Aboveground Biomass, Carbon Sequestration, and Yield of Pyrus pyrifolia under the Management of Organic Residues in the Subtropical Ecosystem of Southern Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Laboratory Analyses
2.3. Organic Residues Analyses
2.4. Leaf Analyses Tissues
2.5. Predictive Models
2.6. Statistical Analyses
3. Results
3.1. The Effects of the Use of Compost and Mulching on Leaves N, P and K Contents of P. pyrifolia Plants under Field Conditions
3.2. Influence of the Use of Compost and Mulching on Plant Traits and Biomass Production of P. pyrifolia Plants under Field Conditions
3.3. Influence of the Use of Compost and Mulching on P. pyrifolia Yield under Field Conditions
3.4. The Effects of the Use of Compost and Mulching on C Compartments (Aboveground, Belowground, Soil, and Total) on P. pyrifolia Field Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jiang, H.; Li, H.; Zhao, M.; Mei, X.; Kang, Y.; Dong, C.; Xu, Y. Strategies for timing nitrogen fertilization of pear trees based on the distribution, storage, and remobilization of 15N from seasonal application of (15NH4)2SO4. J. Integr. Agric. 2020, 19, 1340–1353. [Google Scholar] [CrossRef]
- Colpaert, B.; Steppe, K.; Gomand, A.; Vanhoutte, B.; Remy, S.; Boeckx, P. Experimental approach to assess fertilizer nitrogen use, distribution, and loss in pear fruit trees. Plant Physiol. Biochem. 2021, 165, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Hu, S.; Guo, Z.; Cui, T.; Zhang, L.; Lu, C.; Jin, Y.; Luo, Z.; Fua, H.; Jin, Y. Effect of balanced nutrient fertilizer: A case study in Pinggu District, Beijing, China. Sci. Total Environ. 2021, 754, 142069. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, K.; Wang, W.; Ren, G.; Khan, A.; Feng, Y.; Yang, G.; Wang, H. Integrated use of straw mulch with nitrogen fertilizer improves soil functionality and soybean production. Sci. Total Environ. 2019, 132, 105092. [Google Scholar] [CrossRef]
- de Corato, U. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Sci. Total Environ. 2020, 738, 139840. [Google Scholar] [CrossRef]
- Pio, R.; Souza, F.B.M.; Kalcsits, L.; Bisi, R.B.; Farias, D.H. Advances in the production of temperate fruits in the tropics. Acta Sci. Agron. 2018, 41, e39549. [Google Scholar] [CrossRef] [Green Version]
- Research Institute of Organic Agriculture-FiBL. Organic Area Data for Selected Crops. Data on Organic Agriculture Worldwide, 2020. Available online: https://statistics.fibl.org/world/selected-crops-world.html?tx_statisticdata_pi1%5Bcontroller%5D=Element2Item&cHash=7dc7312efa295d7a1673ae0448ead0ad (accessed on 14 September 2021).
- Food and Agriculture Statistics Organization of United Nations—FAO. Crops. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 14 September 2021).
- Granatstein, D.; Kirby, E.; Ostenson, H.; Willer, H. Global situation for organic tree fruits. Sci. Hortic. 2016, 208, 3–12. [Google Scholar] [CrossRef]
- Oldoni, H.; Terra, V.S.S.; Timm, L.C.; Júnior, C.R.; Monteiro, A.B. Delineation of management zones in a peach orchard using multivariate and geostatistical analyses. Soil Tillage Res. 2019, 191, 1–10. [Google Scholar] [CrossRef]
- Dai, X.; Guo, Q.; Song, D.; Zhou, W.; Liu, G.; Liang, G.; He, P.; Sun, G.; Yuan, F.; Liu, Z. Long-term mineral fertilizer substitution by organic fertilizer and the effect on the abundance and community structure of ammonia-oxidizing archaea and bacteria in paddy soil of south China. Eur. J. Soil Biol. 2021, 103, 103288. [Google Scholar] [CrossRef]
- Souza, T.A.F.; Freitas, H. Long-Term Effects of Fertilization on Soil Organism Diversity. In Sustainable Agriculture Reviews 28, 1st ed.; Gaba, S., Smith, B., Lichtfouse, E., Eds.; Springer: Cham, Switzerland, 2018; Volume 28, pp. 211–247. [Google Scholar] [CrossRef]
- Menšík, L.; Hlisnikovský, L.; Pospíšilová, L.; Kunzová, E. The effect of application of organic manures and mineral fertilizers on the state of soil organic matter and nutrients in the long-term field experiment. J. Soils Sediments 2018, 18, 2813–2822. [Google Scholar] [CrossRef]
- Sharma, L.K.; Bali, S.K. A Review of Methods to Improve Nitrogen Use Efficiency in Agriculture. Sustainability 2018, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; An, X.; Ma, Y.; Li, Y.; Wenli, W.; Dong, C.; Xu, Y.; Shen, Q. A split supply of bio-organic and chemical fertilizer synergistically affects root system architecture and improves above-ground growth in pear tree (Pyrus pyrifolia Nakai). Res. Sq. 2020. [Google Scholar] [CrossRef]
- Montanaro, G.; Tuzio, A.C.; Xylogiannis, E.; Kolimenakis, A.; Dichio, B. Carbon budget in a Mediterranean peach orchard under different management practices. Agric. Ecosyst. Environ. 2017, 238, 104–113. [Google Scholar] [CrossRef]
- Baldi, E.; Cavani, L.; Margon, A.; Quartieri, A.; Sorrenti, G.; Marzadori, C.; Toselli, M. Effect of compost application on the dynamics of carbon in a nectarine orchard ecosystem. Sci. Total Environ. 2018, 637–638, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Hunter, M.C.; Kemanian, A.R.; Mortensen, D.A. Cover crop effects on maize drought stress and yield. Agric. Ecosyst. Environ. 2021, 311, 107294. [Google Scholar] [CrossRef]
- Wulanningtyasa, H.C.; Gongb, Y.; Lib, P.; Sakagamic, N.; Nishiwakic, J.; Komatsuzakid, M. A cover crop and no-tillage system for enhancing soil health by increasing soil organic matter in soybean cultivation. Soil Tillage Res. 2021, 205, 104749. [Google Scholar] [CrossRef]
- Forstall-Sosa, K.S.; Souza, T.A.F.; Lucena, E.O.; Silva, S.I.A.; Ferreira, J.T.A.; Silva, T.N.; Ferreira, J.T.A.; Silva, T.N.; Santos, D.; Niemeyer, J.C. Soil macroarthropod community and soil biological quality index in a green manure farming system of the Brazilian semi-arid. Biologia 2020, 76, 907–917. [Google Scholar] [CrossRef]
- Marcillo, G.S.; Miguez, F.E. Corn yield response to winter cover crops: An updated meta-analysis. J. Soil Water Conserv. 2017, 72, 226–239. [Google Scholar] [CrossRef] [Green Version]
- Daryanto, S.; Fu, B.; Wang, L.; Jacinthe, P.A. Quantitative synthesis on the ecosystem services of cover crops. Earth-Sci. Rev. 2018, 185, 357–373. [Google Scholar] [CrossRef]
- Giri, S.; Lathrop, R.G.; Obropta, C.C. Climate change vulnerability assessment and adaptation strategies through best management practices. J. Hydrol. 2020, 580, 124311. [Google Scholar] [CrossRef]
- Li, M.; Huang, C.; Yang, T.; Drosos, M.; Wang, J.; Kang, X.; Liu, F.; Xi, B. Role of plant species and soil phosphorus concentrations in determining phosphorus: Nutrient stoichiometry in leaves and fine roots. Plant Soil 2019, 445, 231–242. [Google Scholar] [CrossRef]
- Tesfaye, M.A.; Gardi, O.; Anbessa, T.B.; Blasser, J. Aboveground biomass, growth and yield for some selected introduced tree species, namely Cupressus lusitanica, Eucalyptus saligna, and Pinus patula in Central Highlands of Ethiopia. J. Ecol. Environ. 2020, 44, 3. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, U.K.; Nath, A.J.; Lalnunpuii, K. Biomass estimation models, biomass storage and ecosystem carbon stock in sweet orange orchards: Implications for land use management. Acta Ecol. Sin. 2021, 41, 57–63. [Google Scholar] [CrossRef]
- Zahoor, S.; Dutt, V.; Mughal, A.H.; Pala, N.A.; Qaisar, K.N.; Khan, P.A. Apple-based agroforestry systems for biomass production and carbon sequestration: Implication for food security and climate change contemplates in temperate region of Northern Himalaya, India. Agrofor. Syst. 2021, 95, 367–382. [Google Scholar] [CrossRef]
- Laurindo, L.K.; Souza, T.A.F.; da Silva, L.J.R.; Casal, T.B.; Pires, K.J.C.; Kormann, S.; Schmitt, D.E.; Siminski, A. Arbuscular mycorrhizal fungal community assembly in agroforestry systems from the Southern Brazil. Biologia 2021, 76, 1099–1107. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015; International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise do Solo, 3rd ed.; Embrapa Solos: Brasília, Brazil, 2017. [Google Scholar]
- Tedesco, M.J.; Gianello, C.; Bissani, C.A.; Bohnen, H.; Volkweiss, S.J. Análise do Solo, Planta e Outros Materiais, 2nd ed.; UFRGS: Porto Alegre, Brazil, 1995; p. 174. [Google Scholar]
- Nascimento, G.S.; Souza, T.A.F.; Silva, L.J.R.; Santos, D. Soil physico-chemical properties, biomass production, and root density in a green manure farming system from tropical ecosystem, North-eastern Brazil. J Soils Sediments 2021, 21, 2203–2211. [Google Scholar] [CrossRef]
- Comissão de Química e Fertilidade do Solo. Manual de Adubação e de Calagem Para os Estados do Rio Grande do Sul e de Santa Catarina, 10th ed.; Comissão de Química e Fertilidade do Solo: Porto Alegre, Brazil, 2016; 376p. [Google Scholar]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Hayama, Japan, 2006. [Google Scholar]
- Ruiz-Peinado, R.; Bravo-Oviedo, A.; López-Senespleda, E.; Montero, G.; Río, M. Do thinning influence biomass and soil carbon stocks in Mediterranean Maritime pine wood? Eur. J. Forest. Res. 2013, 132, 252–262. [Google Scholar] [CrossRef]
- Pearson, T.; Walker, S.; Brown, S. Source Book for Land Use, Land-Use Change and Forestry Projects; World Bank: Washington, DC, USA, 2006; 64p. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing. R Core Team. 2018. Available online: http://www.r-project.org/ (accessed on 17 October 2021).
- Souza, T.A.F.; Rodrígues, A.F.; Marques, L.F. Long-term effects of alternative and conventional fertilization on macroarthropod community composition: A field study with wheat (Triticum aestivum L.) cultivated on a Ferralsol. Org. Agric. 2016, 6, 323–330. [Google Scholar] [CrossRef]
- Vital, A.F.M.; Souza, T.A.F.; da Silva, L.J.R.; dos Santos, R.V.; da Silva, S.I.A.; Nascimento, G.S.; Santos, D. Biomass production and macronutrient content in Pennisetum glaucum (L.) R. Brown as affected by organic fertilization and irrigation. Rev. Bras. Ciências Agrárias 2020, 15, 4. [Google Scholar] [CrossRef]
- Souza, T.A.F.; Rodrígues, A.F.; Marques, L.F. Long-term effects of alternative and conventional fertilization I: Effects on arbuscular mycorrhizal fungi community composition. Russ. Agric. Sci. 2015, 41, 454–461. [Google Scholar] [CrossRef]
- Melo, L.N.; Souza, T.A.F.; Santos, D. Transpiratory rate, biomass production, and leaf macronutrient content of different plant species cultivated on a Regosol in the Brazilian semiarid. Russ. Agric. Sci. 2019, 45, 147–153. [Google Scholar] [CrossRef]
- Botelho, R.V.; Müller, M.M.L. Nutrient redistribution in fruit crops: Physiological implications. In Fruit Crops: Diagnosis and Management of Nutrient Constraints, 1st ed.; Srivastava, A.K., Hu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 33–46. [Google Scholar] [CrossRef]
- Cesaro, A.; Conte, A.; Belgiorno, V.; Siciliano, A.; Guida, M. The evolution of compost stability and maturity during the full-scale treatment of the organic fraction of municipal solid waste. J. Environ. Manag. 2019, 232, 264–270. [Google Scholar] [CrossRef]
- Mazzon, M.; Cavani, L.; Margon, A.; Sorrenti, G.; Ciavatta, C.; Marzadori, C. Changes in soil phenol oxidase activities due to long-term application of compost and mineral N in a walnut orchard. Geoderma 2018, 316, 70–77. [Google Scholar] [CrossRef]
- Perazzoli, B.E.; Pauletti, V.; Quartieri, M.; Toselli, M.; Gotz, L.F. Changes in leaf nutrient content and quality of pear fruits by biofertilizer application in northeastern Italy. Rev. Bras. Frutic. 2020, 42, e530. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, R.; Peng, X.; Zhang, Y.; Ning, F.; Xu, Z.; Wang, Q.; Dong, Z.; Jia, G.; Wei, L.; et al. Changes in soil organic carbon and total nitrogen in apple orchards in different climate regions on the Loess Plateau. Catena 2021, 197, 104989. [Google Scholar] [CrossRef]
- Toselli, M.; Baldi, E.; Cavani, L.; Mazzon, M.; Quartieri, M.; Sorreti, G.; Marzadoni, C. Soil-plant nitrogen pools in nectarine orchard in response to long-term compost application. Sci. Total Environ. 2019, 671, 10–18. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, Q.; Feng, Z.; Liu, Z.; Li, H.; Sun, Y.; Liu, C.; Lai, H. Long-term organic fertilization improves the productivity of kiwifruit (Actinidia chinensis Planch.) through increasing rhizosphere microbial diversity and network complexity. Appl. Soil Ecol. 2020, 147, 103426. [Google Scholar] [CrossRef]
- Cen, Y.; Li, L.; Guo, L.; Li, C.; Jiang, G. Organic management enhances both ecological and economic profitability of apple orchard: A case study in Shandong Peninsula. Sci. Hortic. 2020, 265, 109201. [Google Scholar] [CrossRef]
- Carranca, C.; Brunetto, G.; Tagliavini, M. Nitrogen Nutrition of Fruit Trees to Reconcile Productivity and Environmental Concerns. Plants 2018, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Thakur, M.; Kumar, R. Mulching: Boosting crop productivity and improving soil environment in herbal plants. J. Appl. Res. Med. Aromat. Plants 2021, 20, 100287. [Google Scholar] [CrossRef]
- Sorrenti, G.; Muzzi, E.; Toselli, M. Root growth dynamic and plant performance of nectarine trees amended with biochar and compost. Sci. Hortic. 2019, 257, 108710. [Google Scholar] [CrossRef]
- Iqbal, R.; Raza, M.A.S.; Valipour, M.; Saleem, M.F.; Zaheer, M.S.; Ahmad, S.; Toleikiene, M.; Haider, I.; Aslam, M.U.; Nazar, M.A. Potential agricultural and environmental benefits of mulches: A review. Bull. Natl. Res. Cent. 2020, 44, 75. [Google Scholar] [CrossRef]
- Sukitprapanon, T.S.; Jantamenchai, M.; Tulaphitak, D.; Vityakon, P. Nutrient composition of diverse organic residues and their long-term effects on available nutrients in a tropical sandy soil. Heliyon 2020, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R.; Wei, Y.; Huang, J.; Chen, X.; Cai, C. Soil organic carbon stock and fractional distribution across central-south China. Int. Soil Water Conserv. Res. 2021, 9, 620–630. [Google Scholar] [CrossRef]
- Yuan, Z.; Ali, A.; Sanaei, A.; Ruiz-Benito, P.; Juckerf, T.; Fang, L.; Bai, E.; Ye, J.; Lin, F.; Fang, S.; et al. Few large trees, rather than plant diversity and acomposition, drive the above-ground biomass stock and dynamics of temperate forests in northeast China. For. Ecol. Manag. 2021, 481, 118698. [Google Scholar] [CrossRef]
- Sharma, S.; Gill, M.S.; Thakur, A.; Choudhary, O.P.; Singh, M.; Singh, N. Evergreen fruit crops improve carbon pools, enzymes, and nutrient availability in soil over deciduous ones under subtropical conditions. Commun. Soil Sci. Plant Anal. 2021, 52, 1864–1878. [Google Scholar] [CrossRef]
- Yadav, R.P.; Gupta, B.; Bhutia, P.L.; Bishi, J.K.; Pattanayak, A. Biomass and carbon budgeting of land use types along elevation gradient in Central Himalayas. J. Clean. Prod. 2019, 211, 1284–1298. [Google Scholar] [CrossRef]
- Hammad, H.M.; Nauman, H.M.F.; Abbas, F.; Ahmad, A.; Bakhat, H.F.; Saeed, S.; Shah, G.M.; Ahmad, A.; Cerdà, A. Carbon sequestration potential and soil characteristics of various land use systems in arid region. J. Environ. Manag. 2020, 264, 110254. [Google Scholar] [CrossRef] [PubMed]
- Khorram, M.S.; Zhang, G.; Fatemi, A.; Kiefer, R.; Maddah, K.; Bagar, M.; Zakaria, M.P.; Li, G. Impact of biochar and compost amendment on soil quality, growth and yield of a replanted apple orchard in a 4-year field study. J. Sci. Food Agric. 2019, 99, 1862–1869. [Google Scholar] [CrossRef]
- Cao, H.; Jia, M.; Song, J.; Xun, M.; Fan, W.; Yang, H. Rice-straw mat mulching improves the soil integrated fertility index of apple orchards on cinnamon soil and fluvo-aquic soil. Sci. Hortic. 2021, 278, 109837. [Google Scholar] [CrossRef]
- Amendola, C.; Montagnoli, A.; Terzaghi, M.; Trupiano, D.; Oliva, F.; Baronti, S.; Miglietta, F.; Chiantante, D.; Scippa, G.S. Short-term effects of biochar on grapevine fine root dynamics and arbuscular mycorrhizae production. Agric. Ecosyst. Environ. 2017, 239, 236–245. [Google Scholar] [CrossRef]
- Fleishman, S.M.; Bock, H.W.; Eissenstat, D.M.; Centinari, M. Undervine groundcover substantially increases shallow but not deep soil carbon in a temperate vineyard. Agric. Ecosyst. Environ. 2021, 33, 107362. [Google Scholar] [CrossRef]
- de Notaris, C.; Olesen, J.E.; Sorensen, P.; Rasmussen, J. Input and mineralization of carbon and nitrogen in soil from legume-based cover crops. Nutr. Cycl. Agroecosyst. 2020, 116, 1–18. [Google Scholar] [CrossRef]
Studied Treatment | pH (H2O) | P (mg dm−3) | K+ (mg dm−3) | Ca2+ (cmolc kg-1) | Mg2+ (cmolc kg−1) | Al3+ (cmolc kg−1) | SOC (g kg−1) | TN (kg kg−1) | SB (cmolc kg−1) | CEC (cmolc kg−1) |
---|---|---|---|---|---|---|---|---|---|---|
Control | 6.28 | 30.22 | 408.23 | 10.28 | 3.08 | 0.00 | 30.59 | 1.62 | 14.41 | 14.40 |
Mulching (M) | 6.35 | 48.98 | 461.30 | 11.88 | 3.06 | 0.00 | 30.59 | 1.81 | 16.13 | 16.13 |
Compost (C) | 6.15 | 35.07 | 326.31 | 10.96 | 3.26 | 0.00 | 27.98 | 1.80 | 15.06 | 15.06 |
M + C | 6.23 | 43.12 | 576.92 | 10.36 | 2.92 | 0.00 | 30.16 | 1.78 | 14.76 | 14.77 |
Organic Residues | C/N Ratio | N (g kg−1) | P (g kg−1) | K (g kg−1) |
---|---|---|---|---|
Mulching | 45.85 | 8.52 | 13.87 | 86.68 |
Compost | 21.13 | 20.84 | 16.18 | 31.18 |
Treatments | Aboveground C Density | Belowground C Density | Soil Organic C Stock | Total C Density |
---|---|---|---|---|
t C ha−1 | ||||
Control | 22.12 (4.86) b | 5.31 (1.16) c | 128.49 (1.51) a | 155.93 (1.38) b |
Mulching (M) | 23.15 (5.12) b | 5.55 (1.22) b | 128.49 (2.18) a | 157.21 (2.33) a |
Compost (C) | 23.45 (4.30) a | 5.62 (1.03) a | 117.53 (1.63) c | 146.62 (1.57) c |
M + C | 23.69 (4.24) a | 5.68 (1.01) a | 126.67 (2.12) b | 156.05 (2.06) a |
F-value | 8.52 ** | 8.52 ** | 56.04 *** | 40.59 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, L.J.R.; Souza, T.; Laurindo, L.K.; Nascimento, G.d.S.; de Lucena, E.O.; Freitas, H. Aboveground Biomass, Carbon Sequestration, and Yield of Pyrus pyrifolia under the Management of Organic Residues in the Subtropical Ecosystem of Southern Brazil. Agronomy 2022, 12, 231. https://doi.org/10.3390/agronomy12020231
da Silva LJR, Souza T, Laurindo LK, Nascimento GdS, de Lucena EO, Freitas H. Aboveground Biomass, Carbon Sequestration, and Yield of Pyrus pyrifolia under the Management of Organic Residues in the Subtropical Ecosystem of Southern Brazil. Agronomy. 2022; 12(2):231. https://doi.org/10.3390/agronomy12020231
Chicago/Turabian Styleda Silva, Lucas Jónatan Rodrigues, Tancredo Souza, Lídia Klestadt Laurindo, Gislaine dos Santos Nascimento, Edjane Oliveira de Lucena, and Helena Freitas. 2022. "Aboveground Biomass, Carbon Sequestration, and Yield of Pyrus pyrifolia under the Management of Organic Residues in the Subtropical Ecosystem of Southern Brazil" Agronomy 12, no. 2: 231. https://doi.org/10.3390/agronomy12020231
APA Styleda Silva, L. J. R., Souza, T., Laurindo, L. K., Nascimento, G. d. S., de Lucena, E. O., & Freitas, H. (2022). Aboveground Biomass, Carbon Sequestration, and Yield of Pyrus pyrifolia under the Management of Organic Residues in the Subtropical Ecosystem of Southern Brazil. Agronomy, 12(2), 231. https://doi.org/10.3390/agronomy12020231