The Thresholds and Management of Irrigation and Fertilization Earning Yields and Water Use Efficiency in Maize, Wheat, and Rice in China: A Meta-Analysis (1990–2020)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Compilation
2.2. Meta-Analysis
2.3. Statistical Analysis
2.4. Meta-Data Overview
3. Results
3.1. Response of Crop Yield and Water Use Efficiency to Fertilization
3.2. Response of Crop Yield and Water Use Efficiency to Irrigation
3.3. Response of Crop Yield and Water Use Efficiency to Agricultural Practices
3.4. The Factors’ Influence on the Crop Yield and Water Use Efficiency
4. Discussion
4.1. N Input Threshold for Higher Crop Yield and Water Use Efficiency
4.2. Irrigation Threshold for Higher Crop Yield and Water Use Efficiency
4.3. Agricultural Field Management for Higher Crop Yield and Water Use Efficiency under Different Humidity Index
4.4. Implications, Perspectives, and Uncertainties
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, M.Z.; Pei, Y.S.; Li, X.D. Study on grain self-sufficiency rate in China: An analysis of grain, cereal grain and edible grain. J. Nat. Resour. 2019, 34, 881–889. [Google Scholar] [CrossRef]
- Deng, G.Y.; Li, L.; Song, Y.N. Provincial water use efficiency measurement and factor analysis in China: Based on SBM-DEA model. Ecol. Indic. 2016, 69, 12–18. [Google Scholar] [CrossRef]
- Liu, J.G.; Zang, C.F.; Tian, S.Y.; Liu, J.G.; Yang, H.; Jia, S.F.; You, L.Z.; Liu, B.; Zhang, M. Water conservancy projects in China: Achievements, challenges and way forward. Glob. Environ. Chang. 2013, 23, 633–643. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Bin, L.L.; Xu, X.Y. Assessment of water resources sustainability in Mainland China in terms of water intensity and efficiency. Environ. Manag. 2019, 63, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zhang, Y.D.; Wang, H.Z.; Shi, H. Analyzing the driving mechanisms of grain virtual water flow based on the case of China’s main grains. Environ. Sci. Policy 2021, 124, 645–655. [Google Scholar] [CrossRef]
- Piao, S.L.; Ciais, P.; Huang, Y.; Shen, Z.H.; Peng, S.S.; Li, J.S.; Zhou, L.P.; Liu, H.Y.; Ma, Y.C.; Ding, Y.H.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Vorosmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.R.; Ma, L.; Strokal, M.; Chu, Y.N.; Kroeze, C. Exploring nutrient management options to increase nitrogen and phosphorus use efficiencies in food production of China. Agric. Syst. 2018, 163, 58–72. [Google Scholar] [CrossRef]
- Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639. [Google Scholar] [CrossRef]
- Zhang, W.F.; Dou, Z.X.; He, P.; Ju, X.T.; Powlson, D.; Chadwick, D.; Norse, D.; Lu, Y.L.; Zhang, Y.; Wu, L.; et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl. Acad. Sci. USA 2013, 110, 8375–8380. [Google Scholar] [CrossRef] [Green Version]
- Burney, J.A.; Davis, S.J.; Lobell, D.B. Greenhouse gas mitigation by agricultural intensification. Proc. Natl. Acad. Sci. USA 2010, 107, 12052–12057. [Google Scholar] [CrossRef] [Green Version]
- Dirzo, R.; Raven, P.H. Global state of biodiversity and loss. Annu. Rev. Environ. Resour. 2003, 28, 137–167. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Wang, X.K.; Sun, B.F.; Zhao, H.; Lu, F.; Zhang, L. Status of mineral nitrogen fertilization and net mitigation potential of the state fertilization recommendation in Chinese cropland. Agric. Syst. 2016, 146, 1–10. [Google Scholar] [CrossRef]
- Condon, A.G.; Richards, R.A.; Rebetzke, G.J.; Farquhar, G.D. Breeding for high water-use efficiency. J. Exp. Bot. 2004, 55, 2447–2460. [Google Scholar] [CrossRef] [Green Version]
- Flexas, J.; Diaz-Espejo, A.; Conesa, M.A.; Coopman, R.E.; Douthe, C.; Gago, J.; Galle, A.; Galmes, J.; Medrano, H.; Ribas-Carbo, M.; et al. Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C-3 plants. Plant Cell Environ. 2016, 39, 965–982. [Google Scholar] [CrossRef] [PubMed]
- Karaba, A.; Dixit, S.; Greco, R.; Aharoni, A.; Trijatmiko, K.R.; Marsch-Martinez, N.; Krishnan, A.; Nataraja, K.N.; Udayakumar, M.; Pereira, A. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc. Natl. Acad. Sci. USA 2007, 104, 15270–15275. [Google Scholar] [CrossRef] [Green Version]
- Hughes, J.; Hepworth, C.; Dutton, C.; Dunn, J.A.; Hunt, L.; Stephens, J.; Waugh, R.; Cameron, D.D.; Gray, J.E. Reducing stomatal density in barley improves drought tolerance without impacting on yield. Plant Physiol. 2017, 174, 776–787. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.F.; Ying, H.; Yin, Y.L.; Wang, Y.C.; He, G.; Bian, Q.Q.; Cui, Z.L.; Yang, Q.H. Irrigation leads to greater maize yield at higher water productivity and lower environmental costs: A global meta-analysis. Agric. Ecosyst. Environ. 2019, 273, 62–69. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Q.P.; Wei, W.R.; Cui, S.; Tang, W.; Li, Y. Determining effects of water and nitrogen inputs on wheat yield and water productivity and nitrogen use efficiency in China: A quantitative synthesis. Agric. Water Manag. 2020, 242, 106397. [Google Scholar] [CrossRef]
- Jiao, J.G.; Shi, K.; Li, P.; Sun, Z.; Chang, D.L.; She, X.S.; Wu, D.; Song, X.C.; Liu, M.Q.; Li, H.X.; et al. Assessing of an irrigation and fertilization practice for improving rice production in the Taihu Lake region (China). Agric. Water Manag. 2018, 201, 91–98. [Google Scholar] [CrossRef]
- Liu, E.K.; Zhao, B.Q.; Hu, C.H.; Li, X.Y.; Zhang, F.D. Effects of long-term fertilization systems on yield and quality of maize. Sci. Agric. Sin. 2004, 37, 711–716. [Google Scholar]
- Van Herwaarden, A.F.; Farquhar, G.D.; Angus, J.F.; Richards, R.A.; Howe, G.N. ‘Haying-off’, the negative grain yield response of dryland wheat to nitrogen fertiliser-I. Biomass, grain yield, and water use. Aust. J. Agric. Res. 1998, 49, 1067–1081. [Google Scholar] [CrossRef]
- Li, J.; Luo, G.T.; Shaibu, A.S.; Li, B.; Zhang, S.R.; Sun, J.M. Optimal Fertilization Level for Yield, Biological and Quality Traits of Soybean under Drip Irrigation System in the Arid Region of Northwest China. Agronomy 2022, 12, 291. [Google Scholar] [CrossRef]
- Rolbiecki, R.; Sadan, H.; Rolbiecki, S.; Jagosz, B.; Szczepanek, M.; Figas, A.; Atilgan, A.; Pal-Fam, F.; Pańka, D. Effect of subsurface drip fertigation with nitrogen on the yield of asparagus grown for the green spears on a light soil in central poland. Agronomy 2022, 12, 241. [Google Scholar] [CrossRef]
- Fang, Q.X.; Ma, L.; Green, T.R.; Yu, Q.; Wang, T.D.; Ahuja, L.R. Water resources and water use efficiency in the North China Plain: Current status and agronomic management options. Agric. Water Manag. 2010, 97, 1102–1116. [Google Scholar] [CrossRef]
- Jiries, A.; Ta’any, R.; Abbassi, B.; Oroud, I. Agriculture water use efficiency in Wadi Shu’eib Area, Jordan. Pol. J. Environ. Stud. 2010, 19, 337–341. [Google Scholar]
- Du, T.S.; Kang, S.Z.; Zhang, J.H.; Li, F.S.; Hu, X.T. Yield and physiological responses of cotton to partial root-zone irrigation in the oasis field of northwest China. Agric. Water Manag. 2006, 84, 41–52. [Google Scholar] [CrossRef]
- Rahil, M.H.; Qanadillo, A. Effects of different irrigation regimes on yield and water use efficiency of cucumber crop. Agric. Water Manag. 2015, 148, 10–15. [Google Scholar] [CrossRef]
- Bai, Y.X.; Yao, X.H.; Yao, Y.H.; Wu, K.L. Mild water deficit management to achieve high nutrition quality of hulless barley and environmental benefit. J. Plant Nutr. Fertitizer 2018, 24, 499–506. [Google Scholar]
- Chai, Q.; Gan, Y.T.; Zhao, C.; Xu, H.L.; Waskom, R.M.; Niu, Y.; Siddique, K.H.M. Regulated deficit irrigation for crop production under drought stress. A review. Agron. Sustain. Dev. 2016, 36, 3. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.Z.; Zhang, X.Y.; Rashid, M.A.; Li, H.G.; Jing, H.C.; Hochman, Z. Assessment of the sustainability of different cropping systems under three irrigation strategies in the North China Plain under climate change. Agric. Syst. 2020, 178, 102745. [Google Scholar] [CrossRef]
- Du, Y.D.; Cui, B.J.; Zhang, Q.; Wang, Z.; Sun, J.; Niu, W.Q. Effects of manure fertilizer on crop yield and soil properties in China: A meta-analysis. Catena 2020, 193, 104617. [Google Scholar] [CrossRef]
- Sun, Y.J.; Sun, Y.Y.; Li, X.Y.; Zhang, R.P.; Guo, X.; Ma, J. Effects of water-nitrogen interaction on absorption, translocation and distribution of nitrogen, phosphorus, and potassium in rice. Acta Agron. Sin. 2010, 36, 655–664. [Google Scholar] [CrossRef]
- Fernandez, J.A.; DeBruin, J.; Messina, C.D.; Ciampitti, I.A. Late-season nitrogen fertilization on maize yield: A meta-analysis. Field Crops Res. 2020, 247, 7586. [Google Scholar] [CrossRef]
- Quan, Z.; Zhang, X.; Davidson, E.A.; Zhu, F.F.; Li, S.L.; Zhao, X.H.; Chen, X.; Zhang, L.M.; He, J.Z.; Wei, W.; et al. Fates and use efficiency of nitrogen fertilizer in maize cropping systems and their responses to technologies and management practices: A global analysis on field 15N tracer studies. Earth Future 2021, 9, e2020EF001514. [Google Scholar] [CrossRef]
- Sun, Y.; Mi, W.H.; Su, L.J.; Shan, Y.Y.; Wu, L.H. Controlled-release fertilizer enhances rice grain yield and N recovery efficiency in continuous non-flooding plastic film mulching cultivation system. Field Crops Res. 2019, 231, 122–129. [Google Scholar] [CrossRef]
- Di Paolo, E.; Rinaldi, M. Yield response of corn to irrigation and nitrogen fertilization in a Mediterranean environment. Field Crops Res. 2008, 105, 202–210. [Google Scholar] [CrossRef]
- Hernández, M.; Echarte, L.; Della Maggiora, A.; Cambareri, M.; Barbieri, P.; Cerrudo, D. Maize water use efficiency and evapotranspiration response to N supply under contrasting soil water availability. Field Crops Res. 2015, 178, 8–15. [Google Scholar] [CrossRef]
- Fan, T.L.; Stewart, B.A.; Yong, W.; Luo, J.J.; Zhou, G.Y. Long-term fertilization effects on grain yield, water-use efficiency and soil fertility in the dryland of Loess Plateau in China. Agric. Ecosyst. Environ. 2005, 106, 313–329. [Google Scholar] [CrossRef]
- Cao, X.C.; Wu, L.L.; Lu, R.H.; Zhu, L.F.; Zhang, J.H.; Jin, Q.Y. Irrigation and fertilization management to optimize rice yield, water productivity and nitrogen recovery efficiency. Irrig. Sci. 2020, 39, 235–249. [Google Scholar] [CrossRef]
- Li, H.R.; Hao, W.P.; Liu, Q.; Mao, L.L.; Nangia, V.; Guo, R.; Mei, X.R. Developing nitrogen management strategies under drip fertigation for wheat and maize production in the North China Plain based on a 3-year field experiment. Plant Nutr. Soil Sci. 2019, 182, 335–346. [Google Scholar] [CrossRef]
- Si, Z.Y.; Zain, M.; Mehmood, F.; Wang, G.S.; Gao, Y.; Duan, A.W. Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain. Agric. Water Manag. 2020, 231, 106002. [Google Scholar] [CrossRef]
- Guo, L.; Shi, J.S.; Wang, L.Y.; Li, R.N.; Ren, Y.L.; Zhang, Y.C. Effects of nitrogen application rate on nitrogen absorption and utilization in summer maize and soil NO3--N content under drip fertigation. Chin. J. Eco-Agric. 2018, 26, 668–676. [Google Scholar]
- Yu, S.G.; Li, S.; Gao, S.K.; Wang, M.; Meng, J.J.; Tang, S.H. Effect of controlled irrigation and drainage on water saving, nitrogen and phosphorus loss reduction with high yield in paddy field. Trans. Chin. Soc. Agric. Eng. 2018, 34, 128–136. [Google Scholar]
- Zhang, W.T.; Sheng, J.D.; Li, Z.; Weindorf, D.C.; Hu, G.; Xuan, J.W.; Zhao, H.M. Integrating rainwater harvesting and drip irrigation for water use efficiency improvements in apple orchards of Northwest China. Sci. Hortic. 2021, 275, 9728. [Google Scholar] [CrossRef]
- Arunadevi, K.; Singh, M.; Franco, D.; Prajapati, V.K.; Ramachandran, J.; Maruthi Sankar, G.R. Real time soil moisture (RTSM) based irrigation scheduling to improve yield and water use Efficiency of Green Pea (Pisum sativum L.) grown in North India. Agronomy 2022, 12, 278. [Google Scholar]
- Zhao, X.N.; Othmanli, H.; Schiller, T.; Zhao, C.Y.; Sheng, Y.; Zia, S.; Muller, J.; Stahr, K. Water use efficiency in saline soils under cotton cultivation in the Tarim River Basin. Water 2015, 7, 3103–3122. [Google Scholar] [CrossRef]
- Su, Y.; Ma, X.F.; Gong, Y.M.; Li, K.H.; Han, W.X.; Liu, X.J. Responses and drivers of leaf nutrients and resorption to nitrogen enrichment across northern China’s grasslands: A meta-analysis. Catena 2021, 199, 105110. [Google Scholar] [CrossRef]
- Croitoru, A.E.; Piticar, A.; Imbroane, A.M.; Burada, D.C. Spatiotemporal distribution of aridity indices based on temperature and precipitation in the extra-Carpathian regions of Romania. Theor. Appl. Clim. 2012, 112, 597–607. [Google Scholar] [CrossRef]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The meta-analysis of response ratios in experimental ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Van Groenigen, K.J.; Osenberg, C.W.; Hungate, B.A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 2011, 475, 214–216. [Google Scholar] [CrossRef] [PubMed]
- Sha, Z.P.; Ma, X.; Wang, J.X.; Lv, T.T.; Li, Q.Q.; Misselbrook, T.; Liu, X.J. Effect of N stabilizers on fertilizer-N fate in the soil-crop system: A meta-analysis. Agric. Ecosyst. Environ. 2020, 290, 106763. [Google Scholar] [CrossRef]
- Drenovsky, R.E.; Khasanova, A.; James, J.J. Trait convergence and plasticity among native and invasive species in resource-poor environments. Am. J. Bot. 2012, 99, 629–639. [Google Scholar] [CrossRef] [Green Version]
- Juhanson, J.; Truu, J.; Heinaru, E.; Heinaru, A. Survival and catabolic performance of introduced Pseudomonas strains during phytoremediation and bioaugmentation field experiment. FEMS Microbiol. Ecol. 2009, 70, 446–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, S.; Shafiq, I.; Skalicky, M.; Brestic, M.; Rastogi, A.; Mumtaz, M.; Hussain, M.; Iqbal, N.; Raza, M.A.; Manzoor, S.; et al. Titanium application increases phosphorus uptake through changes in auxin content and root architecture in soybean (Glycine Max L.). Front. Plant Sci. 2021, 12, 2474. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.; Fleitas, M.T.P.; Gallardo, M.; de Souza, R.; Padilla, F.M.; Thompson, R.B. Sweet pepper and nitrogen supply in greenhouse production: Critical nitrogen curve, agronomic responses and risk of nitrogen loss. Eur. J. Agron. 2020, 117, 126046. [Google Scholar] [CrossRef]
- Lal, R. Potential of desertification control to sequester carbon and mitigate the greenhouse effect. Clim. Chang. 2001, 51, 35–72. [Google Scholar] [CrossRef]
- Meng, Q.F.; Yue, S.C.; Hou, P.; Cui, Z.L.; Chen, X.P. Improving Yield and Nitrogen Use Efficiency Simultaneously for Maize and Wheat in China: A Review. Pedosphere 2016, 26, 137–147. [Google Scholar] [CrossRef]
- Cui, Z.; Chen, X.; Zhang, F. Current nitrogen management status and measures to improve the intensive wheat–maize system in China. Ambio 2010, 39, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Cassman, K.G. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci. USA 1999, 96, 5952–5959. [Google Scholar] [CrossRef] [Green Version]
- Smil, V. Nitrogen in crop production: An account of global flows. Glob. Biogeochem. Cycles 1999, 13, 647–662. [Google Scholar] [CrossRef] [Green Version]
- Zeng, M.F.; De Vries, W.; Bonten, L.T.C.; Zhu, Q.C.; Hao, T.X.; Liu, X.J.; Xu, M.G.; Shi, X.J.; Zhang, F.S.; Shen, J.B. Model-based analysis of the long-term effects of fertilization management on cropland soil acidification. Environ. Sci. Technol. 2017, 51, 3843–3851. [Google Scholar] [CrossRef] [PubMed]
- Shcherbak, I.; Millar, N.; Robertson, G.P. Global meta analysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl. Acad. Sci. USA 2014, 111, 9199–9204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.J.; Xiong, Y.W.; Huang, Q.Z.; Xu, X.; Huang, G.H. Impact of irrigation and fertilization regimes on greenhouse gas emissions from soil of mulching cultivated maize (Zea mays L.) field in the upper reaches of Yellow River, China. J. Clean. Prod. 2020, 259, 120873. [Google Scholar] [CrossRef]
- Oweis, T.; Hachum, A. Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa. Agric. Water Manag. 2006, 80, 57–73. [Google Scholar] [CrossRef]
- Deng, X.P.; Shan, L.; Zhang, H.P.; Turner, N.C. Improving agricultural water use efficiency in arid and semiarid areas of China. Agric. Water Manag. 2006, 80, 23–40. [Google Scholar] [CrossRef]
- Zhao, X.N.; Hu, K.L.; Li, K.J.; Wang, P.; Ma, Y.L.; Stahr, K. Effect of optimal irrigation, different fertilization, and reduced tillage on soil organic carbon storage and crop yields in the North China Plain. Plant Nutr. Soil. Sci. 2013, 176, 89–98. [Google Scholar] [CrossRef]
- Bodner, G.; Nakhforoosh, A.; Kaul, H.P. Management of crop water under drought: A review. Agron. Sustain. Dev. 2015, 35, 401–442. [Google Scholar] [CrossRef]
- Vadez, V. Root hydraulics: The forgotten side of roots in drought adaptation. Field Crops Res. 2014, 165, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Du, T.S.; Kang, S.Z.; Sun, J.S.; Zhang, X.Y.; Zhang, J.H. An improved water use efficiency of cereals under temporal and spatial deficit irrigation in north China. Agric. Water Manag. 2010, 97, 66–74. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Cui, S.; Chang, S.X.; Jia, C.L.; Zhang, Q.P. A global synthesis of the effect of water and nitrogen input on maize (Zea mays) yield, water productivity and nitrogen use efficiency. Agric. For. Meteorol. 2019, 268, 136–145. [Google Scholar] [CrossRef]
- Haynes, R.J.; Naidu, R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: A review. Nutr. Cycl. Agroecosyst. 1998, 51, 123–137. [Google Scholar] [CrossRef]
- Wei, Z.B.; Ying, H.; Guo, X.W.; Zhuang, M.H.; Cui, Z.L.; Zhang, F.S. Substitution of mineral fertilizer with organic fertilizer in maize systems: A meta-analysis of reduced nitrogen and carbon emissions. Agronomy 2020, 10, 1149. [Google Scholar] [CrossRef]
- Han, T.F.; Ma, C.B.; Huang, J.; Liu, K.L.; Xue, Y.D.; Li, D.C.; Liu, L.S.; Zhang, L.; Liu, S.J.; Zhang, H.M. Variation in Rice Yield Response to Fertilization in China: Meta-analysis. Sci. Agric. Sin. 2019, 52, 1918–1929. [Google Scholar]
- OuYang, H.; Xu, Y.C.; Shen, Q.R. Effect of combined use of organic and inorganic nitrogen fertilizer on rice yield and nitrogen use efficiency. Jiangsu J. Agric. Sci. 2009, 25, 106–111. [Google Scholar]
- Li, J.; Wen, Y.C.; Li, X.H.; Li, Y.T.; Yang, X.D.; Lin, Z.; Song, Z.Z.; Cooper, J.M.; Zhao, B.Q. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain. Soil. Tillage Res. 2018, 175, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Faloye, O.T.; Alatise, M.O.; Ajayi, A.E.; Ewulo, B.S. Synergistic effects of biochar and inorganic fertiliser on maize (zea mays) yield in an alfisol under drip irrigation. Soil. Tillage Res. 2017, 174, 214–220. [Google Scholar] [CrossRef]
- Shi, W.Q.; Sun, G.M.; Deng, F.; Xian, A.M.; Chen, J. Effects of frequency of nitrogen application on yield and quality of smooth Cayenne pineapple. Chin. J. Trop. Crops 2012, 33, 1366–1370. [Google Scholar]
- Shi, W.Q.; Sun, G.M.; Lu, X.H.; Chen, J.; Zuo, X.D.; Sun, W.S. Effects of split application of nitrogen on yield and quality of pineapple. Plant Nutr. Fertitizer Sci. 2012, 18, 1524–1529. [Google Scholar]
- Xia, L.L.; Lam, S.K.; Chen, D.; Wang, J.Y.; Tang, Q.; Yan, X.Y. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Glob. Chang. Biol. 2017, 23, 1917–1925. [Google Scholar] [CrossRef]
- Hu, C.L.; Sadras, V.O.; Lu, G.Y.; Zhang, P.X.; Han, Y.; Liu, L.; Xie, J.Y.; Yang, X.Y.; Zhang, S.L. A global meta-analysis of split nitrogen application for improved wheat yield and grain protein content. Soil. Tillage Res. 2021, 213, 105111. [Google Scholar] [CrossRef]
- Li, H.R.; Mei, X.R.; Wang, J.D.; Huang, F.; Hao, W.P.; Li, B.G. Drip fertigation significantly increased crop yield, water productivity and nitrogen use efficiency with respect to traditional irrigation and fertilization practices: A meta-analysis in China. Agric. Water Manag. 2021, 244, 106534. [Google Scholar] [CrossRef]
- Bar, Y.B. Advances in fertigation. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier Academic Press Inc: San Diego, CA, USA, 1999; Volume 65, pp. 1–77. [Google Scholar]
- Yazar, A.; Sezen, S.M.; Sesveren, S. LEPA and trickle irrigation of cotton in the Southeast Anatolia Project (GAP) area in Turkey. Agric. Water Manag. 2002, 54, 189–203. [Google Scholar] [CrossRef]
- Sandhu, B.S.; Khera, K.L.; Prihar, S.S.; Singh, B. Irrigation needs and yield of rice on a sandy-loam soil as affected by continuous and intermittent submergence. Indian J. Agric. Sci. 1980, 50, 492–496. [Google Scholar]
- Lampayan, R.M.; Pascual, K.C.S.; Sibayan, E.B.; Ella, V.B.; Jayag, O.P.; Cabangon, R.J.; Bouman, B.A.M. Effects of alternate wetting and drying (AWD) threshold level and plant seedling age on crop performance, water input, and water productivity of transplanted rice in Central Luzon, Philippines. Paddy Water Environ. 2015, 13, 215–227. [Google Scholar] [CrossRef]
- Carrijo, D.R.; Lundy, M.E.; Linquist, B.A. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Res. 2017, 203, 173–180. [Google Scholar] [CrossRef]
- Bouman, B.A.M.; Tuong, T.P. Field water management to save water and increase its productivity in irrigated lowland rice. Agric. Water Manag. 2001, 49, 11–30. [Google Scholar] [CrossRef]
- Senyigit, U.; Akbolat, D. The effect of different irrigation methods on soil carbon dioxide emission. Ekoloji 2010, 19, 59–64. [Google Scholar] [CrossRef]
- Guo, S.F.; Qi, Y.C.; Dong, Y.S.; Peng, Q.; Liu, X.C.; Sun, L.J.; Jia, J.Q.; He, Y.L.; Cao, C.C.; Yan, Z.Q. Response of production and emission of CO2 and N2O of agricultural soil to drip irrigation. China Environ. Sci. 2014, 34, 2757–2763. [Google Scholar]
- Wang, X.H.; Peng, L.Q.; Zhang, X.P.; Yin, G.D.; Zhao, C.; Piao, S.L. Divergence of climate impacts on maize yield in Northeast China. Agric. Ecosyst. Environ. 2014, 196, 51–58. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Hu, Y.; Zhang, S.; Raza, S.; Wei, X.; Zhao, X. The Thresholds and Management of Irrigation and Fertilization Earning Yields and Water Use Efficiency in Maize, Wheat, and Rice in China: A Meta-Analysis (1990–2020). Agronomy 2022, 12, 709. https://doi.org/10.3390/agronomy12030709
Yang Z, Hu Y, Zhang S, Raza S, Wei X, Zhao X. The Thresholds and Management of Irrigation and Fertilization Earning Yields and Water Use Efficiency in Maize, Wheat, and Rice in China: A Meta-Analysis (1990–2020). Agronomy. 2022; 12(3):709. https://doi.org/10.3390/agronomy12030709
Chicago/Turabian StyleYang, Zhihong, Yi Hu, Sheng Zhang, Sajjad Raza, Xiaorong Wei, and Xiaoning Zhao. 2022. "The Thresholds and Management of Irrigation and Fertilization Earning Yields and Water Use Efficiency in Maize, Wheat, and Rice in China: A Meta-Analysis (1990–2020)" Agronomy 12, no. 3: 709. https://doi.org/10.3390/agronomy12030709
APA StyleYang, Z., Hu, Y., Zhang, S., Raza, S., Wei, X., & Zhao, X. (2022). The Thresholds and Management of Irrigation and Fertilization Earning Yields and Water Use Efficiency in Maize, Wheat, and Rice in China: A Meta-Analysis (1990–2020). Agronomy, 12(3), 709. https://doi.org/10.3390/agronomy12030709