Effects of Iron Deficiency Stress on Plant Growth and Quality in Flowering Chinese Cabbage and Its Adaptive Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Determination of Growth and Quality Index
2.3. Determination of Photosynthetic Characteristics
2.4. Analysis of Nitrate Reductase Activity
2.5. Determination of Reactive Oxygen Metabolism
2.6. Determination of Ethylene Release from Roots
2.7. Measurement of pH of Root Medium
2.8. Determination of the Fe3+ Reductase Activity of Roots
2.9. Data Processing and Analysis
3. Results
3.1. Effects of Fe Deficiency Stress on the Plant Growth
3.2. Effects of Fe Deficiency Stress on the Quality of Flower Stalk
3.3. Effects of Fe Deficiency Stress on the Photosynthetic Characteristics
3.4. Effects of Fe Deficiency Stress on the NR Activity
3.5. Effects of Fe Deficiency Stress on the Reactive Oxygen Metabolism
3.6. Effects of Fe Deficiency Stress, ACC and Co2+ on Endogenous Ethylene Release from Roots
3.7. Effects of Fe Deficiency Stress and ACC and Co2+ Treatment on the pH Value in Root Medium
3.8. Effects of Fe Deficiency Stress and ACC and Co2+ on the Fe3+ Reductase Activity in Roots
3.9. Effects of Fe Deficiency Stress and ACC and Co2+ on Active Fe Content
4. Discussion
4.1. Effect of Fe Deficiency Stress on the Growth, Yield, and Quality
4.2. Effect of Fe Deficiency Stress on Nitrogen Assimilation and Photosynthesis
4.3. Effect of Fe Deficiency Stress on the Antioxidant
4.4. The Role of Ethylene in the Adaptive Response to Fe Deficiency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Connorton, J.M.; Balk, J.; Rodriguez-Celma, J. Iron homeostasis in plants-A brief overview. Metallomics 2017, 9, 813–823. [Google Scholar]
- Kim, S.A.; Guerinot, M.L. Mining iron: Iron uptake and transport in plants. FEBS Lett. 2007, 581, 2273–2280. [Google Scholar]
- Mori, S. Iron acquisition by plants. Curr. Opin. Plant Biol. 1999, 2, 250–253. [Google Scholar]
- Dey, S.; Chowardhara, B.; Regon, P.; Kar, S.; Saha, B.; Panda, S.K. Iron deficiency in blackgram (Vigna mungo L.): Redox status and antioxidant activity. Plant Biosyst. 2020, 1–16. [Google Scholar] [CrossRef]
- Riaz, N.; Guerinot, M.L. All together now: Regulation of the iron deficiency response. J. Exp. Bot. 2021, 72, 2045–2055. [Google Scholar]
- Romheld, V.; Marschner, H. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol. 1986, 80, 175–180. [Google Scholar]
- Yi, C.L.; Wang, H.; Zhang, F.S.; Li, C.J. The difference of iron deficiency induced adaptable reaction among cucumber, tomato and soybean. Chin. J. Plant Ecol. 1998, 22, 80–86. [Google Scholar]
- García, M.J.; Lucena, C.; Romera, F.J.; Alcántara, E.; Pérez-Vicente, R. Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis. J. Exp. Bot. 2010, 61, 3885–3899. [Google Scholar]
- Lucena, C.; Romera, F.J.; García, M.J.; Alcántara, E.; Pérez-Vicente, R. Ethylene participates in the regulation of Fe deficiency responses in Strategy I plants and in rice. Front. Plant Sci. 2015, 6, 1056. [Google Scholar]
- Kang, Y.Y.; Liu, B.; Yang, X.; Chai, X.X. Effects of glucohexaose on sheath blight, pathogenesis-related proteins and endogenous hormones in flowering Chinese cabbage. Acta Hort. Sin. 2014, 41, 1125–1132. [Google Scholar]
- Chai, X.R.; Kang, Y.Y.; Li, X.X.; Yang, X.; Zhang, X.L. Effect of foliar application of sucrose on yield and soluble sugar content of flowering Chinese cabbage. China Veg. 2013, 20, 61–66. [Google Scholar]
- Yang, X.; Cheng, X.Y.; Liu, Z.C. Effects of boron and molybdenum nutrition on curd yield and active oxygen metabolism in Broccoli (Brassica oleracea var. italica). Acta Horti. Sin. 2000, 27, 112–116. [Google Scholar]
- Yang, X.; Cheng, X.Y.; Feng, H.X. The effects of nitrogen nutrition and inoculation with Colletotrichum higginsianum on anthracnose resistance physiology in flowering Chinese cabbage I. The effects of nitrogen nutrition on anthracnose and cell protective enzymes in flowering Chinese cabbage. J. South Chin. Agric. Univ. (Nat. Sci. Ed.) 2004, 25, 26–30. [Google Scholar]
- Yang, X.; Gu, M.M.; Kang, Y.Y.; Feng, X.F. Contribution of N: P ratio and endogenous phytohormones during development of phosphorus toxicity in Brassica campestris spp. parachinensis. J. Plant Nutr. Soil Sci. 2012, 175, 582–594. [Google Scholar]
- Tan, C.T.; Zhang, L.; Duan, X.W.; Chai, X.R.; Huang, R.M.; Kang, Y.Y.; Yang, X. Effects of exogenous sucrose and selenium on plant growth, quality, and sugar metabolism of pea sprouts. J. Sci. Food Agric. 2021. [Google Scholar] [CrossRef]
- Lastra, O.C. Derivative spectrophotometric determination of nitrate in plant tissue. J. AOAC Int. 2003, 86, 1101–1105. [Google Scholar]
- Gao, J.F. Instruction for Plant Physiology Experiments; Higher Education Press: Beijing, China, 2006. [Google Scholar]
- Wang, J.; Fang, Z.; Cheng, W.; Yan, X.; Tsang, P.E.; Zhao, D. Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation. Environ. Pollut. 2016, 210, 338–345. [Google Scholar]
- Zhao, Y.; Chan, Z.; Gao, J.H.; Zhu, J.K. ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc. Natl. Acad. Sci. USA 2016, 113, 1949–1954. [Google Scholar]
- Wang, X.Y.; Han, S.L.; Guo, S.H. The measurement system optimization study on the nitrate reductase activity of apple leaf. Nort. Hortic. 2010, 6, 52–55. [Google Scholar]
- Romera, F.J.; Alcantara, E.; De La Guardia, M.D. Ethylene production by Fe-deficient roots and its involvement in the regulation of Fe-deficiency stress responses by strategy I plants. Ann. Bot. 1999, 83, 51–55. [Google Scholar]
- Gogorcena, Y.; Abadía, J.; Abadía, A. Induction of in vivo root ferric chelate reductase activity in fruit tree rootstock. J. Plant Nutr. 2000, 23, 9–21. [Google Scholar]
- Abadía, J.; Vázquez, S.; Rellán-Álvarez, R.; El-Jendoubi, H.; Abadía, A.; Álvarez-Fernández, A.; López-Millán, A.F. Towards a knowledge-based correction of iron chlorosis. Plant Physiol. Biochem. 2011, 49, 471–482. [Google Scholar]
- Álvarez-Fernández, A.; Paniagua, P.; Abadía, J.; Abadía, A. Effects of Fe deficiency chlorosis on yield and fruit quality in peach (Prunus persica L. Batsch). J. Agric. Food Chem. 2003, 51, 5738–5744. [Google Scholar]
- Ding, F.; Wang, X.F.; Shi, Q.H.; Wang, E.L.; Feng, J.F. Effects of iron deficiency on photosynthetic characteristics and quality of Chinese cabbage (Brassica chinensis L.). Shandong Agric. Sci. 2007, 6, 51–53. [Google Scholar]
- Yarnia, M.; Benam, M.; Arbat, H.K.; Tabrizi, E.; Hassanpanah, D. Effects of complete micronutrients and their application method on root yield and sugar content of sugar beet cv. Rassoul. J. Food Agric. Environ. 2008, 6, 341–345. [Google Scholar]
- Roncel, M.; González-Rodríguez, A.A.; Naranjo, B.; Bernal-Bayard, P.; Lindahl, A.M.; Hervás, M.; Navarro, J.A.; Ortega, J.M. Iron deficiency induces a partial inhibition of the photosynthetic electron transport and a high sensitivity to light in the diatom Phaeodactylum tricornutum. Front. Plant Sci. 2016, 7, 1050. [Google Scholar]
- Shuichi, Y. Transcription factors involved in controlling the expression of nitrate reductase genes in higher plants. Plant Sci. 2014, 229, 167–171. [Google Scholar]
- Kaya, C.; Ashraf, M.; Alyemeni, M.N.; Ahmad, P. Nitrate reductase rather than nitric oxide synthase activity is involved in 24-epibrassinolide-induced nitric oxide synthesis to improve tolerance to iron deficiency in strawberry (Fragaria × annassa) by up-regulating the ascorbate-glutathione cycle. Plant Physiol. Biochem. 2020, 151, 486–499. [Google Scholar]
- Song, Y.L.; Dong, Y.J.; Tian, X.Y.; Kong, J.; Bai, X.Y.; Xu, L.L.; He, Z.L. Role of foliar application of 24-epibrassinolide in response of peanut seedlings to iron deficiency. Biol. Plant. 2016, 60, 329–342. [Google Scholar]
- Shabala, S.; Shabala, L.; Barcelo, J.; Poschenrieder, C. Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding. Plant Cell Environ. 2014, 37, 2216–2233. [Google Scholar]
- Jia, X.M.; Zhu, Y.F.; Hu, Y.; Cheng, L.; Zhao, T.; Wang, Y.X. Tolerance to iron-deficiency stress of three apple rootstock species in hydroponic system. Agric. Sci. Technol. 2018, 19, 21–30. [Google Scholar]
- Schmidt, W. Iron solutions: Acquisition strategies and signaling pathways in plants. Trends Plant Sci. 2003, 8, 188–193. [Google Scholar]
- Sabrina, Z.; Stefano, C.; Zeno, V.; Roberto, P.; Stefania, A. Sulphur deprivation limits Fe-deficiency responses in tomato plants. Planta 2009, 230, 85–94. [Google Scholar]
- Romera, F.J.; Alcantara, E. Ethylene involvement in the regulation of Fe-deficiency stress responses by strategy I plants. Funct. Plant Biol. 2004, 31, 315–328. [Google Scholar]
- Waters, B.M.; Lucena, C.; Romera, F.J.; Jester, G.G.; Wynn, A.N.; Roja, C.L.; Alcántara, E.; Pérez-Vicentec, R. Ethylene involvement in the regulation of the H+-ATPase CsHA1 gene and of the new isolated ferric reductase CsFRO1 and iron transporter CsIRT1 genes in cucumber plants. Plant Physiol. Biochem. 2007, 45, 293–301. [Google Scholar]
- Cui, X.Y.; Cao, Y.P.; Zhang, F.S. Effect of cobalt on root responses to iron deficiency in peas (Pisum sativum L.). Sci. Agric. Sin. 1999, 32, 105–107. [Google Scholar]
Treatment | Plant Fresh Weight (g Plant−1) | Shoot Fresh Weight (g Plant−1) | Root Fresh Weight (g Plant−1) | Root Shoot Ratio | Plant Height (cm) | Stem Diameter (mm) |
---|---|---|---|---|---|---|
1 Fe | 20.34 ± 0.47 a | 18.04 ± 1.08 a | 2.54 ± 0.66 a | 0.15 ± 0.04 a | 17.33 ± 3.22 a | 8.91 ± 0.74 a |
1/2 Fe | 18.47 ± 0.81 a | 16.92 ± 0.58 a | 1.53 ± 0.20 b | 0.11 ± 0.01 b | 17.00 ± 2.65 a | 8.34 ± 0.37 a |
0 Fe | 13.51 ± 2.30 b | 11.24 ± 1.45 b | 1.43 ± 0.12 b | 0.10 ± 0.02 b | 13.63 ± 1.89 b | 6.88 ± 0.91 b |
Treatment | Organ | Vc Content (mg g−1 FW) | Soluble Protein Content (mg g−1 FW) | Soluble Sugar Content (ug g−1 FW) | Nitrate Content (mg g−1 FW) | Cellulose Content (% g−1 DW) |
---|---|---|---|---|---|---|
1Fe | Leaf of flower stalk | 0.89 ± 0.10 a | 1.72 ± 0.03 a | 0.90 ± 0.02 a | 9.08 ± 0.27 c | 16.64 ± 1.61 b |
1/2Fe | 0.76 ± 0.04 ab | 1.66 ± 0.01 a | 0.88 ± 0.02 a | 10.7 ± 0.46 b | 17.04 ± 1.43 b | |
0Fe | 0.69 ± 0.01 b | 1.46 ± 0.08 b | 0.89 ± 0.02 a | 13.6 ± 0.27 a | 20.71 ± 1.25 a | |
1Fe | Stalk of flower stalk | 0.89 ± 0.01 a | 1.20 ± 0.02 a | 1.11 ± 0.01 a | 11.61 ± 0.09 c | 41.25 ± 0.54 c |
1/2Fe | 0. 62 ± 0.03 b | 1.14 ± 0.12 a | 1.06 ± 0.02 ab | 12.99 ± 0.37 b | 45.98 ± 0.09 b | |
0Fe | 0.39 ± 0.04 c | 1.06 ± 0.05 b | 1.01 ± 0.01 b | 16.61 ± 0.28 a | 47.41 ± 1.16 a |
Treatment | Chlorophyll Content (mg g−1 FW) | Stomatal Conductance (mol m−2 s−1) | Net Photosynthetic Rate (umol m−2 s−1) | Intercellular CO2 Concentration (umol m−2 s−1) | Transpiration Rate (mmol m−2 s−1) | NR Activity (ug g−1 h−1) |
---|---|---|---|---|---|---|
1Fe | 1.438 ± 0.005 a | 0.153 ± 0.0007 a | 17.00 ± 0.82 a | 147.5 ± 0.71 c | 7.37 ± 0.495 a | 12.01 ± 0.52 a |
1/2Fe | 1.446 ± 0.019 a | 0.154 ± 0.0093 a | 16.27 ± 1.31 a | 174.0 ± 3.00 b | 7.74 ± 0.197 a | 9.17 ± 0.45 b |
0Fe | 1.143 ± 0.093 b | 0.132 ± 0.0055 b | 8.15 ± 0.47 b | 252.0 ± 1.00 a | 7.75 ± 0.295 a | 7.57 ± 0.27 c |
Treatment | Root | Leaf |
---|---|---|
0Fe | 16.18 ± 0.27 d | 3.76 ± 0.42 d |
1/2Fe | 35.77 ± 0.51 b | 8.35 ± 0.38 b |
1Fe | 58.13 ± 3.22 a | 10.57 ± 0.56 a |
0Fe + ACC | 22.78 ± 1.75 c | 7.42 ± 0.73 c |
0Fe + Co2+ | 12.43 ± 0.51 e | 2.35 ± 0.61 e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Kang, Y.; Zhong, M.; Zhang, L.; Chai, X.; Jiang, X.; Yang, X. Effects of Iron Deficiency Stress on Plant Growth and Quality in Flowering Chinese Cabbage and Its Adaptive Response. Agronomy 2022, 12, 875. https://doi.org/10.3390/agronomy12040875
Wang Y, Kang Y, Zhong M, Zhang L, Chai X, Jiang X, Yang X. Effects of Iron Deficiency Stress on Plant Growth and Quality in Flowering Chinese Cabbage and Its Adaptive Response. Agronomy. 2022; 12(4):875. https://doi.org/10.3390/agronomy12040875
Chicago/Turabian StyleWang, Yanping, Yunyan Kang, Min Zhong, Liang Zhang, Xirong Chai, Xinxiao Jiang, and Xian Yang. 2022. "Effects of Iron Deficiency Stress on Plant Growth and Quality in Flowering Chinese Cabbage and Its Adaptive Response" Agronomy 12, no. 4: 875. https://doi.org/10.3390/agronomy12040875
APA StyleWang, Y., Kang, Y., Zhong, M., Zhang, L., Chai, X., Jiang, X., & Yang, X. (2022). Effects of Iron Deficiency Stress on Plant Growth and Quality in Flowering Chinese Cabbage and Its Adaptive Response. Agronomy, 12(4), 875. https://doi.org/10.3390/agronomy12040875