed germination and seedling growth of Caragana korshinskii in drought. J. Zhejiang Univ.-Sci. B 2017, 18, 696–706. [Google Scholar] [CrossRef] [Green Version]
- Gorim, L.; Asch, F. Seed Coating with Hydro-Absorbers as Potential Mitigation of Early Season Drought in Sorghum (Sorghum bicolor L. Moench). Biology 2017, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, S.S.; Li, G.; Andersen, M.N.; Liu, F. Biochar enhances yield and quality of tomato under reduced irrigation. Agric. Water Manag. 2014, 138, 37–44. [Google Scholar] [CrossRef]
- Khan, Z.; Khan, M.N.; Luo, T.; Zhang, K.; Zhu, K.; Rana, M.S.; Hu, L.; Jiang, Y. Compensation of high nitrogen toxicity and nitrogen deficiency with biochar amendment through enhancement of soil fertility and nitrogen use efficiency promoted rice growth and yield. GCB Bioenergy 2021, 13, 1765–1784. [Google Scholar] [CrossRef]
- Suliman, W.; Harsh, J.B.; Abu-Lail, N.I.; Fortuna, A.-M.; Dallmeyer, I.; Garcia-Pérez, M. The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil. Sci. Total Environ. 2017, 574, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.; Zhang, K.; Khan, M.N.; Bi, J.; Zhu, K.; Luo, L.; Hu, L. How Biochar Affects Nitrogen Assimilation and Dynamics by Interacting Soil and Plant Enzymatic Activities: Quantitative Assessment of 2 Years Potted Study in a Rapeseed-Soil System. Front. Plant Sci. 2022, 13, 853449. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.; Wang, C.; Van Zwieten, L.; Wang, H.; Jiang, P.; Zhou, M.; Wu, W. An effective biochar-based slow-release fertilizer for reducing nitrogen loss in paddy fields. J. Soils Sediments 2020, 20, 3027–3040. [Google Scholar] [CrossRef]
- Luo, L.J. Breeding for water-saving and drought-resistance rice (WDR) in China. J. Exp. Bot. 2010, 61, 3509–3517. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Mei, H.; Yu, X.; Xia, H.; Chen, L.; Liu, H.; Zhang, A.; Xu, K.; Wei, H.; Liu, G.; et al. Water-saving and drought-resistance rice: From the concept to practice and theory. Mol. Breed. 2019, 39, 145. [Google Scholar] [CrossRef]
- Hussain, S.; Khan, F.; Hussain, H.A.; Nie, L. Physiological and Biochemical Mechanisms of Seed Priming-Induced Chilling Tolerance in Rice Cultivars. Front. Plant Sci. 2016, 7, 116. [Google Scholar] [CrossRef] [Green Version]
- Association of Official Seed Analysts. Rules for Testing Seeds. J. Seed Technol. 1990, 12, 1–12. [Google Scholar]
- Ellis, R.H.; Roberts, E.H. The quantification of ageing and survival in orthodox seeds. Seed Sci. Technol. 1981, 9, 373–409. [Google Scholar]
- Abdul-Baki, A.A.; Anderson, J.D. Vigor Determination in Soybean Seed by Multiple Criteria. Crop Sci. 1973, 13, 630–633. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Estavillo, G.M.; Luo, T.; Hu, L. Leaf N content regulates the speed of photosynthetic induction under fluctuating light among canola genotypes (Brassica napus L.). Physiol. Plant. 2021, 172, 1844–1852. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Guo, Z.; Huang, C.; Duan, L.; Chen, G.; Jiang, N.; Fang, W.; Feng, H.; Xie, W.; Lian, X.; et al. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat. Commun. 2014, 5, 5087. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, R.A.M.; Chen, Z.J. ggplot2: Elegant graphics for data analysis. Meas. Interdiscip. Res. Perspect. 2019, 17, 160–167. [Google Scholar] [CrossRef]
- Mmojieje, J.; Hornung, A. The potential application of pyroligneous acid in the UK agricultural industry. J. Crop Improv. 2015, 29, 228–246. [Google Scholar] [CrossRef]
- Flematti, G.R.; Ghisalberti, E.L.; Dixon, K.W.; Trengove, R.D. A compound from smoke that promotes seed germination. Science 2004, 305, 977. [Google Scholar] [CrossRef] [PubMed]
- Mungkunkamchao, T.; Kesmala, T.; Pimratch, S.; Toomsan, B.; Jothityangkoon, D. Wood vinegar and fermented bioextracts: Natural products to enhance growth and yield of tomato (Solanum lycopersicum L.). Sci. Hortic. 2013, 154, 66–72. [Google Scholar] [CrossRef]
- Simma, B.; Polthanee, A.; Goggi, A.S.; Siri, B.; Promkhambut, A.; Caragea, P.C. Wood vinegar seed priming improves yield and suppresses weeds in dryland direct-seeding rice under rainfed production. Agron. Sustain. Dev. 2017, 37, 56. [Google Scholar] [CrossRef] [Green Version]
- van Staden, J.; Sparg, S.G.; Kulkarni, M.G.; Light, M.E. Post-germination effects of the smoke-derived compound 3-methyl-2H-furo [2,3-c] pyran-2-one and its potential as a preconditioning agent. Field Crops Res. 2006, 98, 98–105. [Google Scholar] [CrossRef]
- Kulkarni, M.G.; Ascough, G.D.; Van Staden, J. Effects of foliar applications of smoke-water and a smoke-isolated butenolide on seedling growth of okra and tomato. HortScience 2007, 42, 179–182. [Google Scholar] [CrossRef]
- Tanaka, Y.; Ito, T.; Akazawa, T. Enzymic Mechanism of Starch Breakdown in Germinating Rice Seeds: III. Alpha-Amylase Isozymes. Plant Physiol. 1970, 46, 650–654. [Google Scholar] [CrossRef]
- Sadura, I.; Janeczko, A. Physiological and molecular mechanisms of brassinosteroid-induced tolerance to high and low temperature in plants. Biol. Plant. 2018, 62, 601–616. [Google Scholar] [CrossRef] [Green Version]
- Solaiman, Z.M.; Murphy, D.V.; Abbott, L.K. Biochars influence seed germination and early growth of seedlings. Plant Soil 2012, 353, 273–287. [Google Scholar] [CrossRef]
- Williams, M.I.; Dumroese, R.K.; Page-Dumroese, D.S.; Hardegree, S.P. Can biochar be used as a seed coating to improve native plant germination and growth in arid conditions? J. Arid Environ. 2016, 125, 8–15. [Google Scholar] [CrossRef]
- Głodowska, M.; Husk, B.; Schwinghamer, T.; Smith, D. Biochar is a growth-promoting alternative to peat moss for the inoculation of corn with a pseudomonad. Agron. Sustain. Dev. 2016, 36, 21. [Google Scholar] [CrossRef] [Green Version]
- Egamberdieva, D.; Reckling, M.; Wirth, S. Biochar-based Bradyrhizobium inoculum improves growth of lupin (Lupinus angustifolius L.) under drought stress. Eur. J. Soil Biol. 2017, 78, 38–42. [Google Scholar] [CrossRef]
- Lu, H.B.; Qiao, Y.M.; Gong, X.C.; Li, H.Q.; Zhang, Q.; Zhao, Z.H.; Meng, L.L. Influence of drought stress on the photosynthetic characteristics and dry matter accumulation of hybrid millet. Photosynthetica 2015, 53, 306–311. [Google Scholar] [CrossRef]
- Dey, S.; Paul, S.; Nag, A.; Banerjee, R.; Gopal, G.; Mukherjee, A.; Kundu, R. Iron-pulsing, a novel seed invigoration technique to enhance crop yield in rice: A journey from lab to field aiming towards sustainable agriculture. Sci. Total Environ. 2021, 769, 144671. [Google Scholar] [CrossRef]
- Khan, Z.; Khan, M.N.; Zhang, K.; Luo, T.; Zhu, K.; Hu, L. The application of biochar alleviated the adverse effects of drought on the growth, physiology, yield and quality of rapeseed through regulation of soil status and nutrients availability. Ind. Crops Prod. 2021, 171, 113878. [Google Scholar] [CrossRef]
- Di Blasi, C.; Tanzi, V.; Lanzetta, M. A study on the production of agricultural residues in Italy. Biomass Bioenergy 1997, 12, 321–331. [Google Scholar] [CrossRef]
- Yaashikaa, P.; Kumar, P.S.; Saravanan, A.; Varjani, S.; Ramamurthy, R. Bioconversion of municipal solid waste into bio-based products: A review on valorisation and sustainable approach for circular bioeconomy. Sci. Total Environ. 2020, 748, 141312. [Google Scholar] [CrossRef]
- Jindo, K.; Sánchez-Monedero, M.A.; Mastrolonardo, G.; Audette, Y.; Higashikawa, F.S.; Silva, C.A.; Akashi, K.; Mondini, C. Role of biochar in promoting circular economy in the agriculture sector. Part 2: A review of the biochar roles in growing media, composting and as soil amendment. Chem. Biol. Technol. Agric. 2020, 7, 16. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, S.; Hou, B.; Zheng, H.; Deng, W.; Liu, D.; Tang, W. Study on the preparation of wood vinegar from biomass residues by carbonization process. Bioresour. Technol. 2015, 179, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Gu, S.; Liu, J.; Luo, T.; Khan, Z.; Zhang, K.; Hu, L. Wood Vinegar as a Complex Growth Regulator Promotes the Growth, Yield and Quality of Rapeseed. Agronomy 2021, 11, 510. [Google Scholar] [CrossRef]
Treatment | GE (%) | FG (%) | Shoot Length (cm) | Root Length (cm) | Total DW (mg Seedling−1) | SVI-I | SVI-II |
---|---|---|---|---|---|---|---|
CK | 19.3 ± 1.8 cd | 94.0 ± 1.2 bc | 5.2 ± 0.1 e | 3.3 ± 0.1 c | 6.0 ± 0.1 d | 790.2 ± 13.8 e | 560.5 ± 18.3 e |
HP | 29.3 ± 3.3 bc | 94.7 ± 0.7 bc | 5.4 ± 0.1 de | 3.5 ± 0.1 bc | 6.3 ± 0.2 cd | 839.4 ± 9.6 de | 594.0 ± 18.6 de |
WV10 | 16.0 ± 1.2 d | 86.7 ± 1.8 d | 5.5 ± 0.1 de | 3.5 ± 0.1 bc | 6.4 ± 0.1 cd | 780.1 ± 12.8 e | 558.1 ± 8.7 e |
WV25 | 39.3 ± 2.9 b | 93.3 ± 0.7 c | 6.2 ± 0.1 ab | 3.7 ± 0.1 ab | 7.0 ± 0.3 ab | 917.8 ± 9.9 bc | 651.1 ± 24.6 c |
WV50 | 55.3 ± 5.8 a | 99.3 ± 0.7 a | 6.5 ± 0.2 a | 3.9 ± 0.1 a | 7.4 ± 0.1 a | 1029.3 ± 5.7 a | 735.6 ± 16.6 a |
WV100 | 54.7 ± 5.7 a | 98.0 ± 1.2 ab | 6.2 ± 0.2 abc | 3.8 ± 0.1 ab | 7.2 ± 0.1 a | 972.3 ± 5.7 ab | 708.7 ± 8.9 ab |
WV200 | 55.3 ± 4.4 a | 95.3 ± 1.3 abc | 5.8 ± 0.1 bcd | 3.8 ± 0.1 ab | 7.1 ± 0.2 ab | 912.0 ± 32.3 bc | 677.8 ± 22.7 bc |
WV400 | 50.7 ± 1.3 a | 94.0 ± 3.1 bc | 5.7 ± 0.2 cd | 3.6 ± 0.1 ab | 6.7 ± 0.1 bc | 879.9 ± 44.4 cd | 627.0 ± 21.6 cd |
Treatment | FE (%) | EI | MET (d) | Shoot Length (cm) | Root Length (cm) | Shoot DW (mg Seedling−1) | Root DW (mg Seedling−1) | SVI-I | SVI-II |
---|---|---|---|---|---|---|---|---|---|
CK | 89.5 ± 1.0 b | 22.9 ± 0.8 c | 6.3 ± 0 a | 12.3 ± 0.1 b | 9.3 ± 0.1 bc | 7.4 ± 0.3 b | 2.8 ± 0.1 b | 1929.0 ± 16.1 b | 917.7 ± 17.7 b |
BC20 | 99.0 ± 1.0 a | 30.0 ± 0.6 a | 6.0 ± 0 b | 13.4 ± 0.1 a | 9.8 ± 0.1 a | 8.9 ± 0.1 a | 3.7 ± 0.3 a | 2298.4 ± 26.6 a | 1240.1 ± 32.3 a |
BC30 | 97.1 ± 1.6 a | 27.8 ± 1.5 ab | 6.1 ± 0.1 b | 12.9 ± 0.1 a | 9.7 ± 0.2 ab | 8.4 ± 0.3 a | 3.2 ± 0.3 ab | 2193.1 ± 60.8 a | 1133.8 ± 22.9 a |
BC40 | 94.3 ± 3.3 ab | 24.8 ± 1.6 bc | 6.2 ± 0.1 ab | 11.5 ± 0.2 c | 9.0 ± 0.2 c | 6.8 ± 0.3 bc | 3.2 ± 0.1 ab | 1928.8 ± 78.7 b | 946.3 ± 69.3 b |
BC50 | 89.5 ± 2.5 b | 23.4 ± 1.6 c | 6.2 ± 0.1 ab | 11.0 ± 0.3 c | 8.8 ± 0.2 c | 6.5 ± 0.3 c | 3.0 ± 0.1 b | 1773.0 ± 70.0 b | 853.3 ± 64.5 b |
Experiment | Treatment | FE | EI | MET (d) | SVI-I | SVI-II |
---|---|---|---|---|---|---|
Growth chamber | CK | 83.8 ± 2.5 c | 13.2 ± 1.4 c | 8.4 ± 0.1 a | 1631.8 ± 69.5 d | 1055.9 ± 52.8 d |
WV | 95.2 ± 1.0 ab | 21.6 ± 1.6 ab | 7.9 ± 0.1 bc | 2483.8 ± 69.2 b | 1456.0 ± 22.0 b | |
BC | 91.4 ± 1.6 b | 19.2 ± 1.1 b | 8.0 ± 0.1 b | 2310.3 ± 36.4 c | 1274.6 ± 11.2 c | |
WV + BC | 98.1 ± 1.9 a | 26.0 ± 1.6 a | 7.6 ± 0.1 c | 2692.7 ± 12.7 a | 1616.9 ± 51.7 a | |
Field | CK | 48.0 ± 4.8 c | 10.9 ± 1.4 b | 9.0 ± 0 a | 984.5 ± 106.3 b | 552.6 ± 43.0 c |
WV | 76.0 ± 2.8 ab | 18.6 ± 1.9 a | 8.9 ± 0.1 a | 1854.4 ± 94.0 a | 1104.9 ± 44.6 a | |
BC | 62.7 ± 6.9 b | 14.5 ± 1.6 b | 9.0 ± 0.1 a | 1395.1 ± 142.3 b | 795.5 ± 77.8 b | |
WV + BC | 79.6 ± 6.5 a | 20.4 ± 1.5 a | 8.8 ± 0 a | 1950.3 ± 152.2 a | 1200.3 ± 86.0 a |
Experiment | Treatment | Shoot Length (cm) | Root Length (cm) | Total Length (cm) | Shoot DW (mg Seedling−1) | Root DW (mg Seedling−1) | Total DW (mg Seedling−1) |
---|---|---|---|---|---|---|---|
Growth chamber | CK | 14.1 ± 0.3 d | 5.3 ± 0.3 b | 19.5 ± 0.6 c | 8.4 ± 0.4 c | 4.2 ± 0.2 b | 12.6 ± 0.5 c |
WV | 20.2 ± 0.1 b | 7.3 ± 0.4 a | 27.5 ± 0.5 ab | 11.3 ± 0.1 ab | 5.2 ± 0 ab | 16.5 ± 0.1 a | |
BC | 16.9 ± 0.4 c | 8.4 ± 0.4 a | 25.3 ± 0.6 b | 9.7 ± 0.2 b | 4.3 ± 0 b | 13.9 ± 0.2 b | |
WV + BC | 18.9 ± 0.2 a | 7.2 ± 0.2 a | 26.1 ± 0.4 a | 10.5 ± 0.4 a | 4.8 ± 0.3 a | 15.3 ± 0.6 a | |
Field | CK | 11.4 ± 0.1 c | 9.1 ± 0.3 b | 20.5 ± 0.2 c | 7.3 ± 0.2 c | 4.3 ± 0.3 b | 11.6 ± 0.4 c |
WV | 14.4 ± 0.4 a | 10.0 ± 0.1 a | 24.4 ± 0.4 a | 9.0 ± 0 a | 5.5 ± 0.2 a | 14.5 ± 0.2 a | |
BC | 12.3 ± 0.1 b | 10.0 ± 0.1 a | 22.3 ± 0.2 b | 8.1 ± 0 b | 4.6 ± 0.3 b | 12.7 ± 0.3 b | |
WV + BC | 14.4 ± 0.2 a | 10.1 ± 0.2 a | 24.5 ± 0.1 a | 9.1 ± 0.4 a | 6.0 ± 0.2 a | 15.1 ± 0.3 a |
Treatment | Total Root Length (cm) | Surface Area (cm2) | Average Diameter (mm) | Root Volume (cm3) | Tips (Seedling−1) |
---|---|---|---|---|---|
CK | 63.8 ± 1.4 b | 5.9 ± 0.1 b | 0.293 ± 0.010 a | 0.042 ± 0.001 a | 384.7 ± 18.5 b |
WV | 92.2 ± 7.3 a | 7.3 ± 0.5 a | 0.254 ± 0.004 b | 0.047 ± 0.002 a | 581.7 ± 39.6 a |
BC | 96.8 ± 5.0 a | 7.3 ± 0.5 a | 0.239 ± 0.005 b | 0.043 ± 0.003 a | 659.9 ± 100.1 a |
WV + BC | 99.0 ± 5.5 a | 7.6 ± 0.4 a | 0.246 ± 0.008 b | 0.047 ± 0.002 a | 667.0 ± 49.4 a |
Trait | Treatment | MT | PI | HD | PM |
---|---|---|---|---|---|
Plant height (cm) | CK | 88.8 ± 3.2 a | 101.6 ± 3.8 bc | 133.9 ± 2.1 a | 136.6 ± 0.9 a |
WV | 93.7 ± 3.9 a | 108.1 ± 1.8 a | 131.2 ± 2.8 a | 134.1 ± 0.8 a | |
BC | 86.3 ± 3.6 a | 97.9 ± 2.3 c | 132.5 ± 1.8 a | 133.5 ± 1.6 a | |
WV + BC | 91.9 ± 2.8 a | 106.9 ± 4.4 ab | 133.9 ± 0.1 a | 134.3 ± 1.5 a | |
Tillers (m−2) | CK | 352 ± 12 c | 311 ± 11 c | 246 ± 4 b | 211 ± 12 b |
WV | 421 ± 16 ab | 370 ± 9 ab | 292 ± 6 a | 260 ± 17 a | |
BC | 392 ± 23 bc | 343 ± 20 bc | 265 ± 8 b | 231 ± 12 ab | |
WV + BC | 445 ± 12 a | 398 ± 18 a | 302 ± 8 a | 261 ± 4 a | |
LAI | CK | 2.33 ± 0.17 c | 4.27 ± 0.27 b | 4.54 ± 0.21 b | - |
WV | 3.47 ± 0.44 ab | 5.76 ± 0.36 a | 6.37 ± 0.41 a | - | |
BC | 2.58 ± 0.36 bc | 5.77 ± 0.12 a | 6.21 ± 0.60 a | - | |
WV + BC | 3.85 ± 0.05 a | 5.96 ± 0.53 a | 6.47 ± 0.64 a | - | |
Total dry weight (t ha−1) | CK | 2.61 ± 0.11 b | 6.70 ± 0.29 b | 11.30 ± 0.34 b | 13.21 ± 0.70 b |
WV | 3.72 ± 0.28 a | 8.51 ± 0.31 a | 13.12 ± 0.64 a | 15.64 ± 0.69 a | |
BC | 2.78 ± 0.23 b | 7.15 ± 0.18 b | 11.98 ± 0.62 ab | 14.00 ± 0.77 ab | |
WV + BC | 4.18 ± 0.10 a | 8.70 ± 0.50 a | 13.58 ± 0.45 a | 15.96 ± 0.74 a |
Treatment | Grain Yield (t ha−1) | Panicles (m−2) | Spikelets per Panicle | Grain Filling Rate (%) | 1000 Grain Weight (g) | Harvest Index |
---|---|---|---|---|---|---|
CK | 5.27 ± 0.30 b | 182 ± 9 b | 164 ± 4 a | 64.0 ± 1.2 c | 29.6 ± 0.3 a | 0.450 ± 0.005 b |
WV | 6.25 ± 0.22 a | 209 ± 6 a | 162 ± 4 a | 70.8 ± 0.8 a | 28.7 ± 0.6 a | 0.495 ± 0.003 a |
BC | 5.90 ± 0.27 ab | 192 ± 8 ab | 171 ± 10 a | 66.3 ± 0.8 bc | 28.9 ± 0.3 a | 0.447 ± 0.005 b |
WV + BC | 6.32 ± 0.28 a | 214 ± 1 a | 159 ± 3 a | 69.0 ± 0.7 ab | 28.7 ± 0 a | 0.483 ± 0.006 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Khan, Z.; Liu, J.; Luo, T.; Zhu, K.; Hu, L.; Bi, J.; Luo, L. Germination and Growth Performance of Water-Saving and Drought-Resistant Rice Enhanced by Seed Treatment with Wood Vinegar and Biochar under Dry Direct-Seeded System. Agronomy 2022, 12, 1223. https://doi.org/10.3390/agronomy12051223
Zhang K, Khan Z, Liu J, Luo T, Zhu K, Hu L, Bi J, Luo L. Germination and Growth Performance of Water-Saving and Drought-Resistant Rice Enhanced by Seed Treatment with Wood Vinegar and Biochar under Dry Direct-Seeded System. Agronomy. 2022; 12(5):1223. https://doi.org/10.3390/agronomy12051223
Chicago/Turabian StyleZhang, Kangkang, Zaid Khan, Jiahuan Liu, Tao Luo, Kunmiao Zhu, Liyong Hu, Junguo Bi, and Lijun Luo. 2022. "Germination and Growth Performance of Water-Saving and Drought-Resistant Rice Enhanced by Seed Treatment with Wood Vinegar and Biochar under Dry Direct-Seeded System" Agronomy 12, no. 5: 1223. https://doi.org/10.3390/agronomy12051223
APA StyleZhang, K., Khan, Z., Liu, J., Luo, T., Zhu, K., Hu, L., Bi, J., & Luo, L. (2022). Germination and Growth Performance of Water-Saving and Drought-Resistant Rice Enhanced by Seed Treatment with Wood Vinegar and Biochar under Dry Direct-Seeded System. Agronomy, 12(5), 1223. https://doi.org/10.3390/agronomy12051223