Agronomic Performance Evaluation of Intercropping Two Common Bean Breeding Lines with a Maize Variety under Two Types of Fertilizer Applications in the Colombian Amazon Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Meteorological Conditions
2.2. Field Layout and Experimentation
2.3. Competition Indices and Monetary Advantages
2.4. Data Analysis
3. Results
3.1. Performance of Two Bean Lines and One Maize Variety under Three Different Planting Patterns and Two Types of Fertilizer Applications
3.2. Intercropping Induced Changes in Competition Indices and Their Effects on Yield Benefit under the Appication of Inorganic or Organic Fertilizer
4. Discussion
4.1. Association of Bean Lines with Maize Improves Agronomic Performance of Maize Plants under Two Intercropping Patterns
4.2. Competition Ratio and Monetary Advantage Index Values Indicate Superior Performance of Maize under Intercropping
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamanga, B.C.G.; Waddington, S.R.; Robertson, M.J.; Giller, K.E. Risk analysis of maize-legume crop combinations with smallholder farmers varying in resource endowment in central Malawi. Exp. Agric. 2010, 46, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Rusinamhodzi, L.; Corbeels, M.; Nyamangara, J.; Giller, K.E. Maize-grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in central Mozambique. Field Crop. Res. 2012, 136, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Tsujimoto, Y.; Pedro, J.A.; Boina, G.; Murracama, M.V.; Ito, O.; Tobita, S.; Oya, T.; Cuambe, C.E.; Martinho, C. Performance of maize-soybean intercropping under various N application rates and soil moisture conditions in Northern Mozambique. Plant Prod. Sci. 2015, 18, 365–376. [Google Scholar] [CrossRef]
- Alemayehu, D.; Shumi, D.; Afeta, T. Effect of variety and time of intercropping of common bean (Phaseolus vulgaris L.) with maize (Zea mays L.) on yield components and yields of associated crops and productivity of the system at Mid-Land of Guji, Southern Ethiopia. Adv. Crop. Sci. Tech. 2018, 6, 324. [Google Scholar] [CrossRef] [Green Version]
- Brooker, R.W.; Bennett, A.E.; Cong, W.F.; Daniell, T.J.; George, T.S.; Hallett, P.D.; Hawes, C.; Iannetta, P.P.M.; Jones, H.G.; Karley, A.J.; et al. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytol. 2015, 206, 107–117. [Google Scholar] [CrossRef]
- Weiner, J. Applying plant ecological knowledge to increase agricultural sustainability. J. Ecol. 2017, 105, 865–870. [Google Scholar] [CrossRef] [Green Version]
- Xia, H.; Wang, L.; Jiao, N.; Mei, P.; Wang, Z.; Lan, Y.; Chen, L.; Ding, H.; Yin, Y.; Kong, W.; et al. Luxury absorption of phosphorus exists in maize when intercropping with legumes or oilseed rape-covering different locations and years. Agronomy 2019, 9, 314. [Google Scholar] [CrossRef] [Green Version]
- Ngwira, A.R.; Aune, J.B.; Mkwinda, S. On-farm evaluation of yield and economic benefit of short term maize legume intercropping systems under conservation agriculture in Malawi. Field Crop. Res. 2012, 132, 149–157. [Google Scholar] [CrossRef]
- Abera, T.; Tanaand, T.; Pant, L.M. Grain yield and LER of maize-climbing bean intercropping as affected by inorganic, organic fertilisers and population density in western Oromiya, Ethiopia. Asian J. Plant Sci. 2005, 4, 458–465. [Google Scholar] [CrossRef]
- Li, Y.; Ma, L.; Wu, P.; Zhao, X.; Chen, X.; Gao, X. Yield, yield attributes and photosynthetic physiological characteristics of dryland wheat (Triticum aestivum L.)/maize (Zea mays L.) strip intercropping. Field Crop. Res. 2020, 248, 107656. [Google Scholar] [CrossRef]
- Neupane, R.P.; Thapa, G.B. Trees on farm: Analysis of global extent and geographical patterns of agroforestry. Agric. Ecosyst. Environ. 2001, 56, 157–167. [Google Scholar] [CrossRef]
- Vélez, L.D.; Moya, A.; Clavijo, L.J. Relaciones de competencia entre el fríjol trepador (Phaseolus vulgaris L.) y el maíz (Zea mays L.) sembrados en asocio. Fac. Nac. Agron. 2011, 64, 6065–6079. [Google Scholar]
- Gebeyehu, S.; Simane, B.; Kirkby, R. Genotype × cropping system interaction in climbing beans (Phaseolus vulgaris L.) grown as sole crop and in association with maize (Zea mays L.). Eur. J. Agron. 2006, 24, 396–403. [Google Scholar] [CrossRef]
- Tefera, T.; Tana, T. Agronomic performance of sorghum and groundnut cultivars in sole and intercrop cultivation under semiarid conditions. J. Agron. Crop Sci. 2002, 188, 212–218. [Google Scholar] [CrossRef]
- Worku, W. Evaluation of common bean (Phaseolus vulgaris L.) genotypes of diverse growth habit under sole and intercropping with maize (Zea mays L.) in Southern Ethiopia. J. Agron. 2008, 7, 306–313. [Google Scholar] [CrossRef] [Green Version]
- Nthabiseng, T.R.; Irvine, K.M.; Moshibudi, P.M. Response of a maize or dry bean intercrop to maize density and dry bean arrangement under rainfed conditions. Int. J. Agron. Agric. Res. ISSN 2015, 6, 18–29. [Google Scholar]
- Madembo, C.; Mhlanga, B.; Thierfelder, C. Productivity or stability? Exploring maize-legume intercropping strategies for smallholder Conservation Agriculture farmers in Zimbabwe. Agric. Syst. 2020, 185, 102921. [Google Scholar] [CrossRef]
- Aynehband, A.; Behrooz, M. Evaluation of cereal-legume and cereal-pseudocereal intercropping systems through forage productivity and competition ability. Am. Eurasian J. Agric. Environ. Sci. 2011, 10, 675–683. [Google Scholar]
- Genet, W.; Lulie, B.; Worku, W.; Beyene, S. Determinations of haricot bean (Phaseolus vulgaris L.) planting density and spatial arrangement for staggered intercropping with maize (Zea mays L.) at Wondo Genet, Southern Ethiopia. Acad. Res. J. Agric. Sci. Res. 2016, 4, 297–320. [Google Scholar] [CrossRef]
- Moriri, S.; Owoeye, L.G.; Mariga, I.K. Influence of component crop densities and planting patterns on maize production in dry land maize/cowpea intercropping systems. Afr. J. Agric. Res. 2010, 5, 1200–1207. [Google Scholar] [CrossRef]
- Bitew, Y.; Derebe, B.; Worku, A.; Chakelie, G. Response of maize and common bean to spatial and temporal differentiation in maize-common bean intercropping. PLoS ONE 2021, 16, e0257203. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.; Elliott, J.; Pugh, T.A.M.; Ruane, A.C.; Ciais, P.; Balkovic, J.; Deryng, D.; Folberth, C.; Cesar Izaurralde, R.; Jones, C.D.; et al. Global patterns of crop yield stability under additional nutrient and water inputs. PLoS ONE 2018, 13, e0198748. [Google Scholar] [CrossRef] [PubMed]
- Zerihun, A.; Sharma, J.J.; Nigussie, D.; Fred, K. The effect of integrated organic and inorganic fertilizer rates on performances of soybean and maize component crops of a soybean/maize mixture at Bako, Western Ethiopia. Afr. J. Agric. Res. 2013, 8, 3921–3929. [Google Scholar] [CrossRef]
- Willey, R.W. Intercropping—Its importance and research needs. Part 1.Competition and yield advantages. Field Crop Abstr. 1979, 32, 1–10. [Google Scholar]
- Raza, M.A.; Bin Khalid, M.H.; Zhang, X.; Feng, L.Y.; Khan, I.; Hassan, M.J.; Ahmed, M.; Ansar, M.; Chen, Y.K.; Fan, Y.F.; et al. Effect of planting patterns on yield, nutrient accumulation and distribution in maize and soybean under relay intercropping systems. Sci. Rep. 2019, 9, 4947. [Google Scholar] [CrossRef] [Green Version]
- Banik, P.; Midya, A.; Sarkar, B.K.; Ghose, S.S. Wheat and chickpea intercropping systems in an additive series experiment: Advantages and weed smothering. Eur. J. Agron. 2006, 24, 325–332. [Google Scholar] [CrossRef]
- Banik, P.; Sasmal, T.; Ghosal, P.K.; Bagchi, D.K. Evaluation of mustard (Brassica compestris var. Toria) and legume intercropping under 1:1 and 2:1 row-replacement series systems. J. Agron. Crop Sci. 2000, 185, 9–14. [Google Scholar] [CrossRef]
- Ghosh, P.K. Growth, yield, competition and economics of groundnut/cereal fodder intercropping systems in the semi-arid tropics of India. Field Crop. Res. 2004, 88, 227–237. [Google Scholar] [CrossRef]
- Raza, M.A.; Feng, L.Y.; van der Werf, W.; Cai, G.R.; Khalid, M.H.B.; Iqbal, N.; Hassan, M.J.; Meraj, T.A.; Naeem, M.; Khan, I.; et al. Narrow-wide-row planting pattern increases the radiation use efficiency and seed yield of intercrop species in relay-intercropping system. Food Energy Secur. 2019, 8, e170. [Google Scholar] [CrossRef]
- Bedoussac, L.; Justes, E. A comparison of commonly used indices for evaluating species interactions and intercrop efficiency: Application to durum wheat-winter pea intercrops. Field Crop. Res. 2011, 124, 25–36. [Google Scholar] [CrossRef]
- McGilchrist, C.A. Analysis of Competition Experiments. Biometrics 1965, 21, 975. [Google Scholar] [CrossRef]
- Willey, R.W.; Osiru, D.S.O. Studies on mixtures of dwarf sorghum and beans (Phaseolus vulgaris) with particular reference to plant population. J. Agric. Sci. 1972, 79, 531–540. [Google Scholar] [CrossRef]
- Willey, R.W.; Rao, M.R. A competitive ratio for quantifying competition between intercrops. Exp. Agric. 1980, 16, 117–125. [Google Scholar] [CrossRef]
- Peña, A.I.; Rodriguez, C.H.; Suárez, J.C. Incidencia de niveles de intervención antrópica sobre propiedades químicas del suelo en coberturas de lomerío (Caquetá, Colombia). Ing. Amaz. 2013, 6, 5–14. [Google Scholar]
- Salazar, J.C.S.; Polanía, J.A.; Bastidas, A.T.C.; Suárez, L.R.; Beebe, S.; Rao, I.M. Agronomical, phenological and physiological performance of common bean lines in the Amazon region of Colombia. Theor. Exp. Plant Physiol. 2018, 30, 303–320. [Google Scholar] [CrossRef]
- Suárez, J.C.; Gelpud, C.; Noriega, J.E.; Ortiz-Morea, F.A. How do different cocoa genotypes deal with increased radiation? An analysis of water relation, diffusive and biochemical components at the leaf level. Agronomy 2021, 11, 1422. [Google Scholar] [CrossRef]
- Suárez, J.C.; Anzola, J.A.; Contreras, A.T.; Salas, D.L.; Vanegas, J.I.; Urban, M.O.; Beebe, E.S.; Rao, I.M. Photosynthetic and grain yield responses to intercropping of two common bean lines with maize under two types of fertilizer application in the Colombian Amazon region. Sci. Hortic. (Amsterdam), 2022; submitted for publication. [Google Scholar]
- Urrea, G.; Navas, A. ICA V-156 e ICA V-109: Variedades Mejoradas de Maíz Para el Clima Calido Colombiano (No. Doc. 22373) CO-BAC, Bogotá); ICA: Bogota, Colombia, 2017. [Google Scholar]
- Rosas-Patiño, G.; Puentes-Páramo, Y.J.; Menjivar-Flores, J.C. Liming effect on macronutrient intake for cacao (Theobroma cacao L.) in the Colombian Amazon. Cienc. Tecnol. Agropecu. 2019, 20, 17–28. [Google Scholar] [CrossRef]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants, BBCH Monograph, 2nd ed.; Federal Biological Research Centre for Agriculture and Forestry: Bonn, Germany, 2001; pp. 1–158. [Google Scholar]
- Lancashire, P.; Bleiholder, H.; Boom, T.; Langeluddeke, P.; Stauss, R.; Weber, E.; Witzenberger, A. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- De Wit, C.T. On competition. Versl. Landbouw-Kundige Onderz. 1960, 66, 1–28. [Google Scholar]
- Dhima, K.V.; Lithourgidis, A.S.; Vasilakoglou, I.B.; Dordas, C.A. Competition indices of common vetch and cereal intercrops in two seeding ratio. Field Crop. Res. 2007, 100, 249–256. [Google Scholar] [CrossRef]
- Banik, P. Evaluation of wheat (Triticum aestivum) and legume intercropping under 1:1 and 2:1 row-replacement series system. J. Agron. Crop Sci. 1996, 176, 289–294. [Google Scholar] [CrossRef]
- R Development Core Team R. The R Project for Statistical Computing. In Foundation for Statistical Computing, V; R Development Core Team R: Vienna, Austria, 2021; ISBN 3-900051-07-0. [Google Scholar]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.; Gonzalez, L.; Tablada, M.; Robledo, C.W. Infostat—Software estadístico. InfoStat versión 2019; Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba: Córdoba, Argentina, 2019. [Google Scholar]
- Rezaei-Chianeh, E.; Nassab, A.D.M.; Shakiba, M.R.; Ghassemi-Golezani, K.; Aharizad, S.; Shekari, F. Intercropping of maize (Zea mays L.) and faba bean (Vicia faba L.) at different plant population densities. Afr. J. Agric. Res. 2011, 6, 1786–1793. [Google Scholar] [CrossRef]
- Feng, L.; Raza, M.A.; Shi, J.; Ansar, M.; Titriku, J.K.; Meraj, T.A.; Shah, G.A.; Ahmed, Z.; Saleem, A.; Liu, W.; et al. Delayed maize leaf senescence increases the land equivalent ratio of maize soybean relay intercropping system. Eur. J. Agron. 2020, 118, 1–14. [Google Scholar] [CrossRef]
- Raza, M.A.; Feng, L.Y.; Werf, W.; Iqbal, N.; Khan, I.; Khan, A.; Din, A.M.U.; Naeem, M.; Meraj, T.A.; Hassan, M.J.; et al. Optimum strip width increases dry matter, nutrient accumulation, and seed yield of intercrops under the relay intercropping system. Food Energy Secur. 2020, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, Ş.; Atak, M.; Erayman, M. Identification of advantages of maize-legume intercropping over solitary cropping through competition indices in the east mediterranean region. Turkish J. Agric. For. 2008, 32, 111–119. [Google Scholar] [CrossRef]
- Chen, C.; Westcott, M.; Neill, K.; Wichman, D.; Knox, M. Row configuration and nitrogen applicant for barley-pea intercropping in Montana. Agron. J. 2004, 96, 1730–1738. [Google Scholar] [CrossRef] [Green Version]
- Addo-Quaye, A.A.; Darkwa, A.A.; Ocloo, G.K. Growth analysis of component crops in a maize-Soybean intercropping system as affected by time of planting and spatial arrangement. ARPN J. Agric. Biol. Sci. 2011, 6, 34–44. [Google Scholar]
- Monti, M.; Pellicanò, A.; Pristeri, A.; Badagliacca, G.; Preiti, G.; Gelsomino, A. Cereal/grain legume intercropping in rotation with durum wheat in crop/livestock production systems for Mediterranean farming system. Field Crop. Res. 2019, 240, 23–33. [Google Scholar] [CrossRef]
- Abera, R.; Worku, W.; Beyene, S. Performance variation among improved common bean (Phaseolus vulgaris L.) genotypes under sole and intercropping with maize (Zea mays L.). Afr. J. Agric. Res. 2017, 12, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Yang, Z.; Dong, S. Interspecific competitiveness affects the total biomass yield in an alfalfa and corn intercropping system. Field Crop. Res. 2011, 124, 66–73. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Gooding, M.; Ambus, P.; Corre-Hellou, G.; Crozat, Y.; Dahlmann, C.; Dibet, A.; von Fragstein, P.; Pristeri, A.; Monti, M.; et al. Pea-barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems. Field Crop. Res. 2009, 113, 64–71. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Zhang, J.; Liu, H.; Liu, S.; Zhai, L.; Wang, H.; Lei, Q.; Ren, T.; Yin, C. Row ratios of intercropping maize and soybean can affect agronomic efficiency of the system and subsequent wheat. PLoS ONE 2015, 10, e0129245. [Google Scholar] [CrossRef] [PubMed]
- Sesay, A. Effects of Planting Time and Fertilizer Application on the Productivity of Intercropped Cowpea and Maize in a Sub-humid Zone. UNISWA Res. J. Agric. Sci. Technol. 2000, 3, 52–54. [Google Scholar] [CrossRef] [Green Version]
- Morogoro, U.; Nyasasi, B.T.; Kisetu, E. Determination of land productivity under maize-cowpea intercropping system in agro-ecological zone of mount. Citeseer 2014, 2, 147–157. [Google Scholar]
- Galanopoulou, K.; Lithourgidis, A.S.; Dordas, C.A. Intercropping of faba bean with barley at various spatial arrangements affects dry matter and N yield, nitrogen nutrition index, and interspecific competition. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 1116–1127. [Google Scholar] [CrossRef]
Full Name | Symbol | Source | Formula | Meaning |
---|---|---|---|---|
Land equivalent ratio | LER | [32] | LERB = (YB-IC/YB-MC) (1) | See Figure 1 for details. |
LERM = (YM-IC/YM-MC) (2) | ||||
LER = (LERB + LERM) (3) | ||||
Relative crowding coefficient | K | [42] | KB = (YB-IC × ZM-IC)/(YB-MC − YB-IC) × ZM-IC (4) | When the coefficient K > 1, there is a performance advantage; for K = 1, there is no performance advantage; for K < 1, there is a disadvantage. |
KM = (YM-IC × ZB-IC)/(YM-MC − YM-IC) × ZB-IC (5) | ||||
K = (KB × KM) (6) | ||||
Aggressiveness index | AI | [31] | AB = [(YB-IC)/(YB-MC × ZB-IC)] − [(YM-IC)/(YM-MC × ZM-IC)] (7) | When A = 0, both crops are equally competitive; if AM > AB, maize is the dominant crop. Similarly, when AB > AM, beans are the dominant crop. |
AM = [(YM-IC)/(YM-MC × ZM-IC)] − [(YB-IC)/(YB-MC × ZB-IC)] (8) | ||||
Competitive ratio | CR | [33] | CRB = (LERB/LERM) × (ZM-MC/ZB-MC) (9) | When CR = 1, it indicates situations where both species have equal grain yield. K > 1 reflects yield dominance and vice versa when K < 1. |
CRM = (LERM/LERB) × (ZB-MC/ZM-MC) (10) | ||||
Actual yield loss | AYL | [44] | AYLB = {[(YB-IC/ZB-IC)/(YB-MN/ZB-MN)] − 1} (11) | The AYL can have + or − values that indicate an accumulated advantage or disadvantage in intercropping in relation to the monocultures; the main objective is to compare the yield per plant. |
AYLM = {[(YM-IC/ZM-IC)/(YM-MN/ZM-MN)] − 1} (12) | ||||
AYL = AYLB + AYLMaize (13) | ||||
Intercropping advantage index | IAI | [27] | IAB = AYLB × PB (14) | The IA shows the economic losses (− values) or gains (+ values) for each species and crop. |
IAM = AYLM × PM (15) | ||||
IA = IAB + IAM (16) | ||||
Monetary advantage index | MAI | [28] | MAI = [(value of combined intercropping) × (LER − 1)]/LER (17) | High MAI values indicate higher economic benefit in intercropping systems. |
Crops | Intercropping Pattern | Relative Crowding Coefficient | ||
---|---|---|---|---|
(Maize:Bean) | KMaize | KBean | K | |
Inorganic fertilizer | ||||
ICA V109/ALB 121 | 1:1 | 1.70 a | 1.31 a | 2.36 a |
ICA V109/BFS 10 | 1:1 | 4.85 a | 1.84 a | 6.28 a |
ICA V109/ALB 121 | 2:1 | 3.33 a | 0.13 a | 3.71 a |
ICA V109/BFS 10 | 2:1 | −2.92 a | 1.32 a | −4.59 a |
Organic fertilizer | ||||
ICA V109/ALB 121 | 1:1 | 2.04 a | 1.13 a | 2.29 a |
ICA V109/BFS 10 | 1:1 | 2.02 a | 1.41 a | 2.80 a |
ICA V109/ALB 121 | 2:1 | 11.22 a | 1.36 a | 15.73 a |
ICA V109/BFS 10 | 2:1 | 7.39 a | 1.57 a | 12.65 a |
LSD0.05 | 6.01 | 0.27 | 8.73 |
Crops | Intercropping Pattern | Aggressiveness Index | Competitive Ratio | Actual Yield Loss | ||||
---|---|---|---|---|---|---|---|---|
(Maize:Bean) | AIMaize | AIBean | CRMaize | CRBean | AYLMaize | AYLBean | AYL Total | |
Inorganic fertilizer | ||||||||
ICA V109/ALB 121 | 1:1 | 0.04 a | −0.04 a | 1.04 a | 0.97 a | −0.02 a | −0.02 a | 0.01 a |
ICA V109/BFS 10 | 1:1 | 0.13 a | −0.13 a | 1.24 a | 0.92 a | 0.22 a | 0.08 a | 0.3 a |
ICA V109/ALB 121 | 2:1 | 0.10 a | −0.10 a | 1.13 a | 0.89 a | −0.11 a | −0.21 a | −0.32 a |
ICA V109/BFS 10 | 2:1 | 0.16 a | −0.16 a | 1.25 a | 0.87 a | 0.04 a | −0.13 a | −0.09 a |
Organic fertilizer | ||||||||
ICA V109/ALB 121 | 1:1 | 0.18 a | −0.18 a | 1.20 a | 0.84 a | 0.09 a | −0.08 a | 0.01 a |
ICA V109/BFS 10 | 1:1 | 0.01 a | −0.01 a | 1.01 a | 1.02 a | 0.03 a | 0.02 a | 0.05 a |
ICA V109/ALB 121 | 2:1 | 0.16 a | −0.16 a | 1.18 a | 0.85 a | 0.06 a | −0.10 a | −0.04 a |
ICA V109/BFS 10 | 2:1 | 0.13 a | −0.13 a | 1.16 a | 0.90 a | 0.09 a | −0.03 a | 0.04 a |
Fisher LSD0.05 | 0.14 | 0.14 | 0.17 | 0.12 | 0.08 | 0.09 | 0.11 |
Crops | Intercropping Pattern | Intercropping Advantage Index | Monetary Advantage Index (MAI) | ||
---|---|---|---|---|---|
(Maize:Bean) | IAIMaize | IAIBean | IAI Total | ||
Inorganic fertilizer | |||||
ICA V109/ALB 121 | 1:1 | 31.53 a | −22.61 a | 8.93 b | 333.91 a |
ICA V109/BFS 10 | 1:1 | 306.52 a | 301.51 a | 608.03 a | 682.60 a |
ICA V109/ALB 121 | 2:1 | −170.90 a | −221.04 a | −391.95 b | 360.18 a |
ICA V109/BFS 10 | 2:1 | 92.25 a | −120.48 a | −28.23 b | 656.45 a |
Organic fertilizer | |||||
ICA V109/ALB 121 | 1:1 | 118.62 a | −107.05 a | 11.56 b | 334.36 a |
ICA V109/BFS 10 | 1:1 | 38.71 a | 55.00 a | 93.71 b | 345.75 a |
ICA V109/ALB 121 | 2:1 | 106.75 a | −95.27 a | 21.47 b | 706.17 a |
ICA V109/BFS 10 | 2:1 | 177.79 a | 21.68 a | 199.48 b | 777.69 a |
Fisher LSD0.05 | 132.49 | 150.58 | 171.53 | 117.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez, J.C.; Anzola, J.A.; Contreras, A.T.; Salas, D.L.; Vanegas, J.I.; Urban, M.O.; Beebe, S.E.; Rao, I.M. Agronomic Performance Evaluation of Intercropping Two Common Bean Breeding Lines with a Maize Variety under Two Types of Fertilizer Applications in the Colombian Amazon Region. Agronomy 2022, 12, 307. https://doi.org/10.3390/agronomy12020307
Suárez JC, Anzola JA, Contreras AT, Salas DL, Vanegas JI, Urban MO, Beebe SE, Rao IM. Agronomic Performance Evaluation of Intercropping Two Common Bean Breeding Lines with a Maize Variety under Two Types of Fertilizer Applications in the Colombian Amazon Region. Agronomy. 2022; 12(2):307. https://doi.org/10.3390/agronomy12020307
Chicago/Turabian StyleSuárez, Juan Carlos, José Alexander Anzola, Amara Tatiana Contreras, Dina Luz Salas, José Iván Vanegas, Milan O. Urban, Stephen E. Beebe, and Idupulapati M. Rao. 2022. "Agronomic Performance Evaluation of Intercropping Two Common Bean Breeding Lines with a Maize Variety under Two Types of Fertilizer Applications in the Colombian Amazon Region" Agronomy 12, no. 2: 307. https://doi.org/10.3390/agronomy12020307
APA StyleSuárez, J. C., Anzola, J. A., Contreras, A. T., Salas, D. L., Vanegas, J. I., Urban, M. O., Beebe, S. E., & Rao, I. M. (2022). Agronomic Performance Evaluation of Intercropping Two Common Bean Breeding Lines with a Maize Variety under Two Types of Fertilizer Applications in the Colombian Amazon Region. Agronomy, 12(2), 307. https://doi.org/10.3390/agronomy12020307