Residual Effect of Bentonite-Humic Acid Amendment on Soil Health and Crop Performance 4–5 Years after Initial Application in a Dryland Ecosystem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Characteristics of BHA Soil Amendment
2.3. Experimental Set-Up and Field Management
2.4. Sampling and Measurements
2.4.1. Determination of Soil Physicochemical Properties
2.4.2. Soil Enzyme Activities
2.4.3. Plant Productivity and Grain Protein
2.5. Data Analysis
3. Results
3.1. Enzyme Activity
3.2. Soil Physicochemical Properties
3.3. Soil Available Nutrients
3.4. Yield and Grain Protein
3.5. Water and Nitrogen Use
3.6. Relationships between Crop Performance Parameters, Soil Physicochemical Properties, and Enzyme Activity
4. Discussion
4.1. Impact of BHA on Soil Health Parameters
4.2. Plant Response to BHA
4.3. Optimization of the BHA Application Rate
4.4. Longevity of BHA
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
(SWS) | Soil water storage |
(SWC) | soil water content |
(SBD) | soil bulk density |
(SEC) | soil electrical conductivity |
(AP) | soil available phosphorus |
(AN) | soil alkaline nitrogen |
(AK) | soil available potassium |
(SOM) | soil organic matter |
(GS) | Zadoks’ scale growth stage |
(GP) | grain protein |
(ET) | evapotranspiration |
(WUE) | water use efficiency |
(PFPN) | partial factor productivity of nitrogen |
(TGP) | total grain protein yield |
(GY) | grain yield |
(BY) | biomass yield |
References
- Talukder, B.; Ganguli, N.; Matthew, R.; van Loon, G.W.; Hipel, K.W.; Orbinski, J. Climate change-triggered land degradation and planetary health: A review. Land Degrad. Dev. 2021, 32, 4509–4522. [Google Scholar] [CrossRef]
- McBratney, A.; Field, D.J.; Koch, A. The dimensions of soil security. Geoderma 2014, 213, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Mi, J.Z.; Gregorich, E.G.; Xu, S.T.; McLaughlin, N.B.; Ma, B.; Liu, J.H. Effect of bentonite amendment on soil hydraulic parameters and millet crop performance in a semi-arid region. Field Crops Res. 2017, 212, 107–114. [Google Scholar] [CrossRef]
- Pandey, S. A comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment. J. Mol. Liq. 2017, 241, 1091–1113. [Google Scholar] [CrossRef]
- Wang, Q.; Slaný, M.; Gu, X.; Miao, Z.; Du, W.; Zhang, J.; Gang, C. Lubricity and rheological properties of highly dispersed graphite in clay-water-based drilling fluids. Materials 2022, 15, 1083. [Google Scholar] [CrossRef]
- Paasikallio, A. Effect of biotite, zeolite, heavy clay, bentonite and apatite on the uptake of radiocesium by grass from peat soil. Plant Soil 1999, 206, 213–222. [Google Scholar] [CrossRef]
- Zhou, L.; Monreal, C.M.; Xu, S.; McLaughlin, N.B.; Zhang, H.; Hao, G.; Liu, J. Effect of bentonite-humic acid application on the improvement of soil structure and maize yield in a sandy soil of a semi-arid region. Geoderma 2019, 338, 269–280. [Google Scholar] [CrossRef]
- Al-Omran, A.M.; Sheta, A.S.; Falatah, A.M.; Al-Harbi, A.R. Effect of drip irrigation on squash (Cucurbita pepo) yield and water-use efficiency in sandy calcareous soils amended with clay deposits. Agric. Water Manag. 2005, 73, 43–55. [Google Scholar] [CrossRef]
- Piccolo, A. The Supramolecular Structure of Humic Substances: A Novel Understanding of Humus Chemistry and Implications in Soil Science, Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2002; pp. 57–134. [Google Scholar]
- Ciarkowska, K.; Sołek-Podwika, K.; Filipek-Mazur, B.; Tabak, M. Comparative effects of lignite-derived humic acids and FYM on soil properties and vegetable yield. Geoderma 2017, 303, 85–92. [Google Scholar] [CrossRef]
- Jannin, L.; Arkoun, M.; Ourry, A.; Laîné, P.; Goux, D.; Garnica, M.; Fuentes, M.; San Francisco, S.; Baigorri, R.; Cruz, F. Microarray analysis of humic acid effects on Brassica napus growth: Involvement of N, C and S metabolisms. Plant Soil 2012, 359, 297–319. [Google Scholar] [CrossRef]
- Ma, B.; Ma, B.-L.; McLaughlin, N.B.; Li, M.; Liu, J. Improvement in dryland crop performance and soil properties with multiple annual applications of lignite-derived humic amendment. Soil Tillage Res. 2022, 218, 105306. [Google Scholar] [CrossRef]
- Li, C.H.; Ma, B.L.; Zhang, T.Q. Soil bulk density effects on soil microbial populations and enzyme activities during the growth of maize (Zea mays L.) planted in large pots under field exposure. Can. J. Soil Sci. 2002, 82, 147–154. [Google Scholar] [CrossRef] [Green Version]
- A’Bear, A.D.; Jones, T.H.; Kandeler, E.; Boddy, L. Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biol. Biochem. 2014, 70, 151–158. [Google Scholar] [CrossRef]
- Mi, J.; Gregorich, E.G.; Xu, S.; McLaughlin, N.B.; Ma, B.; Liu, J. Changes in soil biochemical properties following application of bentonite as a soil amendment. Eur. J. Soil Biol. 2021, 102, 103251. [Google Scholar] [CrossRef]
- Mi, J.Z.; Gregorich, E.G.; Xu, S.; McLaughlin, N.B.; Liu, J.H. Effects of a one-time application of bentonite on soil enzymes in a semi-arid region. Can. J. Soil Sci. 2018, 98, 542–555. [Google Scholar] [CrossRef]
- Schlaepfer, D.R.; Bradford, J.B.; Lauenroth, W.K.; Munson, S.M.; Tietjen, B.; Hall, S.A.; Wilson, S.D.; Duniway, M.C.; Jia, G.; Pyke, D.A.; et al. Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat. Commun. 2017, 8, 14196. [Google Scholar] [CrossRef]
- Elzobair, K.A.; Stromberger, M.E.; Ippolito, J.A.; Lentz, R.D. Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol. Chemosphere 2016, 142, 145–152. [Google Scholar] [CrossRef]
- Melero, S.; Porras, J.C.R.; Herencia, J.F.; Madejon, E. Chemical and biochemical properties in a silty loam soil under conventional and organic management. Soil Tillage Res. 2006, 90, 162–170. [Google Scholar] [CrossRef]
- Lentz, R.D.; Ippolito, J.A. Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake. J. Environ. Qual. 2012, 41, 1033–1043. [Google Scholar] [CrossRef]
- Tahir, S.; Marschner, P. Clay amendment to sandy soil—effect of clay concentration and ped size on nutrient dynamics after residue addition. J. Soils Sediments 2017, 16, 2072–2080. [Google Scholar] [CrossRef]
- Rollins, M.; Dylla, A. Field experiments on sealing permeable fine sand with bentonite. Soil Sci. Soc. Am. J. 1964, 28, 268–271. [Google Scholar] [CrossRef]
- Ojeda, G.; Mattana, S.; Àvila, A.; Alcañiz, J.M.; Volkmann, M.; Bachmann, J. Are soil–water functions affected by biochar application? Geoderma 2015, 249–250, 1–11. [Google Scholar] [CrossRef]
- Ma, B.L.; Biswas, D.K.; Zhou, Q.P.; Ren, C.Z. Comparisons among cultivars of wheat, hulled and hulless oats: Effects of N fertilization on growth and yield. Can. J. Plant Sci. 2012, 92, 1213–1222. [Google Scholar] [CrossRef]
- Mosley, L.M.; Biswas, T.K.; Cook, F.J.; Marschner, P.; Palmer, D.; Shand, P.; Yuan, C.; Fitzpatrick, R.W. Prolonged recovery of acid sulfate soils with sulfuric materials following severe drought: Causes and implications. Geoderma 2017, 308, 312–320. [Google Scholar] [CrossRef]
- Wu, W.; Ma, B.-L. Erect–leaf posture promotes lodging resistance in oat plants under high plant population. Eur. J. Agron. 2019, 103, 175–187. [Google Scholar] [CrossRef]
- Turner, N.C.; Molyneux, N.; Yang, S.; Xiong, Y.-C.; Siddique, K.H.M. Climate change in south-west Australia and north-west China: Challenges and opportunities for crop production. Crop Pasture Sci. 2011, 62, 445–456. [Google Scholar] [CrossRef]
- Zhao, B.P.; Ma, B.-L.; Hu, Y.G.; Liu, J.H. Characterization of nitrogen and water status in oat leaves using optical sensing approach. J. Sci. Food Agric. 2015, 95, 367–378. [Google Scholar] [CrossRef]
- Lauenroth, W.K.; Schlaepfer, D.R.; Bradford, J.B. Ecohydrology of dry regions: Storage versus pulse soil water dynamics. Ecosystems 2014, 17, 1469–1479. [Google Scholar] [CrossRef]
- Ma, B.; Ma, B.-L.; McLaughlin, N.B.; Mi, J.; Yang, Y.; Liu, J. Exploring soil amendment strategies with polyacrylamide to improve soil health and oat productivity in a dryland farming ecosystem: One-time versus repeated annual application. Land Degrad. Dev. 2020, 31, 1176–1192. [Google Scholar] [CrossRef]
- Zhu, X.M.; Li, Y.S.; Peng, X.L.; Zhang, S.G. Soils of the loess region in China. Geoderma 1983, 29, 237–255. [Google Scholar]
- O’Connor, J.; Hoang, S.A.; Bradney, L.; Dutta, S.; Xiong, X.; Tsang, D.C.W.; Ramadass, K.; Vinu, A.; Kirkham, M.B.; Bolan, N.S. A review on the valorisation of food waste as a nutrient source and soil amendment. Environ. Pollut. 2020, 12, 115985. [Google Scholar] [CrossRef] [PubMed]
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods; Springer: Heidelberg, Germany; New York, NY, USA, 2007. [Google Scholar]
- Guan, S.; Zhang, D.; Zhang, Z. Soil Enzyme and Its Research Methods; Agriculture Press: Beijing, China, 1986; pp. 274–297. [Google Scholar]
- Hoffmann, G.; Teicher, K. Ein kolorimetrisches verfahren zur bestimmung der ureaseaktivität in böden. J. Plant Nutr. Soil Sci. 1961, 95, 55–63. [Google Scholar] [CrossRef]
- Frankenberger, W.T.; Johanson, J.B. Method of measuring invertase activity in soils. Plant Soil 1983, 74, 301–311. [Google Scholar] [CrossRef]
- Johnson, J.L.; Temple, K.L. Some variables affecting the measurement of “catalase activity” in soil1. Soil Sci. Soc. Am. J. 1964, 28, 207–209. [Google Scholar] [CrossRef]
- Maclean, W.; Harnly, J.; Chen, J.; Chevassus-Agnes, S.; Gilani, G.; Livesey, G.; Warwick, P. Food Energy–Methods of Analysis and Conversion Factors; Food and Agriculture Organization of the United Nations Technical Workshop Report; Agricultural Research Service, US Department of Agriculture: Beltsville, MD, USA, 2003. [Google Scholar]
- Wang, T.C.; Wei, L.; Wang, H.-Z.; Ma, S.-C.; Ma, B.L. Responses of rainwater conservation, precipitation-use efficiency and grain yield of summer maize to a furrow-planting and straw-mulching system in northern China. Field Crops Res. 2011, 124, 223–230. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, J.; Ma, B.-L. Concurrent improvement in maize yield and nitrogen use efficiency with integrated agronomic management strategies. Agron. J. 2014, 106, 1243–1250. [Google Scholar] [CrossRef] [Green Version]
- Reuter, G. Improvement of sandy soils by clay-substrate application. Appl. Clay Sci. 1994, 9, 107–120. [Google Scholar] [CrossRef]
- Ma, B.; Liu, J.H.; Yang, Y.M.; Yuan, M.J. Effect of different bentoniite on soil capacity of water-holding and oats yield in rainfed field. Acta Agric. Boreali-Occident. Sin. 2015, 24, 42–49. (In Chinese) [Google Scholar]
- Sardans, J.; Peñuelas, J. Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biol. Biochem. 2005, 37, 455–461. [Google Scholar] [CrossRef]
- Adamczyk, B.; Karonen, M.; Adamczyk, S.; Engström, M.T.; Laakso, T.; Saranpää, P.; Kitunen, V.; Smolander, A.; Simon, J. Tannins can slow-down but also speed-up soil enzymatic activity in boreal forest. Soil Biol. Biochem. 2017, 107, 60–67. [Google Scholar] [CrossRef]
- Lian, B.; Wang, B.; Pan, M.; Liu, C.; Teng, H.H. Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim. Cosmochim. Acta 2008, 72, 87–98. [Google Scholar] [CrossRef]
- Margenot, A.J.; Nakayama, Y.; Parikh, S.J. Methodological recommendations for optimizing assays of enzyme activities in soil samples. Soil Biol. Biochem. 2018, 125, 350–360. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Mommer, L.; De Vries, F.T. Going underground: Root traits as drivers of ecosystem processes. Trends Ecol. Evol. 2014, 29, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.P.; Ma, B.-L.; Hu, Y.G.; Liu, J.H. Leaf photosynthesis, biomass production and water and nitrogen use efficiencies of two contrasting naked vs. hulled oat genotypes subjected to water and nitrogen stresses. J. Plant Nutr. 2011, 34, 2139–2157. [Google Scholar] [CrossRef]
- Belden, S.E.; Schuman, G.E.; Depuit, E.J. Salinity and moisture responses in wood residue amended bentonite mine spoil. Soil Sci. 1990, 150, 874–882. [Google Scholar] [CrossRef]
- Li, C.J.; Xiong, Y.W.; Qu, Z.Y.; Xu, X.; Huang, Q.Z.; Huang, G.H. Impact of biochar addition on soil properties and water-fertilizer productivity of tomato in semi-arid region of Inner Mongolia, China. Geoderma 2018, 331, 100–108. [Google Scholar] [CrossRef]
Property | Value |
---|---|
pH | 7.8 |
SOM (g kg−1) | 10.3 |
AN (mg kg−1) | 45.1 |
AP (mg kg−1) | 7.4 |
AK (mg kg−1) | 124 |
Soil Parameter | Year | T (Treatments) | D (Depths) | T×D (Interaction) |
---|---|---|---|---|
pH | 2014 | ** | ** | ** |
2015 | ** | ** | ** | |
SEC | 2014 | ** | ** | ** |
2015 | ** | ** | ** | |
SBD | 2014 | ** | ** | ** |
2015 | ** | ** | ** | |
AN | 2014 | ** | ** | ** |
2015 | ** | ** | ** | |
AP | 2014 | ** | ** | ** |
2015 | ** | ** | ** | |
AK | 2014 | ** | ** | ** |
2015 | ** | ** | ** | |
SOC | 2014 | ** | ** | ** |
2015 | ** | ** | ** | |
SOM | 2014 | ** | ** | ** |
2015 | ** | ** | ** |
Factor | SWS | Urease | Invertase | Catalase | ||||
---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2014 | 2015 | 2014 | 2015 | 2014 | 2015 | |
T | ** | ** | ** | ** | ** | ** | ** | ** |
D | ** | ** | ** | ** | ** | ** | ** | ** |
T×D | ** | ** | ** | ** | ** | ** | ** | ** |
GS | ** | ** | ** | ** | ** | ** | ** | ** |
T×GS | ** | ** | ** | ** | ** | ** | ** | ** |
D×GS | ** | ** | ** | ** | ** | ** | ** | ** |
T×D×GS | ** | ** | ** | ** | ** | ** | ** | ** |
Intercept | Slope * | Plateau Initiation | |||||
---|---|---|---|---|---|---|---|
2014 | 2015 | 2014 | 2015 | 2014 | 2015 | ||
SWS | 0–10 | 10.2 ± 0.99 | 6.8 ± 0.87 | 0.05 ± 0.007 | 0.03 ± 0.005 | 24 ± 3.2 | - |
10–20 | 9.5 ± 0.62 | 8.6 ± 0.66 | 0.10 ± 0.004 | 0.07 ± 0.005 | 24 ± 9.9 | 29 ± 1.7 | |
20–40 | 21.3 ± 1.22 | 16.7 ± 1.71 | 0.27 ± 0.011 | 0.19 ± 0.015 | 22 ± 6.81 | 23 ± 1.4 | |
40–60 | 18.7 ± 0.89 | 15.5 ± 0.92 | 0.18 ± 0.005 | 0.09 ± 0.005 | - | - | |
Urease | 0–10 | 0.83 ± 0.04 | 0.98 ± 0.06 | 0.013 ± 0.003 | 0.02 ± 0.005 | 24 ± 4.8 | 20 ± 4.0 |
10–20 | 0.67 ± 0.02 | 0.72 ± 0.06 | 0.017 ± 0.002 | 0.03 ± 0.001 | 24 ± 2.1 | 16 ± 3.3 | |
20–40 | 0.39 ± 0.03 | 0.33 ± 0.02 | 0.016 ± 0.003 | 0.008 ± 0.001 | 24 ± 3.1 | - | |
40–60 | 0.35 ± 0.02 | 0.28 ± 0.01 | 0.011 ± 0.002 | 0.005 ± 0.001 | 24 ± 2.8 | - | |
Invertase | 0–10 | 24.9 ± 1.48 | 21.0 ± 0.60 | 0.33 ± 0.08 | 0.33 ± 0.03 | - | - |
10–20 | 17.9 ± 0.81 | 15.9 ± 1.22 | 0.18 ± 0.04 | 0.50 ± 0.07 | - | - | |
20–40 | 7.5 ± 0.52 | 5.5 ± 0.41 | 0.12 ± 0.05 | 0.19 ± 0.02 | 24 ± 7.4 | - | |
40–60 | 6.5 ± 0.26 | 5.3 ± 0.39 | 0.07 ± 0.01 | 0.12 ± 0.02 | - | - | |
Catalase | 0–10 | 15.7 ± 0.45 | 13.9 ± 0.37 | 0.08 ± 0.03 | 0.11 ± 0.02 | 24 ± 9.4 | - |
10–20 | 14.5 ± 0.35 | 12.8 ± 0.26 | 0.11 ± 0.02 | 0.12 ± 0.01 | - | - | |
20–40 | 12.5 ± 0.47 | 10.7 ± 0.42 | 0.12 ± 0.04 | 0.12 ± 0.04 | 23 ± 6.6 | 24 ± 5.8 | |
40–60 | 12.7 ± 0.34 | 10.7 ± 0.46 | 0.13 ± 0.02 | 0.10 ± 0.03 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, B.; Bao, Y.; Ma, B.; McLaughlin, N.B.; Li, M.; Liu, J. Residual Effect of Bentonite-Humic Acid Amendment on Soil Health and Crop Performance 4–5 Years after Initial Application in a Dryland Ecosystem. Agronomy 2022, 12, 853. https://doi.org/10.3390/agronomy12040853
Ma B, Bao Y, Ma B, McLaughlin NB, Li M, Liu J. Residual Effect of Bentonite-Humic Acid Amendment on Soil Health and Crop Performance 4–5 Years after Initial Application in a Dryland Ecosystem. Agronomy. 2022; 12(4):853. https://doi.org/10.3390/agronomy12040853
Chicago/Turabian StyleMa, Bin, Yangmei Bao, Baoluo Ma, Neil B. McLaughlin, Ming Li, and Jinghui Liu. 2022. "Residual Effect of Bentonite-Humic Acid Amendment on Soil Health and Crop Performance 4–5 Years after Initial Application in a Dryland Ecosystem" Agronomy 12, no. 4: 853. https://doi.org/10.3390/agronomy12040853
APA StyleMa, B., Bao, Y., Ma, B., McLaughlin, N. B., Li, M., & Liu, J. (2022). Residual Effect of Bentonite-Humic Acid Amendment on Soil Health and Crop Performance 4–5 Years after Initial Application in a Dryland Ecosystem. Agronomy, 12(4), 853. https://doi.org/10.3390/agronomy12040853