Micropropagation of Grapevine and Strawberry from South Russia: Rapid Production and Genetic Uniformity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material Preparation
2.2. Cultivation Conditions and Propagation
- Solid medium. The explants were subcultured in 240 mL glass vessels on solid MS medium (agar 8%) smented with 30 g/L sucrose, 2 mg/L 6-BAP at pH 5.7 ± 0.1, 12 plants per vessel.
- TIB-1, ten bioreactors containing 12 explants each. Explants were cultivated in temporary immersion bioreactors (TIB) RITA (VITROPIC, Saint-Mathieu-de-Tre’Viers, France; http://www.vitropic.fr/rita, accessed on 2 January 2022) containing 200 mL liquid medium MS with 30 g/L sucrose, 2 mg/L 6-BAP (pH 5.7 ± 0.1) and immersed for 1 min every hour. The medium was autoclaved at 121 °C at a pressure of 1.2 kg/cm2 for 40 min.
- TIB-2, ten bioreactors containing 12 explants each. TIB-2 used the same conditions as for TIB-1, but the medium was prepared using specialized automatic media preparatory Mediawel 10 (Alliance Bio Expertise, France; https://www.alliance-bio-expertise.com/en/mediawel10, accessed on 2 January 2022) with filling temperature 43 °C, sterilization temperature 121 °C, sterilization time 40 min, and a temperature control accuracy of ±0.5 °C.
2.3. Rooting, Hardening, and Acclimation
2.4. Genetic Analysis
3. Results
3.1. Micropropagation on Solid Medium and in Bioreactors
3.2. Rooting and Acclimation
3.3. Genetic Uniformity
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Khan, N.; Fahad, S.; Naushad, M.; Faisal, S. Grape production critical review in the world. Available at SSRN 3595842 2020. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3595842 (accessed on 24 January 2022).
- Fierascu, R.C.; Sieniawska, E.; Ortan, A.; Fierascu, I.; Xiao, J. Fruits by-products—A source of valuable active principles. A short review. Front. Bioeng. Biotechnol. 2020, 8, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giampieri, F.; Tulipani, S.; Alvarez-Suarez, J.M.; Quiles, J.L.; Mezzetti, B.; Battino, M. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition 2012, 28, 9–19. [Google Scholar] [CrossRef] [PubMed]
- This, P.; Lacombe, T.; Thomas, M.R. Historical origins and genetic diversity of wine grapes. Trends Genet. 2006, 22, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Grohs, D.S.; Almanca, M.A.K.; Fajardo, T.V.M.; Halleen, F.; Miele, A. Interação entre copa e porta-enxerto: 1. efeito nos componentes de produção da videira Cabernet Sauvignon. Rev. Bras. Frutic. 2017, 39, 1–9. [Google Scholar]
- Usanmaz, S. Effects of different propagation methods on the strawberry cv. ‘Fortuna’ yield grown under low tunnel. Int. J. Agric. Environ. Food Sci. 2019, 4, 227–228. [Google Scholar]
- Debnath, S.C.; McKenzie, D.; Bishop, G.; Percival, D. Strategic approaches to propagate berry crop nuclear stocks using a bioreactor. Acta Hortic. 2016, 1113, 47–52. [Google Scholar] [CrossRef]
- Mhatre, M.; Salunkhe, C.K.; Rao, P.S. Micropropagation of Vitis vinifera L: Towards an improved protocol. Sci. Hortic. 2000, 84, 357–363. [Google Scholar] [CrossRef]
- Debnath, S.C. Developing a scale-up system for the in vitro multiplication of thidiazuron-induced strawberry shoots using a bioreactor. Can. J. Plant Sci. 2008, 88, 737–746. [Google Scholar] [CrossRef]
- Lv, M.; Lv, J.; Zhang, X.; Qiu, L.; Ma, J.; Ruan, Y.; Jin, S.; Liu, J.; Chen, Z. Optimization of the rapid propagation system for strawberry tissue culture seedlings through Temporary Immersion Bioreactors (Tibs). Int. J. New Dev. Eng. Soc. 2020, 4, 52–60. [Google Scholar]
- Naing, A.H.; Kim, S.H.; Chung, M.Y.; Park, S.K.; Kim, C.K. In vitro propagation method for production of morphologically and genetically stable plants of different strawberry cultivars. Plant Methods 2019, 15, 1–10. [Google Scholar] [CrossRef]
- Park, S.W.; Kim, S.K.; Kwack, Y.; Chun, C. Simulation of the number of strawberry transplants produced by an autotrophic transplant production method in a plant factory with artificial lighting. Horticulturae 2020, 6, 63. [Google Scholar] [CrossRef]
- Hanhineva, K.J.; Kärenlampi, S.O. Production of transgenic strawberries by temporary immersion bioreactor system and verification by TAIL-PCR. BMC Biotechnol. 2007, 7, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardoso, J.C.; Sheng Gerald, L.T.; Teixeira da Silva, J.A. Micropropagation in the Twenty-First Century. Methods Mol. Biol. 2018, 1815, 17–46. [Google Scholar] [PubMed]
- Steingroewer, J.; Bley, T.; Georgiev, V.; Ivanov, I.; Lenk, F.; Marchev, A.; Pavlov, A. Bioprocessing of differentiated plant in vitro systems. Eng. Life Sci. 2013, 13, 26–38. [Google Scholar] [CrossRef]
- Georgiev, V.; Schumann, A.; Pavlov, A.; Bley, T. Temporary immersion systems in plant biotechnology. Eng. Life Sci. 2014, 14, 607–621. [Google Scholar] [CrossRef]
- Preil, W. General introduction: A personal reflection on the use of liquid media for in vitro culture. In Liquid Culture Systems for In Vitro Plant Propagation; Springer: Dordrecht, The Netherlands, 2005; pp. 1–18. [Google Scholar]
- Rani, V.; Raina, S.N. Genetic fidelity of organized meristem-derived micropropagated plants: A critical reappraisal. Vitr. Cell. Dev. Biol.-Plant 2000, 36, 319–330. [Google Scholar] [CrossRef]
- Debnath, S.C. Bioreactors and molecular analysis in berry crop micropropagation—A review. Can. J. Plant Sci. 2011, 91, 147–157. [Google Scholar] [CrossRef]
- Boxus, P.H.; Jemmali, A.; Terzi, J.M.; Arezki, O. Drift in genetic stability in micropropagation: The case of strawberry. Acta Hortic. 2000, 530, 155–161. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 474–497. [Google Scholar] [CrossRef]
- Lodhi, M.A.; Ye, G.N.; Weeden, N.F.; Reisch, B.I. A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol. Biol. Rep. 1994, 12, 6–13. [Google Scholar] [CrossRef]
- Sambrook, J.; Fritsch, E.R.; Maniatis, T. Molecular cloning: A laboratory manual: 2nd ed. Anal. Biochem. 1989, 186, 182–183. [Google Scholar]
- Badjakov, I.; Georgiev, V.; Georgieva, M.; Dincheva, I.; Vrancheva, R.; Ivanov, I.; Pavlov, A. Bioreactor technology for in vitro berry plant cultivation. In Plant Cell and Tissue Differentiation and Secondary Metabolites: Fundamentals and Applications; Ramawat, K.G., Ekiert, H.M., Goyal, S., Eds.; Springer: Cham, Switzerland, 2021; pp. 383–431. [Google Scholar]
- Arruda, A.L.; Nerbass, F.R.; Kretzschmar, A.A.; Rufato, L.; Posser, A.J.; Fagherazzi, M.M.; Silva, P.S.; Welter, J.F. Use of temporary immersion bioreactors and solid culture medium in the in vitro propagation of pear rootstocks. Acta Hortic. 2021, 1303, 113–120. [Google Scholar] [CrossRef]
- Ahmadian, M.; Babaei, A.; Shokri, S.; Hessami, S. Micropropagation of carnation (Dianthus caryophyllus L.) in liquid medium by temporary immersion bioreactor in comparison with solid culture. J. Genet. Eng. Biotechnol. 2017, 15, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Ziv, M. Simple bioreactors for mass propagation of plants. Plant Cell Tissue Organ. Cult. 2005, 81, 277–285. [Google Scholar] [CrossRef]
- Teixeira da Silva, J.A.; Nezami-Alanagh, E.; Barreal, M.E.; Kher, M.M.; Wicaksono, A.; Gulyás, A.; Hidvégi, N.; Magyar-Tábori, K.; Mendler-Drienyovszki, N.; Márton, L.; et al. Shoot tip necrosis of in vitro plant cultures: A reappraisal of possible causes and solutions. Planta 2020, 252, 47. [Google Scholar] [CrossRef]
- Benelli, C.; De Carlo, A. In vitro multiplication and growth improvement of Olea europaea L. cv Canino with temporary immersion system (Plantform™). 3 Biotech 2018, 8, 317. [Google Scholar] [CrossRef]
ISSR Primer | Sequence on Nucleotides, 5′-3′ | Number of Loci in Grape | Number of Loci in Strawberry |
---|---|---|---|
UBC807 | AGA GAG AGA GAG AGA GT | 5 | 7 |
UBC810 | GAG AGA GAG AGA GAG AT | 7 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kryukov, L.A.; Vodolazhsky, D.I.; Kamenetsky-Goldstein, R. Micropropagation of Grapevine and Strawberry from South Russia: Rapid Production and Genetic Uniformity. Agronomy 2022, 12, 308. https://doi.org/10.3390/agronomy12020308
Kryukov LA, Vodolazhsky DI, Kamenetsky-Goldstein R. Micropropagation of Grapevine and Strawberry from South Russia: Rapid Production and Genetic Uniformity. Agronomy. 2022; 12(2):308. https://doi.org/10.3390/agronomy12020308
Chicago/Turabian StyleKryukov, Lavr A., Dmitry I. Vodolazhsky, and Rina Kamenetsky-Goldstein. 2022. "Micropropagation of Grapevine and Strawberry from South Russia: Rapid Production and Genetic Uniformity" Agronomy 12, no. 2: 308. https://doi.org/10.3390/agronomy12020308