Effect of Fertilisation with Ash from Biomass Combustion on the Mechanical Properties of Potato Tubers (Solanum tuberosum L.) Grown in Two Types of Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment Description
- I.
- Type of soil: Gleyic Chernozem and Haplic Luvisol,
- II.
- Different fertiliser treatments of the potatoes (cv. Sagitta, mid-early, edible, culinary type—French fries, breeder HZPC Holland B.V., Joure, The Netherlands): Control plots—only N and P fertiliser; D1—NPK mineral fertiliser; D2–D6—N and P mineral fertiliser + ash from biomass with different doses: 0.5, 1.0, 1.5, 2.0, 2.5 t∙ha−1, respectively.
2.2. Soil Conditions
2.3. Weather Conditions
2.4. Preparation of Samples for Strength Tests and Evaluation of the Morphological Features of Potato Tubers
- φ—sphericity (%),
- L—length (mm),
- W—width (mm),
- T—thickness (mm).
2.5. Measurement of Mechanical Properties
- DR—relative deformation (%),
- Dmax—maximum deformation (mm),
- T—thickness (mm).
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vaitkevičienė, N. A comparative study on proximate and mineral composition of coloured potato peel and flesh. J. Sci. Food Agric. 2019, 99, 6227–6233. [Google Scholar] [CrossRef] [PubMed]
- Haverkort, A.; De Ruijter, F.; Van Evert, F.; Conijn, J.; Rutgers, B. Worldwide sustainability hotspots in potato cultivation. Identification and mapping. Potato Res. 2013, 56, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Albiski, F.; Najla, S.; Sanoubar, R.; Alkabani, N.; Murshed, R. In Vitro Screening of Potato Lines for Drought Tolerance. Physiol. Mol. Biol. Plants 2012, 18, 315–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birch, P.R.J.; Bryan, G.J.; Fenton, B.; Gilroy, E.M.; Hein, I.; Jones, J.T.; Prashar, A.; Taylor, M.A.; Torrance, L.; Toth, I.K. Crops that feed the world 8: Potato: Are the trends of increased global production sustainable? Food Secur. 2012, 4, 477–508. [Google Scholar] [CrossRef]
- Mullins, E.; Milbourne, D.; Petti, C.; Doyle–Prestwich, B.M.; Meade, C. Potato in the age of biotechnology. Trends Plant Sci. 2006, 11, 254–260. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization Corporate Statistical Database. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 11 June 2021).
- Samaniego, I.; Espin, S.; Cuesta, X.; Arias, V.; Rubio, A.; Llerena, W.; Angós, I.; Carrillo, W. Analysis of environmental conditions effect in the phytochemical composition of potato (Solanum tuberosum) Cultivars. Plants 2020, 9, 815. [Google Scholar] [CrossRef]
- Calliope, S.R.; Lobo, M.O.; Sammán, N.C. Biodiversity of Andean potatoes: Morphological, nutritional and functional characterization. Food Chem. 2018, 238, 42–50. [Google Scholar] [CrossRef]
- Karltun, E.; Saarsalmi, A.; Ingerslev, M.; Mandre, M.; Andersson, S.; Gaitnieks, T.; Ozolinčius, R.; Varnagiryte-Kabasinskiene, I. Wood Ash Recycling—Possibilities and Risks. In Sustain. Use for Biomass Energy. Managing Forest Ecosystems; Röser, D., Asikainen, A., Raulund-Rasmussen, K., Stupak, I., Röser, D., Asikainen, A., Raulund-Rasmussen, K., Stupak, I., Eds.; Springer: Dordrecht, The Netherlands, 2008; Volume 12, pp. 79–108. [Google Scholar] [CrossRef]
- Huotaria, N.; Tillman-Sutela, E.; Moilanen, M.; Laiho, R. Recycling of ash—For the good of the environment? For. Ecol. Manag. 2015, 348, 226–240. [Google Scholar] [CrossRef]
- Maschowski, C.; Zangna, M.C.; Trouvé, G.; Gieré, R. Bottom ash of trees from Cameroon as fertilizer. Appl. Geochem. 2016, 72, 88–96. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Röser, D.; Asikainen, A.; Raulund-Rasmussen, K.; Stupak, I. Sustainable Use of Forest Biomass for Energy: A Synthesis with Focus on the Baltic and Nordic Region; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Chaves, V.C.; Calvete, E.; Reginatto, F.H. Quality properties and antioxidant activity of seven strawberry (Fragaria x ananassa duch) cultivars. Sci. Hortic. 2017, 225, 293–298. [Google Scholar] [CrossRef]
- Contigiani, E.V.; Jaramillo-Sánchez, G.; Castro, M.A.; Gómez, P.L.; Alzamora, S.M. Postharvest Quality of Strawberry Fruit (Fragaria x Ananassa Duch cv. Albion) as Affected by Ozone Washing: Fungal Spoilage, Mechanical Properties, and Structure. Food Bioprocess Technol. 2018, 11, 1639–1650. [Google Scholar] [CrossRef]
- Duarte-Molina, F.; Gómez, P.L.; Castro, M.A.; Alzamora, S.M. Storage quality of strawberry fruit treated by pulsed light: Fungal decay, water loss and mechanical properties. Innov. Food Sci. Emerg. Technol. 2016, 34, 267–274. [Google Scholar] [CrossRef]
- Li, Z. The effect of compressibility, loading position and probe shape on the rupture probability of tomato fruits. J. Food Eng. 2013, 119, 471–476. [Google Scholar] [CrossRef]
- Li, Z.; Miao, F.; Andrews, J. Mechanical models of compression and impact on fresh fruits. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1296–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, W.; Qian, Z.; Xu, B.; Tang, W.; Li, J.; Zhao, D. Grasping damage analysis of apple by end-effector in harvesting robot. J. Food Process Eng. 2017, 40, 12589. [Google Scholar] [CrossRef]
- Mahalik, N.P. Advances in packaging methods, processes and systems. Challenges 2014, 5, 374–389. [Google Scholar] [CrossRef] [Green Version]
- Barrett, D.M.; Beaulieu, J.C.; Shewfelt, R. Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: Desirable levels, instrumental and sensory measurement, and the effects of processing. Crit. Rev. Food 2010, 50, 369–389. [Google Scholar] [CrossRef]
- Bentini, M.; Caprara, C.; Martelli, R. Harvesting damage to potato tubers by analysis of impacts recorded with an instrumented sphere. Biosyst. Eng. 2006, 94, 75–85. [Google Scholar] [CrossRef]
- Lu, R.F.; Abbott, J.A. Force/deformation techniques for measuring texture. Texture Food Solid Foods 2004, 2, 109–145. [Google Scholar] [CrossRef]
- Bentini, M.; Caprara, C.; Martelli, R. Physico-mechanical properties of potato tubers during cold storage. Biosyst. Eng. 2009, 104, 25–32. [Google Scholar] [CrossRef]
- Arévalos, A.; Redondo, E.; Insfrán, A. Daños mecánicos en productos de la industria agrícola: Revisión de la literatura. Lat. Am. J. Appl. Eng. 2019, 4, 1–14. Available online: http://lajae.uabc.mx/index.php/journal/article/view/108/80 (accessed on 23 December 2021). (In Spanish).
- Hashemi, S.M.B.; Mousavi Khaneghah, A. Characterization of novel basil-seed gum active edible films and coatings containing oregano essential oil. Prog. Org. Coat. 2017, 110, 35–41. [Google Scholar] [CrossRef]
- Hashemi, S.M.B.; Mousavi Khaneghah, A.; Ghaderi Ghahfarrokhi, M.; Eş, I. Basil-seed gum containing Origanum vulgare subsp. viride essential oil as edible coating for fresh cut apricots. Postharvest Biol. Technol. 2017, 125, 26–34. [Google Scholar] [CrossRef]
- Goli, A.; Khazaei, J.; Taheri, M.; Khojamli, A.; Sedaghat, A. Effect of mechanical damage on soybean germination. Int. Acad. J. Sci. Eng. 2016, 3, 48–58. Available online: https://www.researchgate.net/publication/309858297_Effect_of_Mechanical_Damage_on_Soybean_Germination (accessed on 23 December 2021).
- Bank Danych o Lasach. Available online: www.bdl.lasy.gov.pl/portal/mapy (accessed on 23 December 2021).
- World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. In World Soil Resources Reports; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; Volume 106, p. 203. Available online: https://www.fao.org/3/i3794en/I3794en.pdf (accessed on 23 December 2021).
- Fertilization Recommendations. Part I. Limit Numbers for the Evaluation of the Content Macro-Soils and Micronutrients in Soils; Series P; IUNG-PIB: Puławy, Poland, 1990; Volume 44, pp. 1–26. (In Polish) [Google Scholar]
- Skowera, B.; Jędrszczyk, E.; Kopcińska, J.; Ambroszczyk, A.M.; Kołtun, A. The effects of hydrothermal conditions during vegetation period on fruit quality of processing tomatoes. Pol. J. Environ. Stud. 2014, 23, 195–202. Available online: http://www.pjoes.com/The-Effects-of-Hydrothermal-Conditions-r-nduring-Vegetation-Period-on-Fruit-Quality,89183,0,2.html (accessed on 23 December 2021).
- Si, Y.; Sankaran, S.; Knowles, N.R.; Pavek, M.J. Potato Tuber Length-Width Ratio Assessment Using Image Analysis. Am. J. Potato Res. 2017, 94, 88–93. [Google Scholar] [CrossRef]
- Kiełbasa, P. Influence of potatoe field irrigation on physical properties of tubers. Acta Agroph. 2011, 17, 89–103. Available online: http://www.acta-agrophysica.org/Influence-of-potatoe-field-irrigation-on-physical-properties-of-tubers,107202,0,2.html (accessed on 23 December 2021). (In Polish).
- Farhain, M.M.; Cheema, M.; Katanda, Y.; Nadeem, M.; Javed, B.; Thomas, R.; Saha, R.; Galagedara, L. Potential of developing podzolic soil-based potting media from wood ash, paper sludge and biochar. J. Environ. Manag. 2022, 301, 113811. [Google Scholar] [CrossRef]
- Gruda, N.S. Increasing Sustainability of Growing Media Constituents and Stand-Alone Substrates in Soilless Culture Systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef] [Green Version]
- Nadeem, M.; Huong Pham, T.; Nieuwenhuis, A.; Ali, W.; Zaeem, M.; Ashiq, W.; Shah, S.; Gillani, M.; Manful, C.; Adigun, O.A.; et al. Adaptation strategies of forage soybeans cultivated on acidic soils under cool climate to produce high quality forage. Plant. Sci. 2019, 283, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.; Naumann, M.; Pawelzik, E. The importance of nutrient management for potato production part i: Plant nutrition and yield. Potato Res. 2020, 63, 97–119. [Google Scholar] [CrossRef] [Green Version]
- Larkin, R.P. Soil health paradigms and implications for disease management. Annu. Rev. Phytopathol. 2015, 53, 199–221. [Google Scholar] [CrossRef]
- Doran, J.W.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, M.; Cheema, M.; McVicar, K.; LeBlanc, L.; Fillmore, S. Evaluation of liming properties and potassium bioavailability of three Atlantic Canada wood ash sources. Can. J. Plant. Sci. 2013, 93, 1209–1216. [Google Scholar] [CrossRef]
- Shabala, S.; Pottosin, I. Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance. Physiol. Plant. 2014, 151, 257–279. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, W.H. Potassium transport and signaling in higher plants. Annu. Rev. Plant Biol. 2013, 64, 451–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.Y.; Sun, W.N.; Su, W.A.; Tang, Z.C. Co-regulation of water channels and potassium channels in rice. Physiol. Plant. 2006, 128, 58–69. [Google Scholar] [CrossRef]
- Walker, D.J.; Leigh, R.A.; Miller, A.J. Potassium homeostasis in vacuolate plant cells. Proc. Natl. Acad. Sci. USA 1996, 93, 10510–10514. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, P.D.C.; Hashim, N.; Shamsudin, R.; Nor, M.Z.M. Applications of imaging and spectroscopy techniques for non-destructive quality evaluation of potatoes and sweet potatoes: A review. Trends Food Sci. Technol. 2020, 96, 208–221. [Google Scholar] [CrossRef]
- Storey, M. Chapter 21—The Harvested Crop. In Potato Biology and Biotechnology; Vreugdenhil, D., Bradshaw, J., Gebhardt, C., Govers, F., Mackerron, D.K.L., Taylor, M.A., Ross, H.A., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2007; Volume 21, pp. 441–470. [Google Scholar] [CrossRef]
- Roma, A.; Abete, M.C.; Brizio, P.; Picazio, G.; Caiazzo, M.; D’auria, J.L.; Esposito, M. Evaluation of Trace Elements in Potatoes (Solanum tuberosum) from a Suburban Area of Naples, Italy: The “Triangle of Death”. J. Food Protect. 2017, 80, 1167–1171. [Google Scholar] [CrossRef] [PubMed]
- Sierra, M.J.; Lopez–Nicolas, R.; Gonzalez–Bermudez, C.A.; Frontela–Saseta, C.; Millan, R. Cultivation of Solanum tuberosum in a former mining district for a safe human consumption integrating simulated digestion. J. Sci. Food Agr. 2017, 97, 5278–5286. [Google Scholar] [CrossRef] [PubMed]
- Hajslova, J.; Schulzova, V.; Slanina, P.; Janne, K.; Hellenas, K.E.; Andersson, C. Quality of organically and conventionally grown potatoes: Four–year study of micronutrients, metals, secondary metabolites, enzymic browning and organoleptic properties. Food Addit. Contam. 2005, 22, 514–534. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Huang, W.; Li, J.; Zhao, C.; Fan, S.; Wu, J.; Liu, C. Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review. Food Res. Int. 2014, 62, 326–343. [Google Scholar] [CrossRef]
- Su, Q.; Kondo, N.; Li, M.; Sun, H.; Al Riza, D.F.; Habaragamuwa, H. Potato quality grading based on machine vision and 3D shape analysis. Comput. Electron. Agric. 2018, 152, 261–268. [Google Scholar] [CrossRef]
- ElMasry, G.; Cubero, S.; Moltó, E.; Blasco, J. In-line sorting of irregular potatoes by using automated computer-based machine vision system. J. Food Eng. 2012, 112, 60–68. [Google Scholar] [CrossRef]
- Mohd Ali, M.; Hashim, N.; Khairunniza Bejo, S.; Shamsudin, R. Rapid and nondestructive techniques for internal and external quality evaluation of watermelons: A review. Sci. Hortic. 2017, 225, 689–699. [Google Scholar] [CrossRef]
- Thybo, A.K.; Szczypiński, P.M.; Karlsson, A.H.; Dønstrup, S.; Stødkilde-Jørgensen, H.S.; Andersen, H.J. Prediction of sensory texture quality attributes of cooked potatoes by NMR-imaging (MRI) of raw potatoes in combination with different image analysis methods. J. Food Eng. 2004, 61, 91–100. [Google Scholar] [CrossRef]
- Abasi, S.; Minaei, S.; Jamshidi, B.; Fathi, D. Dedicated non-destructive devices for food quality measurement: A review. Trends Food Sci. Technol. 2018, 78, 197–205. [Google Scholar] [CrossRef]
Amount of Pure Ingredient in kg ha−1year−1 | Experimental Objects | ||||||
---|---|---|---|---|---|---|---|
Control | D1 | D2 | D3 | D4 | D5 | D6 | |
N | 87.3 | 87.3 | 87.3 | 87.3 | 87.3 | 87.3 | 87.3 |
P | 19.8 | 19.8 | 27.3 | 34.9 | 42.4 | 50.0 | 57.5 |
K | - | 99.6 | 93.9 | 188 | 282 | 376 | 469 |
Mg | - | - | 23.0 | 45.0 | 69.1 | 90.0 | 115 |
Ca | - | - | 72.5 | 145 | 216 | 290 | 363 |
Na | - | - | 7.25 | 14.5 | 21.8 | 29.0 | 36.3 |
Fe | - | - | 21.8 | 43.5 | 65.3 | 87.0 | 109 |
Mn | - | - | 7.5 | 14.9 | 22.4 | 29.8 | 37.3 |
Zn | - | - | 2.10 | 4.20 | 6.30 | 8.40 | 10.6 |
Cu | - | - | 2.70 | 5.40 | 8.10 | 10.8 | 13.5 |
Years | Months | Period Apr.–Sep. | |||||
---|---|---|---|---|---|---|---|
Apr. | May | Jun. | Jul. | Aug. | Sep. | ||
Rainfall (mm) | Sum | ||||||
2019 | 46.7 | 157 | 25.4 | 60.2 | 102 | 33.7 | 427 |
2020 | 17.5 | 123 | 125 | 85.7 | 89.2 | 109 | 549 |
2021 | 46.5 | 49.8 | 57.4 | 65.7 | 93.1 | 84.1 | 397 |
Mean for 1980–2015 | 42.1 | 67.5 | 75.1 | 90.4 | 58.8 | 62.1 | 396 |
Air Temperature (°C) | Mean | ||||||
2019 | 10.4 | 13.4 | 20.8 | 19.0 | 20.3 | 16.1 | 16.7 |
2020 | 6.90 | 9.70 | 17.4 | 18.1 | 17.9 | 13.1 | 13.9 |
2021 | 4.90 | 11.6 | 17.8 | 20.2 | 16.4 | 10.9 | 13.6 |
Mean for 1980–2015 | 8.80 | 13.0 | 15.2 | 17.5 | 17.2 | 13.0 | 14.1 |
Variables | Weight of 1 Tuber (g) | Dimensions (mm) | Sphericity (%) | Flattening Factor Wc | Elongation Factor Wa | |||
---|---|---|---|---|---|---|---|---|
Length | Width | Thickness | ||||||
Interaction soil type × fertilisation | ||||||||
Gleyic Chernozem | Control | 68.7 ab ± 23.9 | 55.8 abc ± 9.4 | 45.1 ab ± 5.1 | 39.7 abcd ± 5.0 | 83.6 ± 4.8 | 1.14 ± 0.05 | 1.40 ± 0.10 |
D1 | 86.7 bcd ± 23.8 | 61.9 bc ± 10.4 | 49.2 bcd ± 4.0 | 43.0 cde ± 4.0 | 82.8 ± 7.0 | 1.14 ± 0.04 | 1.44 ± 0.18 | |
D2 | 87.7 bcd ± 33.8 | 59.4 abc ± 11.2 | 49.2 bcd ± 8.0 | 43.1 cde ± 6.8 | 85.0 ± 7.4 | 1.14 ± 0.06 | 1.38 ± 0.16 | |
D3 | 111.6 d ± 55.1 | 65.9 c ± 13.2 | 52.9 cd ± 8.6 | 46.4 e ± 8.0 | 83.2 ± 5.2 | 1.14 ± 0.04 | 1.42 ± 0.12 | |
D4 | 103.3 d ± 44.2 | 64.8 c ± 15.8 | 50.0 bcd ± 8.3 | 43.5 cde ± 7.1 | 81.4 ± 6.5 | 1.15 ± 0.04 | 1.47 ± 0.17 | |
D5 | 97.6 cd ± 33.7 | 66.4 c ± 16.4 | 53.8 d ± 14.9 | 44.4 de ± 6.2 | 82.1 ± 5.7 | 1.21 ± 0.23 | 1.49 ± 0.23 | |
D6 | 95.5 bcd ± 34.5 | 66.5 c ± 17.1 | 49.8 bcd ± 5.7 | 42.8 cde ± 5.2 | 79.7 ± 7.0 | 1.17 ± 0.04 | 1.54 ± 0.24 | |
Haplic Luvisol | Control | 49.0 a ± 16.7 | 48.2 a ± 8.2 | 39.2 a ± 4.8 | 34.7 a ± 4.5 | 84.2 ± 5.7 | 1.13 ± 0.03 | 1.39 ± 0.14 |
D1 | 72.7 abc ± 17.1 | 60.5 bc ± 8.4 | 45.6 b ± 3.6 | 40.1 bcd ± 3.3 | 79.8 ± 6.0 | 1.14 ± 0.05 | 1.51 ± 0.18 | |
D2 | 70.4 abc ± 14.3 | 57.1 abc ± 4.3 | 45.2 ab ± 5.2 | 40.6 bcd ± 3.6 | 82.6 ± 6.0 | 1.11 ± 0.05 | 1.42 ± 0.15 | |
D3 | 71.1 abc ± 22.1 | 58.4 abc ± 7.3 | 45.9 abc ± 6.1 | 39.2 abc ± 4.8 | 80.2 ± 5.5 | 1.16 ± 0.04 | 1.47 ± 0.13 | |
D4 | 73.5 abc ± 21.9 | 57.8 abc ± 7.1 | 45.7 abc ± 5.2 | 40.9 bcd ± 3.6 | 82.8 ± 6.7 | 1.12 ± 0.05 | 1.42 ± 0.16 | |
D5 | 74.4 abc ± 22.6 | 59.1 abc ± 8.6 | 46.8 bcd ± 5.5 | 40.6 bcd ± 4.6 | 82.1 ± 6.5 | 1.15 ± 0.06 | 1.46 ± 0.16 | |
D6 | 58.3 a ± 12.3 | 52.7 ab ± 6.8 | 42.9 ab ± 4.0 | 37.5 ab ± 3.3 | 83.9 ± 6.6 | 1.14 ± 0.05 | 1.41 ± 0.16 | |
Mean for factors | ||||||||
Type of soil | Gleyic Chernozem | 93.0 b ± 37.9 | 62.9 b ± 13.7 | 50.0 b ± 8.6 | 43.3 ± 6.2 | 82.6 ± 6.3 | 1.16 ± 0.10 | 1.45 ± 0.18 |
Haplic Luvisol | 67.1 a ± 20.0 | 56.3 a ± 8.2 | 44.5 a ± 5.4 | 41.9 ± 4.4 | 82.2 ± 6.1 | 1.14 ± 0.05 | 1.44 ± 0.15 | |
Fertilization | Control | 58.9 a ± 22.5 | 52.0 a ± 9.5 | 42.1 a ± 5.7 | 37.2 a ± 5.3 | 83.9 ± 5.1 | 1.13 ± 0.04 | 1.39 ± 0.12 |
D1 | 79.7 b ± 21.5 | 61.2 b ± 9.3 | 47.4 b ± 4.1 | 41.6 b ± 3.9 | 81.3 ± 6.6 | 1.14 ± 0.04 | 1.47 ± 0.18 | |
D2 | 79.1 b ± 26.8 | 58.2 ab ± 8.3 | 47.2 b ± 6.9 | 41.8 b ± 5.4 | 83.8 ± 6.7 | 1.13 ± 0.06 | 1.40 ± 0.15 | |
D3 | 91.3 c ± 46.0 | 62.1 b ± 11.1 | 49.4 b ± 8.2 | 42.8 b ± 7.4 | 81.7 ± 5.4 | 1.15 ± 0.04 | 1.44 ± 0.13 | |
D4 | 88.4 bc ± 37.4 | 61.3 b ± 12.5 | 47.9 b ± 7.1 | 42.2 b ± 5.6 | 82.1 ± 6.5 | 1.13 ± 0.05 | 1.45 ± 0.16 | |
D5 | 86.0 bc ± 30.5 | 62.8 b ± 13.3 | 50.3 b ± 11.5 | 42.5 b ± 5.7 | 82.1 ± 6.0 | 1.18 ± 0.17 | 1.47 ± 0.20 | |
D6 | 76.9 b ± 31.6 | 59.6 b ± 14.6 | 46.4 ab ± 6.0 | 40.2 ab ± 5.0 | 81.8 ± 7.0 | 1.15 ± 0.05 | 1.47 ± 0.21 | |
Years | 2019 | 61.1 a ± 18.3 | 50.5 a ± 8.0 | 44.3 a ± 5.4 | 37.6 a ± 4.4 | 87.1 c ± 3.9 | 1.18 b ± 0.04 | 1.34 a ± 0.10 |
2020 | 76.3 b ± 30.0 | 65.3 b ± 11.4 | 44.9 a ± 5.8 | 40.9 a ± 5.2 | 75.9 a ± 3.9 | 1.10 a ± 0.04 | 1.59 b ± 0.14 | |
2021 | 102.7 c ± 33.9 | 63.0 b ± 9.7 | 52.5 b ± 8.5 | 49.2 b ± 5.1 | 84.2 b ± 4.1 | 1.16 b ± 0.11 | 1.39 a ± 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szpunar-Krok, E.; Szostek, M.; Pawlak, R.; Gorzelany, J.; Migut, D. Effect of Fertilisation with Ash from Biomass Combustion on the Mechanical Properties of Potato Tubers (Solanum tuberosum L.) Grown in Two Types of Soil. Agronomy 2022, 12, 379. https://doi.org/10.3390/agronomy12020379
Szpunar-Krok E, Szostek M, Pawlak R, Gorzelany J, Migut D. Effect of Fertilisation with Ash from Biomass Combustion on the Mechanical Properties of Potato Tubers (Solanum tuberosum L.) Grown in Two Types of Soil. Agronomy. 2022; 12(2):379. https://doi.org/10.3390/agronomy12020379
Chicago/Turabian StyleSzpunar-Krok, Ewa, Małgorzata Szostek, Renata Pawlak, Józef Gorzelany, and Dagmara Migut. 2022. "Effect of Fertilisation with Ash from Biomass Combustion on the Mechanical Properties of Potato Tubers (Solanum tuberosum L.) Grown in Two Types of Soil" Agronomy 12, no. 2: 379. https://doi.org/10.3390/agronomy12020379