The Dynamics of Molybdenum, Boron, and Iron Uptake, Translocation and Accumulation by Pea (Pisum sativum L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Laboratory Analyses
2.3. Weather Conditions
2.4. Calculations
- (a)
- Element (Mo, B, Fe) accumulation in pea’s dry mass (uptake by pea) [33], Eup
- (b)
- Bioaccumulation Factor of the selected element (Mo, Fe, B), BAFE
- (c)
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Ron, A.M.; Sparvoli, F.; Pueyo, J.J.; Bazile, D. Editorial: Protein crops: Food and feed for the future. Front. Plant Sci. 2017, 8, 105. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kulkarni, K.P.; Tayade, R.; Asekova, S.; Song, J.T.; Shannon, J.G.; Lee, J.D. Harnessing the potential of forage legumes, alfalfa, soybean, and cowpea for sustainable agriculture and global food security. Front. Plant Sci. 2018, 9, 1314. [Google Scholar] [CrossRef] [PubMed]
- Çakir, Ö.; Uçarli, C.; Tarhan, Ç.; Pekmez, M.; Turgut-Kara, N. Nutritional and health benefits of legumes and their distinctive genomic properties. Review article. Food Sci. Technol. Camp. 2019, 39, 1–12. [Google Scholar] [CrossRef]
- Didinger, C.; Thompson, H.J. Defining nutritional and functional niches of legumes: A call for clarity to distinguish a future role for pulses in the dietary guidelines for Americans. Nutrients 2021, 13, 1100. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.S.; Figueredo, A.; Villani, H.; Michajluk, J.; Hungria, M. Diversity and symbiotic effectiveness of rhizobia isolated from field-grown soybean nodules in Paraguay. Biol. Fertil. Soils 2002, 35, 448–457. [Google Scholar] [CrossRef]
- Faligowska, A.; Szymańska, G.; Panasiewicz, K.; Szukała, J.; Koziara, W.; Ratajczak, K. The long-term effect of legumes as forecrops on the productivity of rotation (winter rape-winter wheat-winter wheat) with nitrogen fertilization. Plant Soil Environ. 2019, 65, 138–144. [Google Scholar] [CrossRef]
- Wysokinski, A.; Lozak, I.; Kuziemska, B. Sources of nitrogen for winter triticale (Triticosecale Wittm. ex A.Camus) succeeding pea (Pisum sativum L.). Agronomy 2021, 11, 527. [Google Scholar] [CrossRef]
- Peoples, M.B.; Craswell, E.T. Biological nitrogen fixation: Investments, expectations and actual contribution to agriculture. Plant Soil 1992, 141, 13–39. [Google Scholar] [CrossRef]
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A.; et al. Nitrogen cycles: Past, present, and future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Cheng, Q. Perspectives in biological nitrogen fixation research. J. Integr. Plant Biol. 2008, 50, 786–798. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Menge, D.N.L.; Reed, S.C.; Cleveland, C.C. Biological nitrogen fixation: Rates, patterns and ecological controls in terrestrial ecosystems. Phil. Trans. R. Soc. B 2013, 368, 20130119. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Zhuang, Q. Modeling biological nitrogen fixation in global natural terrestrial ecosystems. Biogeosciences 2020, 17, 3643–3657. [Google Scholar] [CrossRef]
- Zahran, H.H. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 1999, 63, 968–989. [Google Scholar] [CrossRef] [PubMed]
- Unkovich, M. Nitrogen fixation in Australian dairy systems: Review and prospect. Crop Pasture Sci. 2012, 63, 787–804. [Google Scholar] [CrossRef]
- Mendonça, E.S.; Lima, P.C.; Guimarães, G.P.; Moura, W.M.; Andrade, F.V. Biological nitrogen fixation by legumes and N uptake by coffee plants. Rev. Bras. Cienc. Solo 2017, 41, e0160178. [Google Scholar] [CrossRef]
- Hossain, Z.; Wang, X.; Hamel, C.; Knight, J.D.; Morrison, M.J.; Ga, Y. Biological nitrogen fixation by pulse crops on semiarid Canadian prairies. Can. J. Plant Sci. 2017, 97, 119–131. [Google Scholar] [CrossRef]
- Reinprecht, Y.; Schram, L.; Marsolais, F.; Smith, T.H.; Hill, B.; Pauls, K.P. Effects of nitrogen application on nitrogen fixation in common bean production. Front. Plant Sci. 2020, 11, 1172. [Google Scholar] [CrossRef]
- Rymuza, K.; Radzka, E.; Wysokinski, A. Nitrogen uptake from different sources by non-GMO soybean varieties. Agronomy 2020, 10, 1219. [Google Scholar] [CrossRef]
- Wysokinski, A.; Lozak, I. The dynamic of nitrogen uptake from different sources by pea (Pisum sativum L.). Agriculture 2021, 11, 81. [Google Scholar] [CrossRef]
- Hungria, M.; Vargas, M.A.T. Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Res. 2000, 65, 151–164. [Google Scholar] [CrossRef]
- Zielke, M.; Ekker, A.S.; Olsen, R.A.; Spjelkavik, S.; Solheim, B. The influence of abiotic factors on biological nitrogen fixation in different types of vegetation in the high arctic, Svalbard. Arct. Antarct. Alp. Res. 2002, 34, 293–299. [Google Scholar] [CrossRef]
- Mohammadi, K.; Sohrabi, Y.; Heidari, G.; Khalesro, S.; Majidi, M. Effective factors on biological nitrogen fixation. Afr. J. Agric. Res. 2012, 7, 1782–1788. [Google Scholar] [CrossRef]
- De Borja Reis, A.F.; Rosso, M.L.; Purcell, L.C.; Naeve, S.; Casteel, S.N.; Kovács, P.; Archontoulis, S.; Davidson, D.; Ciampitti, I.A. Environmental factors associated with nitrogen fixation prediction in soybean. Front. Plant Sci. 2021, 12, 675410. [Google Scholar] [CrossRef] [PubMed]
- Weisany, W.; Raey, Y.; Allahverdipoor, K.H. Role of some of mineral nutrients in biological nitrogen fixation. Bull. Env. Pharmacol. Life Sci. 2013, 2, 77–84. [Google Scholar]
- Zheng, M.; Zhou, Z.; Luo, Y.; Zhao, P.; Mo, J. Global pattern and controls of biological nitrogen fixation under nutrient enrichment: A meta-analysis. Glob. Chang. Biol. 2019, 25, 3018–3030. [Google Scholar] [CrossRef]
- Martyniuk, S. The importance of biological fixation of atmospheric nitrogen in ecological agriculture. J. Res. Appl. Agric. Eng. 2008, 53, 9–14. (In Polish) [Google Scholar]
- Vance, C.P. Root bacteria interactions: Symbiotic nitrogen fixation. In Plant Root. The Hidden Half; Waisel, J., Eshel, A., Kafkafi, U., Eds.; Marcel Dekker Inc.: New York, NY, USA, 2002; 1136p. [Google Scholar]
- Vieira, R.F.; Cardoso, E.J.B.N.; Vieira, C.; Cassini, S.T.A. Foliar application of molybdenum in common beans. I. Nitrogenase and reductase activities in a soil of high fertility. J. Plant Nutr. 1998, 21, 169–180. [Google Scholar] [CrossRef]
- Brear, E.M.; Day, D.A.; Smith, P.M.C. Iron: An essential micronutrient for the legume–rhizobium symbiosis. Front. Plant Sci. 2013, 4, 359. [Google Scholar] [CrossRef]
- Brown, P.H.; Bellaloui, N.; Wimmer, M.A.; Bassil, E.S.; Ruiz, J.; Hu, H.; Pfeffer, H.; Dannel, F.; Römheld, V. Boron in plant biology. Plant Biol. 2002, 4, 205–223. [Google Scholar] [CrossRef]
- Ciampitti, I.A.; de Borja Reis, A.F.; Córdova, S.C.; Castellano, M.J.; Archontoulis, S.V.; Correndo, A.A.; Antunes De Almeida, L.F.; Moro Rosso, L.H. Revisiting biological nitrogen fixation dynamics in soybeans. Front. Plant Sci. 2021, 12, 727021. [Google Scholar] [CrossRef]
- Bleinholder, H.; Weber, E.; Feller, C.; Hess, M.; Wicke, H.; Meier, U.; van den Boom, T.; Lancashire, P.D.; Buhr, L.; Hack, H.; et al. Growth stages of mono- and dicotyledonous plants. In BBCH Monograph; Meier, U., Ed.; Julius Kühn-Institut: Quedlinburg, Germany, 2001; pp. 1–160. [Google Scholar]
- Kuziemska, B.; Trębicka, J.; Wysokinski, A. Uptake and utilization of nitrogen from organic fertilizers influenced by different doses of copper. Agronomy 2021, 11, 1219. [Google Scholar] [CrossRef]
- Rezvani, M.; Zaefarian, F. Bioaccumulation and translocation factors of cadmium and lead in Aeluropuslittoralis. Aust. J. Agric. Res. 2011, 2, 114–119. [Google Scholar]
- Kuziemska, B.; Trębicka, J.; Wysokiński, A.; Jaremko, D. Supplementation of organic amendments improve yield and adaptability by reducing the toxic effect of copper in cocksfoot grass (Dactylis glomerata L. Cv Amera). Agronomy 2021, 11, 791. [Google Scholar] [CrossRef]
- Gawryluk, A.; Wyłupek, T.; Wolański, P. Assessment of Cu, Pb and Zn content in selected species of grasses and in the soil of the roadside embankment. Ecol. Evol. 2020, 10, 9841–9852. [Google Scholar] [CrossRef]
- Proc, K.; Bulak, P.; Kaczor, M.; Bieganowski, A. A new approach to quantifying bioaccumulation of elements in biological processes. Biology 2021, 10, 345. [Google Scholar] [CrossRef]
- Kisker, C.; Schindelin, H.; Rees, D.C. Molybdenum–cofactor–containing enzymes: Structure and mechanism. Ann. Rev. Biochem. 1997, 66, 233–267. [Google Scholar] [CrossRef]
- Zimmer, W.; Mendel, R. Molybdenum metabolism in plants. Plant Biol. 1998, 1, 160–168. [Google Scholar] [CrossRef]
- Campbell, W.H. Structure and function of eukaryotic NAD(P)H: Nitrate reductase. Cell. Mol. Life Sci. 2001, 58, 194–204. [Google Scholar] [CrossRef]
- Guerinot, M.L. Iron uptake and metabolism in the Rhizobia legume symbioses. Plant Soil 1991, 130, 199–209. [Google Scholar] [CrossRef]
- O’Hara, G.W. Nutritional constraints on root nodule bacteria affecting symbiotic nitrogen fixation: A review. Aust. J. Exp. Agric. 2001, 41, 417–433. [Google Scholar] [CrossRef]
- Peters, J.W.; Szilagyi, R.K. Exploring new frontiers of nitrogenase structure and mechanism. Curr. Opin. Chem. Biol. 2006, 10, 101–108. [Google Scholar] [CrossRef]
- Day, D.A.; Smith, P.M.C. Iron transport across symbiotic membranes of nitrogen-fixing legumes. Int. J. Mol. Sci. 2021, 22, 432. [Google Scholar] [CrossRef] [PubMed]
- Bolaños, L.; Esteban, E.; Delorenzo, C.; Fernandez-Pascual, M.; Defelipe, M.R.; Garate, A.; Bonilla, I. Essentiality of boron for symbiotic dinitrogen fixation in pea (Pisum sativum) rhizobium nodules. Plant Physiol. 1994, 104, 85–90. [Google Scholar] [CrossRef]
- Carpena, R.; Esteban, E.; Sarro, M.; Peñaloza, J.; Garate, A.; Lucena, J.; Zornoza, P. Boron and calcium distribution in nitrogen fixing pea plants. Plant Sci. 2000, 151, 163–170. [Google Scholar] [CrossRef]
- Bolaños, L.; Brevin, N.J.; Bonilla, I. Effects of boron on rhizobium-legume cell-surface interactions and nodule development. Plant Physiol. 1996, 110, 1249–1256. [Google Scholar] [CrossRef]
- Gupta, U.C.; Lipsett, J. Molybdenum in soils, plants and animals. Adv. Agron. 1981, 34, 73–115. [Google Scholar]
- Hamlin, R.L. Molybdenum. In Handbook of Plant Nutrition; Barker, A.V., Philbeam, D.J., Eds.; Taylor and Francis Group: New York, NY, USA, 2007; pp. 375–394. [Google Scholar]
- Symanowicz, B.; Kalembasa, S. Effect of iron, molybdenum and cobalt on the amount of nitrogen biologically reduced by Rhizobium galegae. Ecol. Chem. Eng. A 2012, 19, 1311–1320. [Google Scholar] [CrossRef]
- Butnariu, M.; Robert, A.; Tonea, E. Quantity determination of molybdenum from Pisum sativum plants and the influence of heavy metal to chemical elements accumulation. Lucr. Ştiinţifice–Zooteh. Şi Biotehnol. 2008, 41, 735–743. [Google Scholar]
- Kabata-Pendias, A.; Pendias, H. Biogeochemistry of Trace Elements; Wydawnictwo Naukowe PWN: Warszawa, Poland, 1999; ISBN 83-01128-23-2. [Google Scholar]
- Burton, J.W.; Harlow, C.; Theil, E.C. Evidence for reutilization of nodule iron in soybean seed development. J. Plant Nutr. 1998, 21, 913–927. [Google Scholar] [CrossRef]
- Römheld, V.; Nikolic, M. Iron. In Handbook of Plant Nutrition; Barker, A.V., Philbeam, D.J., Eds.; Taylor and Francis Group: New York, NY, USA, 2007; pp. 329–350. [Google Scholar]
- Gupta, U.C. Boron. In Handbook of Plant Nutrition; Barker, A.V., Philbeam, D.J., Eds.; Taylor and Francis Group: New York, NY, USA, 2007; pp. 241–277. [Google Scholar]
- Reguera, M.; Wimmer, M.; Bustos, P.; Goldbach, H.E.; Bolanos, L.; Bonilla, I. Ligands of boron in Pisum sativum nodules are involved in regulation of oxygen concentration and rhizobial infection. Plant Cell Environ. 2010, 33, 1039–1048. [Google Scholar] [CrossRef]
- Hu, H.; Brown, P.H. Absorption of boron by plant roots. Plant Soil 1997, 193, 49–58. [Google Scholar] [CrossRef]
- Slatni, T.; Krouma, A.; Aydi, S.; Chaiff, C.; Gouia, H.; Abdelly, C. Growth, nitrogen fixation and ammonium assimilation in common bean (Phaseolus vulgaris L.) subjected to iron deficiency. Plant Soil 2008, 312, 49–57. [Google Scholar] [CrossRef]
- Wysokiński, A.; Kuziemska, B.; Łozak, I.; Jaremko, D. Effect of various nitrogen doses on the accumulation of molybdenum, boron and iron in yellow lupine biomass. J. Elem. 2018, 23, 309–320. [Google Scholar] [CrossRef]
- Netty, S.; Wardiyati, T.; Maghfoer, M.D.; Handayanto, E. Bioaccumulation of nickel by five wild plant species on nickel contaminated soil. IOSR J. Eng. 2013, 3, 1–6. [Google Scholar] [CrossRef]
- Ociepa, E.; Pachura, P.; Ociepa-Kubicka, A. Effect of fertilization unconventional migration of heavy metals in the soil-plant system. Eng. Prot. Environ. 2014, 17, 325–338. [Google Scholar]
Month | Total Monthly Rainfall, mm | Average Monthly Temperatures, °C | ||||
---|---|---|---|---|---|---|
Year | Long-Term Mean 1981–2014 | Year | Long-Term Mean 1981–2014 | |||
2015 | 2016 | 2015 | 2016 | |||
III | 53.1 | 46.4 | 29.6 | 4.8 | 3.3 | 2.0 |
IV | 30.0 | 50.2 | 33.4 | 8.2 | 8.9 | 8.1 |
V | 100.2 | 35.5 | 6.3 | 12.3 | 14.6 | 13.6 |
VI | 43.3 | 55.6 | 72.9 | 16.5 | 18.1 | 16.3 |
VII | 62.6 | 126.8 | 67.6 | 18.7 | 19.0 | 18.5 |
Sum/Means IV–VII | 236.1 | 268.1 | 234.2 | 13.9 | 15.1 | 14.1 |
Month | Year | |||
---|---|---|---|---|
2015 | 2016 | |||
k | wm | k | wm | |
IV | 1.2 | md | 1.9 | mw |
V | 2.6 | vw | 0.8 | d |
VI | 0.9 | d | 1.0 | d |
VII | 1.1 | md | 2.2 | w |
VIII | 0.2 | ed | 1.1 | md |
Micronutrients | Part of Pea | Growth Stages (BBCH) | LSD0.05 | |||||
---|---|---|---|---|---|---|---|---|
14 | 33 | 55 | 65 | 75 | 90 | |||
Mo | Seed | 5.75 | ||||||
Aerial part | 3.83 b | 3.66 b | 3.27 ab | 2.73 a | 2.80 a | 2.59 a | 0.79 | |
Root | 3.75 c | 4.98 d | 3.30 bc | 2.70 bc | 2.54 b | 0.72 a | 1.05 | |
Weighted average | 3.72 b | 3.93 b | 3.27 ab | 2.71 a | 2.79 a | 3.72 b | 0.70 | |
B | Seed | 22.2 | ||||||
Aerial part | 25.0 | 24.9 | 26.6 | 26.0 | 26.8 | 26.3 | n.s. | |
Root | 22.1 ab | 23.8 b | 22.8 ab | 21.7 ab | 21.8 ab | 20.2 a | 2.8 | |
Weighted average | 23.7 a | 24.7 ab | 26.2 cb | 25.8 cb | 26.6 c | 24.7 ab | 1.9 | |
Fe | Seed | 105.8 | ||||||
Aerial part | 312.1 d | 229.6 c | 152.1 b | 112.2 a | 119.0 ab | 131.4 ab | 38.0 | |
Root | 3639.0 d | 2226.2 c | 1707.5 b | 1437.4 ab | 1373.8 a | 1284.2 a | 369.2 | |
Weighted average | 1819.1 d | 674.6 c | 283.9 b | 182.3 ab | 165.5 a | 144.7 a | 115.9 |
Micronutrients | Part of Pea | Source of Variation | |||||
---|---|---|---|---|---|---|---|
Pea Cultivar | Year of Research | ||||||
‘Milwa’ | ‘Batuta’ | LSD0.05 | 2015 | 2016 | LSD0.05 | ||
Mo | Seed | 5.92 1 | 5.59 1 | n.s. | 4.78 1a | 6.73 1b | 0.62 |
Aerial part | 3.23 2 | 3.06 2 | n.s. | 3.34 2b | 2.95 2a | 0.31 | |
Root | 3.29 2b | 2.70 2a | 0.41 | 3.75 2b | 2.25 2a | 0.41 | |
Weighted average | 3.45 2 | 3.26 2 | n.s. | 3.50 2b | 3.21 2a | 0.27 | |
B | Seed | 22.2 1 | 22.3 1 | n.s. | 16.5 1a | 28.0 1b | 2.1 |
Aerial part | 26.2 2 | 25.7 2 | n.s. | 20.1 2a | 31.7 2b | 0.9 | |
Root | 22.2 2 | 21.9 2 | n.s. | 16.5 2a | 27.7 2b | 1.1 | |
Weighted average | 25.5 2 | 25.1 2 | n.s. | 19.6 2a | 31.0 2b | 0.8 | |
Fe | Seed | 105.3 1 | 106.3 1 | n.s. | 110.9 1b | 100.7 1a | 7.8 |
Aerial part | 179.6 2 | 172.5 2 | n.s. | 185.4 2b | 166.7 2a | 14.9 | |
Root | 2046.8 2b | 1842.6 2a | 144.5 | 2144.9 2b | 1744.4 2a | 144.5 | |
Weighted average | 572.5 2b | 517.5 2a | 49.3 | 644.8 2b | 445.2 2a | 49.3 |
Micronutrients | Part of Pea | Growth Stages (BBCH) | LSD0.05 | |||||
---|---|---|---|---|---|---|---|---|
14 | 33 | 55 | 65 | 75 | 90 | |||
Mo | Seed | 14.21 | ||||||
Aerial part | 0.70 a | 2.66 b | 9.22 c | 13.27 d | 15.78 e | 10.54 c | 1.84 | |
Root | 0.54 b | 1.04 d | 0.87 cd | 0.73 bc | 0.62 bc | 0.09 a | 0.30 | |
Sum | 1.24 a | 3.70 b | 10.09 c | 14.00 d | 16.40 d | 24.85 e | 2.44 | |
B | Seed | 53.5 | ||||||
Aerial part | 4.8 a | 18.8 a | 69.6 b | 119.6 c | 145.3 d | 102.9 c | 19.5 | |
Root | 3.1 a | 4.9 bc | 5.5 c | 5.4b c | 4.4 b | 2.5 a | 1.1 | |
Sum | 7.9 a | 23.7 a | 75.1 b | 125.0 c | 149.7 d | 158.9 d | 19.6 | |
Fe | Seed | 278.9 | ||||||
Aerial part | 55.9 a | 169.2 a | 404.6 b | 556.4 c | 667.9 c | 522.9 bc | 124.1 | |
Root | 548.9 d | 466.0 cd | 425.3 c | 377.1 bc | 303.3 b | 176.3 a | 104.3 | |
Sum | 604.8 a | 635.2 a | 829.9 b | 933.5 b | 971.2 b | 978.1 b | 176.0 |
Micronutrients | Part of Pea | Source of Variation | |||||
---|---|---|---|---|---|---|---|
Pea Cultivar | Year of Research | ||||||
‘Milwa’ | ‘Batuta’ | LSD0.05 | 2015 | 2016 | LSD0.05 | ||
Mo | Seed | 14.38 | 14.04 | n.s. | 15.96 b | 12.46 a | 2.0 |
Aerial part | 10.58 | 10.50 | n.s. | 11.45 b | 9.63 a | 1.39 | |
Root | 0.10 | 0.09 | n.s. | 0.11 b | 0.08 a | 0.02 | |
Sum | 25.06 | 24.63 | n.s. | 27.52 b | 22.17 a | 3.48 | |
B | Seed | 52.2 | 54.8 | n.s. | 55.0 | 52.0 | n.s. |
Aerial part | 102.2 | 103.7 | n.s. | 85.7 a | 120.3 b | 26.3 | |
Root | 2.5 | 2.4 | n.s. | 2.2 | 2.7 | n.s. | |
Sum | 157.0 | 160.9 | n.s. | 142.8 a | 175.0 b | 25.2 | |
Fe | Seed | 275.5 | 282.3 | n.s. | 370.4 b | 187.3 a | 58.2 |
Aerial part | 549.3 | 496.5 | n.s. | 547.6 | 498.3 | n.s. | |
Root | 188.3 | 164.3 | n.s. | 244.4 b | 108.3 a | 59.1 | |
Sum | 1013.1 | 943.1 | n.s. | 1162.3 b | 793.9 a | 98.8 |
Micronutrients | Part of Pea | Growth Stages (BBCH) | LSD0.05 | |||||
---|---|---|---|---|---|---|---|---|
14 | 33 | 55 | 65 | 75 | 90 | |||
Mo | Seed | 87.1 | ||||||
Aerial part | 58.1 b | 55.5 b | 49.7 ab | 41.3 a | 42.4 a | 39.2 a | 12.1 | |
Root | 56.8 c | 75.7 d | 50.4 bc | 41.3 bc | 38.8 b | 10.9 a | 16.1 | |
Averages in the whole plant | 57.4 bc | 65.6 c | 50.0 ab | 41.3 a | 40.6 a | 45.7 a | 10.7 | |
B | Seed | 52.6 | ||||||
Aerial part | 56.8 a | 56.2 a | 61.1 ab | 60.7 ab | 63.6 b | 63.4 b | 6.2 | |
Root | 50.2 | 53.1 | 53.4 | 52.1 | 53.8 | 49.6 | n.s. | |
Averages in the whole plant | 54.1 a | 55.6 a | 60.5 b | 60.3 b | 63.2 b | 59.3 b | 4.5 | |
Fe | Seed | 0.02 | ||||||
Aerial part | 0.07 d | 0.05 c | 0.03 b | 0.02 a | 0.03 b | 0.03 b | 0.01 | |
Root | 0.79 c | 0.48 b | 0.37 a | 0.31 a | 0.30 a | 0.28 a | 0.10 | |
Averages in the whole plant | 0.39 c | 0.15 b | 0.06 a | 0.04 a | 0.04 a | 0.03 a | 0.08 |
Micronutrients | Part of Pea | Source of Variation | |||||
---|---|---|---|---|---|---|---|
Pea Cultivar | Year of Research | ||||||
‘Milwa’ | ‘Batuta’ | LSD0.05 | 2015 | 2016 | LSD0.05 | ||
Mo | Seed | 89.4 1 | 84.5 1 | n.s. | 73.5 1a | 100.5 1b | 9.3 |
Aerial part | 49.0 2 | 46.4 2 | n.s. | 51.4 2b | 44.0 2a | 4.7 | |
Root | 50.2 2b | 41.1 2a | 6.3 | 57.7 2b | 33.6 2a | 6.3 | |
Averages in the whole plant | 52.3 2 | 49.5 2 | n.s. | 60.9 2 | 59.4 2 | n.s. | |
B | Seed | 52.9 1 | 52.3 1 | n.s. | 15.7 1a | 89.5 1b | 5.8 |
Aerial part | 61.3 2 | 59.3 2 | n.s. | 19.2 2a | 101.4 2b | 2.4 | |
Root | 52.1 2 | 52.0 2 | n.s. | 15.7 2a | 88.4 2b | 3.1 | |
Averages in the whole plant | 59.7 2 | 58.0 2 | n.s. | 18.7 2a | 98.9 2b | 1.9 | |
Fe | Seed | 0.02 1 | 0.02 1 | n.s. | 0.02 1 | 0.02 1 | n.s. |
Aerial part | 0.04 2 | 0.04 2 | n.s. | 0.04 2 | 0.04 2 | n.s. | |
Root | 0.44 2 | 0.40 2 | n.s. | 0.45 2 | 0.39 2 | n.s. | |
Averages in the whole plant | 0.12 2 | 0.11 2 | n.s. | 0.13 2 | 0.10 2 | n.s. |
Micronutrients | Growth Stages (BBCH) | ||||||||
---|---|---|---|---|---|---|---|---|---|
14 (Ap) | 33 (Ap) | 55 (Ap) | 65 (Ap) | 75 (Ap) | 90 (Ap) | 90 (S) | Meanly to Ap and S at 90 BBCH | LSD0.05 | |
Mo | 1.1 a | 0.8 a | 1.3 a | 1.5 a | 1.8 a | 3.7 b | 8.3 d | 5.4 c | 1.6 |
B | 1.1 ab | 1.0 a | 1.2 bc | 1.2 bc | 1.3 c | 1.3 c | 1.1 ab | 1.2 bc | 0.2 |
Fe | 0.09 ab | 0.10 bc | 0.09 ab | 0.08 a | 0.09 ab | 0.11 c | 0.08 a | 0.10 bc | 0.02 |
Micronutrients | Part of Pea | Source of Variation | |||||
---|---|---|---|---|---|---|---|
Pea Cultivar | Year of Research | ||||||
‘Milwa’ | ‘Batuta’ | LSD0.05 | 2015 | 2016 | LSD0.05 | ||
Mo | Seed | 8.9 1 | 7.6 1 | n.s. | 6.9 1a | 9.6 1b | 2.2 |
Aerial part | 1.7 2 | 1.6 2 | n.s. | 1.3 2a | 2.0 2b | 0.3 | |
Averages | 5.8 2 | 5.1 2 | n.s. | 5.0 2a | 5.9 2b | 0.7 | |
B | Seed | 1.1 1 | 1.2 1 | n.s. | 1.3 1 | 1.0 1 | n.s. |
Aerial part | 1.2 2 | 1.2 2 | n.s. | 1.3 2 | 1.2 2 | n.s. | |
Averages | 1.2 2 | 1.3 2 | n.s. | 1.3 2 | 1.1 2 | n.s. | |
Fe | Seed | 0.08 1 | 0.09 1a | n.s. | 0.08 1 | 0.09 1 | n.s. |
Aerial part | 0.09 2 | 0.09 2 | n.s. | 0.08 2 | 0.09 2 | n.s. | |
Averages | 0.09 2 | 0.09 2 | n.s. | 0.08 2 | 0.09 2 | n.s. |
Specification | Pea’s Parameter | |||||
---|---|---|---|---|---|---|
Seeds Mass | Whole Mass | N Content in Whole Mass | N Uptake | |||
From Air | From Fertilizer | From Soil | ||||
Mo content in roots | 0.87 * | 0.81 * | 0.34 | 0.86 * | 0.75 * | 0.34 |
Mo content in whole mass | 0.69 * | 0.61 * | 0.14 | 0.52 | 0.73 * | 0.47 |
B content in roots | −0.88 * | −0.82 * | −0.30 | −0.88 * | −0.71 * | −0.27 |
B content in whole mass | −0.91 * | −0.90 * | −0.22 | −0.94 * | −0.70 * | −0.30 |
Fe content in roots | 0.43 | 0.44 | −0.09 | 0.37 | 0.40 | 0.01 |
Fe content in whole mass | −0.28 | −0.38 | −0.19 | −0.37 | −0.27 | −0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wysokinski, A.; Lozak, I.; Kuziemska, B. The Dynamics of Molybdenum, Boron, and Iron Uptake, Translocation and Accumulation by Pea (Pisum sativum L.). Agronomy 2022, 12, 935. https://doi.org/10.3390/agronomy12040935
Wysokinski A, Lozak I, Kuziemska B. The Dynamics of Molybdenum, Boron, and Iron Uptake, Translocation and Accumulation by Pea (Pisum sativum L.). Agronomy. 2022; 12(4):935. https://doi.org/10.3390/agronomy12040935
Chicago/Turabian StyleWysokinski, Andrzej, Izabela Lozak, and Beata Kuziemska. 2022. "The Dynamics of Molybdenum, Boron, and Iron Uptake, Translocation and Accumulation by Pea (Pisum sativum L.)" Agronomy 12, no. 4: 935. https://doi.org/10.3390/agronomy12040935
APA StyleWysokinski, A., Lozak, I., & Kuziemska, B. (2022). The Dynamics of Molybdenum, Boron, and Iron Uptake, Translocation and Accumulation by Pea (Pisum sativum L.). Agronomy, 12(4), 935. https://doi.org/10.3390/agronomy12040935