Assessment of Potential Heavy Metal Contamination Hazards Based on GIS and Multivariate Analysis in Some Mediterranean Zones
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Area
2.2. Analysis of Selected Samples
2.3. Indices of Contamination
2.3.1. Geoaccumulation Index (I-Geo)
2.3.2. The Contamination Factor (CF)
2.3.3. Improved Nemerow’s Pollution Index (In)
2.4. Statistical Analysis
2.5. Heavy Metals and Some Soil Properties’ Spatial Variability Maps
2.6. Remote Sensing Data
3. Results and Discussion
3.1. Relevant Soil Characteristics and Heavy Metal Concentrations
3.2. Principal Component Analysis (PCA)
3.3. Based on PCA, Cluster Analysis
3.4. The Study Area’s Land Use
3.5. Geoaccumulation Index (I-Geo) and Contamination Factor (CF)
3.6. Overview of In
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El Baroudy, A.A. Geomatics-Based Soil Mapping and Degradation Risk Assessment of Nile Delta Soils. Pol. J. Environ. Stud. 2010, 19, 1123–1131. [Google Scholar]
- El-Zeiny, A.M.; Abd El-Hamid, H.T. Environmental and human risk assessment of heavy metals at northern Nile Delta region using geostatistical analyses. Egypt. J. Remote Sens. Space Sci. 2022, 25, 21–35. [Google Scholar] [CrossRef]
- Hu, J.; Wu, F.; Wu, S.; Sun, X.; Lin, X.; Wong, M.H. Phytoavailability and phytovariety codetermine the bioaccumulation risk of heavy metal from soils, focusing on Cd-contaminated vegetable farms around the Pearl River Delta, China. Ecotoxicol. Environ. Saf. 2013, 91, 18–24. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Kaur, P.; Sidhu, G.P.S.; Bali, A.S.; Bhardwaj, R.; Thukral, A.K.; Cerda, A. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere 2019, 216, 449–462. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sharma, A.; Kaur, P.; Kumar, R.; Keshavarzi, A.; Bhardwaj, R.; Thukral, A.K. Assessment of soil properties from catchment areas of Ravi and Beas rivers: A review. Geol. Ecol. Landsc. 2019, 3, 149–157. [Google Scholar] [CrossRef]
- El Behairy, R.A.; El Baroudy, A.A.; Ibrahim, M.M.; Mohamed, E.S.; Rebouh, N.Y.; Shokr, M.S. Combination of GIS and Multivariate Analysis to Assess the Soil Heavy Metal Contamination in Some Arid Zones. Agronomy 2022, 12, 2871. [Google Scholar] [CrossRef]
- Ali, M.G.M.; Ahmed, M.; Ibrahin, M.M.; El Baroudy, A.A.; Ali, E.F.; Shokr, M.S.; Aldosari, A.A.; Majrashi, A.; Kheir, A.M.S. Optimizing sowing window, cultivar choice, and plant density to boost maize yield under RCP8.5 climate scenario of CMIP5. Int. J. Biometeorol. 2022, 66, 971–985. [Google Scholar] [CrossRef] [PubMed]
- Kayode, A.A.; Akram, M.; Laila, U.; Al-Khashman, O.A.; Kayode, O.T.; Elbossaty, W.F.M. Biological implications of atmospheric and pedospheric levels of heavy metals. Adv. Toxicol. Toxic Effects 2021, 5, 1–14. [Google Scholar]
- Li, C.; Zhou, K.; Qin, W.; Tian, C.; Qi, M.; Yan, X.; Han, W. A Review on Heavy Metals Contamination in Soil: Effects, Sources, and Remediation Techniques. Soil Sedim. Contam. 2019, 28, 380–394. [Google Scholar] [CrossRef]
- Kasam; Rahmawati, S.; Iresha, F.M.; Wacano, D.; Fauziah, I.F.; Amrullah, M.A. Evaluation of Heavy Metal Exposure to Soil and Paddy Plant around the Closed Municipal Solid Waste Landfill: Case Study at Gunung Tugel Landfill, Banyumas-Central Java. IOP Conf. Ser. Mater. Sci. Eng. 2018, 299, 8. [Google Scholar] [CrossRef]
- Srigirisetty, S.; Jayasri, T.; Netaji, C. Open dumping of municipal solid waste-Impact on groundwater and soil. Int. J. Curr. Eng. Sci. Res. 2017, 4, 26–33. [Google Scholar]
- El Baroudy, A.A.; Ali, A.M.; Mohamed, E.S.; Moghanm, F.S.; Shokr, M.S.; Savin, I.; Poddubsky, A.; Ding, Z.; Kheir, A.M.S.; Aldosari, A.A.; et al. Modeling Land Suitability for Rice Crop Using Remote Sensing and Soil Quality Indicators: The Case Study of the Nile Delta. Sustainability 2020, 12, 9653. [Google Scholar] [CrossRef]
- Abowaly, M.E.; Belal, A.-A.A.; Elkhalek, E.E.A.; Elsayed, S.; Samra, R.M.A.; Alshammari, A.S.; Moghanm, F.S.; Shaltout, K.H.; Alamri, S.A.M.; Eid, E.M. Assessment of Soil Pollution Levels in North Nile Delta, by Integrating Contamination Indices, GIS, and Multivariate Modeling. Sustainability 2021, 13, 8027. [Google Scholar] [CrossRef]
- El-Zeiny, A.M.; Effat, H.A. Environmental analysis of soil characteristics in El-Fayoum Governorate using geomatics approach. Environ. Monit. Assess. 2019, 191, 463. [Google Scholar] [CrossRef]
- Hammam, A.A.; Mohamed, E.S. Mapping soil salinity in the East Nile Delta using several methodological approaches of salinity assessment. Egypt. J. Remote Sens. Space Sci. 2020, 23, 125–131. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Wang, J.; Liu, G.; Liu, H.; Lam, P.K.S. Multivariate statistical evaluation of dissolved trace elements and a water quality assessment in the middle reaches of Huaihe River, Anhui, China. Sci. Total Environ. 2017, 583, 421–431. [Google Scholar] [CrossRef]
- Said, I.; Salman, S.A.; Elnazer, A.A. Multivariate statistics and contamination factor to identify trace elements pollution in soil around Gerga City, Egypt. Bull. Nat. Res. Cent. 2019, 43, 43. [Google Scholar] [CrossRef] [Green Version]
- El Nahry, A.H.; Mohamed, E.S. Potentiality of land and water resources in African Sahara: A case study of south Egypt. Environ. Earth Sci. 2011, 63, 1263–1275. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Belal, A.; Shalaby, A. Impacts of soil sealing on potential agriculture in Egypt using remote sensing and GIS techniques. Eurasian Soil Sci. 2015, 48, 1159–1169. [Google Scholar] [CrossRef]
- Abuzaid, A.S.; El-Husseiny, A.M. Modeling crop suitability under micro irrigation using a hybrid AHP-GIS approach. Arab. J. Geosci. 2022, 15, 1217. [Google Scholar] [CrossRef]
- Khan, S.; Naushad, M.; Lima, E.C.; Zhang, S.; Shaheen, S.M.; Rinklebe, J. Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies—A review. J. Hazard. Mater. 2021, 417, 126039. [Google Scholar] [CrossRef]
- Abuzaid, A.S.; Bassouny, M.A. Total and DTPA-extractable forms of potentially toxic metals in soils of rice fields, north Nile Delta of Egypt. Environ. Technol. Innov. 2020, 18, 100717. [Google Scholar] [CrossRef]
- Yang, Y.; Christakos, G.; Guo, M.; Xiao, L.; Huang, W. Space-time quantitative source apportionment of soil heavy metal concentration increments. Environ. Pollut. 2017, 223, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, X.; He, M.; Christakos, G. Beyond mere pollution source identification: Determination of land covers emitting soil heavy metals by combining PCA/APCS, GeoDetector and GIS analysis. Catena 2020, 185, 104297. [Google Scholar] [CrossRef]
- Jahin, H.S.; Abuzaid, A.S.; Abdellatif, D.A. Using multivariate analysis to develop irrigation water quality index for surface water in Kafr El-Sheikh Governorate, Egypt. Environ. Technol. Innov. 2020, 17, 100532. [Google Scholar] [CrossRef]
- Abuzaid, A.S.; Jahin, H.S. Combinations of multivariate statistical analysis and analytical hierarchical process for indexing surface water quality under arid conditions. J. Contam. Hydrol. 2022, 248, 104005. [Google Scholar] [CrossRef]
- Irpino, A.; Verde, R.A. New Wasserstein Based Distance for the Hierarchical Clustering of Histogram Symbolic Data; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Mazidah, Z.; Amalyn, A.; Shuhada, N.T.; Fuad, M.M.; Fikriah, F.; Izzuddin, M.A. Assessment of heavy metals and nutrients availability in oil palm plantation effected by bauxite mining using geostatistical and multivariate analyses. IOP Conf. Ser. Earth Environ. Sci. 2022, 1064, 012002. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; United States Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Abo Shelbaya, M.M.; Abd El-Azeim, M.M.; Menesi, A.M.; Abd El-Mageed, M.M. Heavy Metals and Microbial Activity in Alluvial Soils Affected by Different Land-Uses. J. Soil Sci. Agric. Eng. 2021, 12, 165–177. [Google Scholar] [CrossRef]
- Gee, G.W.; Or, D. Particle-size analysis. In Methods of Soil Analysis: Part 4—Physical Methods; Dane, J.H., Topp, C.G., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA, 2002; pp. 255–293. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis: Part 3-Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA; American Society of Agronomy, Inc.: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- U.S. EPA. Test methods for evaluating solid waste. In IA: Laboratory Manual Physical/Chemical Methods, SW 846, 3rd ed.; U.S. Gov. Print. Office: Washington, DC, USA, 1995. [Google Scholar]
- Wedepohl, H.K. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Muller, G. Index of Geoaccumulation in Sediments of the Rhine River. J. Geol. 1979, 2, 108–118. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Guan, Y.; Shao, C.; Ju, M. Heavy metal contamination assessment and partition for industrial and mining gathering areas. Int. J. Environ. Res. Public Health 2014, 11, 7286–7303. [Google Scholar] [CrossRef]
- Said, M.E.S.; Ali, A.M.; Borin, M.; Abd-Elmabod, S.K.; Aldosari, A.A.; Khalil, M.M.N.; Abdel-Fattah, M.K. On the Use of Multivariate Analysis and Land Evaluation for Potential Agricultural Development of the Northwestern Coast of Egypt. Agronomy 2020, 10, 1318. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Fattah, M.K.; Abd-Elmabod, S.K.; Aldosari, A.A.; Elrys, A.S.; Mohamed, E.S. Multivariate Analysis for Assessing Irrigation Water Quality: A Case Study of the Bahr Mouise Canal, Eastern Nile Delta. Water 2020, 12, 2537. [Google Scholar] [CrossRef]
- Abuzaid, A.S.; Abdel-Salam, M.A.; Ahmad, A.F.; Fathy, H.A.; Fadl, M.E.; Scopa, A. Effect of marginal-quality irrigation on accumulation of some heavy metals (Mn, Pb, and Zn) in Typic Torripsamment soils and food crops. Sustainability 2022, 14, 1067. [Google Scholar] [CrossRef]
- Azpúrua, M.; Dos Ramos, K. A comparison of spatial interpolation methods for estimation of average electromagnetic field magnitude. Prog. Electromagn. Res. 2010, 14, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Abuzaid, A.S.; Bassouny, M.A.; Jahin, H.S.; Abdelhafez, A.A. Stabilization of lead and copper in a contaminated Typic Torripsament soil using humic substances. CLEAN—Soil Air Water 2019, 47, 1800309. [Google Scholar] [CrossRef]
- Swartjes, F.A. Introduction to Contaminated Site Management. In Dealing with Contaminated Sites: From Theory towards Practical Application; Swartjes, F.A., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 3–89. [Google Scholar]
- Department of Environmental Affairs. National Norms and Standards for the Remediation of Contaminated Land and Soil Quality in the Republic of South Africa; Department of Environmental Affairs (DEA), National Environmental Management: Pretoria, South Africa, 2013.
- Abdelaal, S.M.S.; Moussa, K.F.; Ibrahin, A.H.; Mohamed, E.S.; Kucher, D.E.; Savin, I.; Abdel-Fattah, M.K. Mapping Spatial Management Zones of Salt-Affected Soils in Arid Region: A Case Study in the East of the Nile Delta, Egypt. Agronomy 2021, 11, 2510. [Google Scholar] [CrossRef]
- El Behairy, R.A.; El Baroudy, A.A.; Ibrahim, M.M.; Kheir, A.M.S.; Shokr, M.S. Modelling and Assessment of Irrigation Water Quality Index Using GIS in Semi-arid Region for Sustainable Agriculture. Water Air Soil Pollut. 2021, 232, 352. [Google Scholar] [CrossRef]
- Zouahri, A.; Dakak, H.; Douaik, A.; El Khadir, M.; Moussadek, R. Evaluation of groundwater suitability for irrigation in the Skhirat region, Northwest of Morocco. Environ. Monit. Assess. 2014, 187, 4184. [Google Scholar] [CrossRef]
- Ding, Z.; Kheir, A.M.S.; Ali, M.G.M.; Ali, O.A.M.; Abdelaal, A.I.N.; Lin, X.; Zhou, Z.; Wang, B.; Liu, B.; He, Z. The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity. Sci. Rep. 2020, 10, 2736. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Koreim, M.A.; Ibrahim, S.M.; Antar, A.S.; Ewis, M.A.; He, Z.; Kheir, A.M.S. Seawater intrusion impacts on groundwater and soil quality in the northern part of the Nile Delta, Egypt. Environ. Earth Sci. 2020, 79, 313. [Google Scholar] [CrossRef]
- Houben, D.; Evrard, L.; Sonnet, P. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 2013, 92, 1450–1457. [Google Scholar] [CrossRef]
- El Baroudy, A.A. Monitoring land degradation using remote sensing and GIS techniques in an area of the middle Nile Delta, Egypt. Catena 2011, 87, 201–208. [Google Scholar] [CrossRef]
- Obalum, S.E.; Chibuike, G.U.; Peth, S.; Ouyang, Y. Soil organic matter as sole indicator of soil degradation. Environ. Monit. Assess. 2017, 189, 176. [Google Scholar] [CrossRef]
- Shokr, M.S.; Abdellatif, M.A.; El Baroudy, A.A.; Elnashar, A.; Ali, E.F.; Belal, A.A.; Attia, W.; Ahmed, M.; Aldosari, A.A.; Szantoi, Z.; et al. Development of a Spatial Model for Soil Quality Assessment under Arid and Semi-Arid Conditions. Sustainability 2021, 13, 2893. [Google Scholar] [CrossRef]
- Förstner, U.; Wittmann, G.T.W. Metal Pollution in the Aquatic Environment; Springer: Berlin/Heidelberg, Germany, 1981; p. 486. [Google Scholar]
- Abuzaid, A.S.; Jahin, H.S. Changes in alluvial soil quality under long-term irrigation with two marginal water sources in an arid environment. Egypt. J. Soil Sci. 2021, 61, 113–128. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. WIREs Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Abuzaid, A.S.; Jahin, H.S. Profile distribution and source identification of potentially toxic elements in north Nile Delta, Egypt. Soil Sedim. Contam. 2019, 28, 582–600. [Google Scholar] [CrossRef]
- Jain, A.K.; Dubes, R.C. Algorithms for Clustering Data; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1988. [Google Scholar]
- Penkova, T.G. Principal component analysis and cluster analysis for evaluating the natural and anthropogenic territory safety. Procedia Comput. Sci. 2017, 112, 99–108. [Google Scholar] [CrossRef]
- Abuzaid, A.S.; Mazrou, Y.S.A.; El Baroudy, A.A.; Ding, Z.; Shokr, M.S. Multi-Indicator and geospatial based approaches for assessing variation of land quality in arid agroecosystems. Sustainability 2022, 14, 5840. [Google Scholar] [CrossRef]
- Shokr, M.S.; Mazrou, Y.S.A.; Abdellatif, M.A.; El Baroudy, A.A.; Mahmoud, E.K.; Saleh, A.M.; Balal, A.A.; Ding, Z. Integration of Geostatistical and Sentinal-2AMultispectral Satellite Image Analysis for Predicting Soil Fertility Condition in Drylands. ISPRS Int. J. Geo-Inf. 2022, 11, 353. [Google Scholar] [CrossRef]
- Abdellatif, M.A.; El Baroudy, A.A.; Arshad, M.; Mahmoud, E.K.; Saleh, A.M.; Moghanm, F.S.; Shaltout, K.H.; Eid, E.M.; Shokr, M.S. A GIS-Based Approach for the Quantitative Assessment of Soil Quality and Sustainable Agriculture. Sustainability 2021, 13, 13438. [Google Scholar] [CrossRef]
- Abu-hashim, M.; Mohamed, E.; Belal, A.-E. Identification of potential soil water retention using hydric numerical model at arid regions by land-use changes. Int. Soil Water Conserv. Res. 2015, 3, 305–315. [Google Scholar] [CrossRef] [Green Version]
- Feng, H.; Han, X.; Zhang, W.; Yu, L. A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization. Mar. Pollut. Bull. 2004, 49, 910–915. [Google Scholar] [CrossRef]
- Nazzal, Y.H.; Al-Arifi, N.S.N.; Jafri, M.K.; Kishawy, H.; Ghrefat, H.A.; El-Waheidi, M.M.; Batayneh, A.T.; Zumlot, T.A. Multivariate statistical analysis of urban soil contamination by heavy metals at selected industrial locations in the Greater Toronto area, Canada. Geol. Croat. 2015, 68, 147–159. [Google Scholar] [CrossRef]
- Abd-Elmabod, S.K.; Mansour, H.; Hassein, A.A.E.; Zhang, Z.; Anaya-Romero, M.; de la Rosa, D.; Jordán, A. Influence of irrigation water quantity on the land capability classification. Plant Arch. 2019, 19, 2253–2261. [Google Scholar]
Properties | Measuring Units | Observed No. | Min. | Max. | Mean | SD | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|
Cd | mg kg−1 | 50 | 0.82 | 21.89 | 11.26 | 7.57 | 0.04 | −1.67 |
Pb | mg kg−1 | 50 | 30.00 | 85.25 | 54.15 | 11.97 | 0.45 | 0.20 |
Zn | mg kg−1 | 50 | 34.00 | 81.40 | 61.29 | 9.50 | −0.15 | 1.01 |
Mn | mg kg−1 | 50 | 115.25 | 446.05 | 330.06 | 85.78 | −0.57 | −0.79 |
ECe | dS m−1 | 50 | 1.45 | 32.30 | 7.52 | 8.32 | 1.71 | 1.78 |
pH (−log H) | - | 50 | 7.39 | 8.30 | 7.70 | 0.20 | 0.68 | 0.53 |
CaCO3 | % | 50 | 0.38 | 5.32 | 2.79 | 1.21 | −0.079 | 0.66 |
O. M | % | 50 | 1.30 | 2.40 | 1.64 | 0.27 | 1.04 | 0.59 |
Clay | % | 50 | 24.00 | 43.50 | 33.39 | 3.46 | 0.24 | 2.70 |
Recommended Values of Heavy Metals Concentrations | Cd | Pb | Zn | Mn |
---|---|---|---|---|
mg kg−1 | ||||
Wedepohl [36] | 7.5 | 20 | 240 | 740 |
DEA [49] | 0.1 | 20 | 52 | 527 |
F1 | F2 | F3 | |
---|---|---|---|
Total | 2.27 | 28.47 | 28.47 |
% of Variance | 1.62 | 20.30 | 48.78 |
Cumulative % | 1.06 | 13.32 | 62.10 |
Cd (mg kg −1) | 0.82 | 0.13 | −0.005 |
Pb (mg kg −1) | 0.82 | −0.02 | 0.02 |
Zn (mg kg −1) | 0.77 | 0.16 | 0.20 |
Mn(mg kg −1) | 0.07 | 0.73 | 0.30 |
EC dS m−1 | −0.01 | 0.51 | −0.65 |
pH (1:2.5) | −0.13 | 0.44 | 0.55 |
O. M% | −0.55 | 0.45 | 0.20 |
Clay% | 0.07 | 0.61 | −0.39 |
Properties | Measuring Units | Observed No. | Min. | Max. | Mean | SD | Skewness | Kurtosis | In Level |
---|---|---|---|---|---|---|---|---|---|
Cluster 1 | |||||||||
Cd | mg kg−1 | 19 | 0.89 | 21.89 | 11.70 a | 8.56 | −0.1 | −1.865 | Heavily contaminated |
Pb | mg kg−1 | 19 | 30 | 85.25 | 56.40 a | 16.11 | 0.23 | −0.926 | |
Zn | mg kg−1 | 19 | 34 | 81.20 | 62.17 a | 12.75 | −0.60 | 0.157 | |
Mn | mg kg−1 | 19 | 115.25 | 279.27 | 231.70 a | 42.098 | −1.40 | 2.053 | |
EC | dS m−1 | 19 | 1.45 | 5.75 | 2.91 a | 1.48 | 0.74 | −0.911 | |
pH (−log H) | - | 19 | 7.4 | 8.19 | 7.64 a | 0.22 | 1.08 | 0.561 | |
O. M | % | 19 | 1.3 | 2.20 | 1.52 a | 0.22 | 2.09 | 4.27 | |
Clay | % | 19 | 27.9 | 37 | 33.16 a | 1.86 | −1.09 | 3.542 | |
In | - | 19 | 1.82 | 5.23 | 3.9 a | 1.34 | −0.78 | 0.52 |
Properties | Measuring Units | Observed No. | Min. | Max. | Mean | SD | Skewness | Kurtosis | In Level |
---|---|---|---|---|---|---|---|---|---|
Cluster 2 | |||||||||
Cd | mg kg−1 | 31 | 0.82 | 20.95 | 10.98 a | 7.03 | 0.126 | −1.67 | Heavily to extremely contaminated |
Pb | mg kg−1 | 31 | 35.5 | 69.85 | 52.76 b | 8.54 | −0.132 | −0.29 | |
Zn | mg kg−1 | 31 | 49.25 | 81.4 | 60.74 b | 7.01 | 0.905 | 1.52 | |
Mn | mg kg−1 | 31 | 326.75 | 446.05 | 390.34 b | 32.76 | −0.232 | −0.97 | |
EC dS/m | dS m−1 | 31 | 1.65 | 32.3 | 10.35 b | 9.49 | −0.028 | 9.14 | |
pH (−log H) | - | 31 | 7.39 | 8.3 | 7.73 a | 0.19 | 0.636 | 1.65 | |
O. M | % | 31 | 1.3 | 2.4 | 1.71 a | 0.27 | 0.776 | 0.50 | |
Clay | % | 31 | 24 | 43.5 | 33.53 a | 4.17 | 0.204 | 1.39 | |
In | - | 31 | 1.75 | 5.20 | 4.15 a | 1.04 | −1.19 | 0.42 |
Class | Elements mg kg−1 | Statistical Parameters | |||
---|---|---|---|---|---|
Min. | Max. | Mean | SD. | ||
Class 2 | Cd | 0.82 | 1.07 | 0.96 | 0.08 |
Pb | 30.00 | 54.00 | 44.20 | 8.22 | |
Zn | 34.00 | 61.00 | 51.00 | 9.22 | |
Mn | 115.25 | 396.75 | 277.51 | 106.12 | |
Class 4 | Cd | 6.25 | 7.00 | 6.62 | 0.26 |
Pb | 35.50 | 64.25 | 51.14 | 8.69 | |
Zn | 49.75 | 73.00 | 60.57 | 5.38 | |
Mn | 226.75 | 402.25 | 349.44 | 60.93 | |
Class 5 | Cd | 10.00 | 19.00 | 17.64 | 2.44 |
Pb | 44.75 | 75.25 | 56.45 | 8.88 | |
Zn | 49.25 | 81.40 | 64.24 | 8.12 | |
Mn | 210.40 | 438.75 | 343.78 | 92.75 | |
Class 6 | Cd | 18.85 | 21.89 | 20.31 | 1.05 |
Pb | 42.25 | 85.25 | 64.68 | 14.11 | |
Zn | 53.75 | 81.20 | 67.65 | 10.09 | |
Mn | 215.25 | 446.05 | 326.35 | 88.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shokr, M.S.; Abdellatif, M.A.; El Behairy, R.A.; Abdelhameed, H.H.; El Baroudy, A.A.; Mohamed, E.S.; Rebouh, N.Y.; Ding, Z.; Abuzaid, A.S. Assessment of Potential Heavy Metal Contamination Hazards Based on GIS and Multivariate Analysis in Some Mediterranean Zones. Agronomy 2022, 12, 3220. https://doi.org/10.3390/agronomy12123220
Shokr MS, Abdellatif MA, El Behairy RA, Abdelhameed HH, El Baroudy AA, Mohamed ES, Rebouh NY, Ding Z, Abuzaid AS. Assessment of Potential Heavy Metal Contamination Hazards Based on GIS and Multivariate Analysis in Some Mediterranean Zones. Agronomy. 2022; 12(12):3220. https://doi.org/10.3390/agronomy12123220
Chicago/Turabian StyleShokr, Mohamed S, Mostafa A. Abdellatif, Radwa A. El Behairy, Hend H. Abdelhameed, Ahmed A. El Baroudy, Elsayed Said Mohamed, Nazih Y. Rebouh, Zheli Ding, and Ahmed S. Abuzaid. 2022. "Assessment of Potential Heavy Metal Contamination Hazards Based on GIS and Multivariate Analysis in Some Mediterranean Zones" Agronomy 12, no. 12: 3220. https://doi.org/10.3390/agronomy12123220
APA StyleShokr, M. S., Abdellatif, M. A., El Behairy, R. A., Abdelhameed, H. H., El Baroudy, A. A., Mohamed, E. S., Rebouh, N. Y., Ding, Z., & Abuzaid, A. S. (2022). Assessment of Potential Heavy Metal Contamination Hazards Based on GIS and Multivariate Analysis in Some Mediterranean Zones. Agronomy, 12(12), 3220. https://doi.org/10.3390/agronomy12123220