Adapting Tea Production to Climate Change under Rapid Economic Development in China from 1987 to 2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Regions
2.2. Data Sources
2.3. Calculation of Tea Climate Suitability Index
2.4. Calculating Gravity Center
3. Results
3.1. Changes of Tea Climate Suitability in China
3.2. Adjustment of Tea Production
3.3. The Trajectory of Gravity Center of Tea Production
4. Discussion
5. Conclusions
- Generally, there were negative impacts of climate change on tea production in Chinese mainland. An obvious feature of the changes of tea climate suitability is that the high suitable index >0.9 decreased from 45% to 32% in the Chinese mainland, corresponding with the proportion of tea production area deceasing from 49% to 33% in the South Yangtze River Region, and from 18% to 12% in the Southern China Region, respectively.
- Tea climate suitability increased in the north part of the tea production area, which is conductive to the northward expansion of tea planting. Typically, such as in the Shandong province, the north boundary of tea planting expanded from 33° N in 1987 to 35° N in 2017 to take advantage of altered climatic resources due to warming, corresponding with the proportion of tea production yield increase from 1.8% to 5.8%, and tea planting area expansion from 4.8% to 9.6% in Northern Yangtze River Region, respectively.
- A special feature of upward expansion of tea production can be seen, the vertical distribution of tea planting decreased at 100–400 m while increased in the altitude of 400–2000+ m from 1987 to 2017. The tea planting area expansion is mainly concentrated in the north and south edges of the Yun-Gui Plateau and mid-east part of the second ladder of Chinese topography, which can be imagined as seeking the optimum environment on high mountainous areas to avoid the harm on tea growth from hot temperatures.
- A westward shift is presented for the distribution of the tea yield proportion along longitude, decreasing obviously at 117–121° E while increasing significantly at 98–104° E and 107–110° E from 1987 to 2017. Meanwhile, there had been a westward movement of the tea production gravity center, consistent with the economic gravity moving trend and corresponding with the proportion of tea production yield increasing from 23% to 31%, and area expansion from 25.9% to 45.3% in the Southwest Region, respectively. The westward shift could be explained with the red line policy of arable land in eastern China, and the national planning of optimizing the agricultural structure and promoting green economic development in western China, as well as the demand for high-quality tea to be produced in the western mountainous regions to avoid hot temperature damage on the tea quality.
- A conceptual framework is built in this paper to enrich the understanding of the comprehensive interactions among the three systems of tea, climate, and economy. It is clearly demonstrated that the adjustment of the tea system is to optimize the utilization of altered climatic resources due to warming, and to avoid the damage from enhanced climatic hazards, and finally meet Chinese demand on high-quality livelihood with the economic development.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Agricultural Meteorological Elements | Suitable Growth Conditions | Survivable Conditions | Harmful Conditions |
---|---|---|---|
The annual average temperature/°C | 15~25 | 13~15 or 25~35 | <13 or >35 |
≥10 °C Active accumulated temperature | ≥5000 | 3000~5000 | <3000 |
Average annual extreme minimum temperature | ≥−8 | −10~−8 | <−10 |
Annual precipitation/mm | ≥1500 | 1000–1500 | <1000 |
Monthly precipitation in tea growth period/mm | ≥100 | 50~100 | <50 |
Relative humidity/% | ≥78 | 60~78 | <60 |
Percentage of sunshine/% | <45 | 45~60 | >60 |
Year | Spatial Position of Tea Production | Distance (km) | |
---|---|---|---|
East Longitude | North Latitude | ||
1987 | 113°17′03.52″ | 28°24′06.00″ | - |
1988 | 113°21′52.62″ | 28°19′21.87″ | 12.51 |
1989 | 113°10′31.73″ | 28°15′07.38″ | 22.44 |
1990 | 113°10′02.36″ | 28°14′37.39″ | 1.30 |
1991 | 113°4′53.34″ | 28°13′38.82″ | 9.71 |
1992 | 113°4′43.85″ | 28°9′40.36″ | 7.37 |
1993 | 112°56′36.96″ | 28°8′01.25″ | 15.34 |
1994 | 112°39′42.56″ | 28°1′37.34″ | 33.48 |
1995 | 112°45′23.94″ | 27°56′27.06″ | 14.24 |
1996 | 112°44′38.83″ | 27°58′00.18″ | 3.19 |
1997 | 112°53′41.46″ | 27°58′03.27″ | 16.75 |
1998 | 112°53′00.53″ | 28°0′55.50″ | 5.46 |
1999 | 112°59′12.66″ | 28°3′44.52″ | 12.62 |
2000 | 112°52′00.42″ | 28°1′57.33″ | 13.75 |
2001 | 112°53′12.43″ | 28°2′18.89″ | 2.32 |
2002 | 113°1′43.64″ | 28°5′31.74″ | 16.87 |
2003 | 112°51′08.81″ | 28°8′19.83″ | 20.27 |
2004 | 112°40′17.37″ | 28°11′04.47″ | 20.74 |
2005 | 112°27′35.45″ | 28°9′28.57″ | 23.71 |
2006 | 112°14′01.82″ | 28°9′15.92″ | 25.12 |
2007 | 111°59′10.60″ | 28°8′30.38″ | 27.55 |
2008 | 112°1′41.99″ | 28°14′06.59″ | 11.38 |
2009 | 111°57′13.38″ | 28°15′41.89″ | 8.80 |
2010 | 111°39′23.72″ | 28°16′50.57″ | 33.09 |
2011 | 111°29′41.20″ | 28°14′29.78″ | 18.50 |
2012 | 111°18′27.81″ | 28°14′54.92″ | 20.80 |
2013 | 111°10′25.60″ | 28°12′28.34″ | 15.56 |
2014 | 111°3′11.62″ | 28°12′53.44″ | 13.42 |
2015 | 111°0′07.99″ | 28°11′04.27″ | 6.59 |
2016 | 110°47′03.52″ | 28°12′54.10″ | 24.45 |
2017 | 110°43′01.70″ | 28°10′23.05″ | 8.80 |
Year | Spatial Position of Tea Production | Distance (km) | |
---|---|---|---|
East Longitude | North Latitude | ||
1987 | 113°17′03.52″ | 28°24′06.00″ | - |
1988 | 113°21′52.62″ | 28°19′21.87″ | 12.51 |
1989 | 113°10′31.73″ | 28°15′07.38″ | 22.44 |
1990 | 113°10′02.36″ | 28°14′37.39″ | 1.30 |
1991 | 113°4′53.34″ | 28°13′38.82″ | 9.71 |
1992 | 113°4′43.85″ | 28°9′40.36″ | 7.37 |
1993 | 112°56′36.96″ | 28°8′01.25″ | 15.34 |
1994 | 112°39′42.56″ | 28°1′37.34″ | 33.48 |
1995 | 112°45′23.94″ | 27°56′27.06″ | 14.24 |
1996 | 112°44′38.83″ | 27°58′00.18″ | 3.19 |
1997 | 112°53′41.46″ | 27°58′03.27″ | 16.75 |
1998 | 112°53′00.53″ | 28°0′55.50″ | 5.46 |
1999 | 112°59′12.66″ | 28°3′44.52″ | 12.62 |
2000 | 112°52′00.42″ | 28°1′57.33″ | 13.75 |
2001 | 112°53′12.43″ | 28°2′18.89″ | 2.32 |
2002 | 113°1′43.64″ | 28°5′31.74″ | 16.87 |
2003 | 112°51′08.81″ | 28°8′19.83″ | 20.27 |
2004 | 112°40′17.37″ | 28°11′04.47″ | 20.74 |
2005 | 112°27′35.45″ | 28°9′28.57″ | 23.71 |
2006 | 112°14′01.82″ | 28°9′15.92″ | 25.12 |
2007 | 111°59′10.60″ | 28°8′30.38″ | 27.55 |
2008 | 112°1′41.99″ | 28°14′06.59″ | 11.38 |
2009 | 111°57′13.38″ | 28°15′41.89″ | 8.80 |
2010 | 111°39′23.72″ | 28°16′50.57″ | 33.09 |
2011 | 111°29′41.20″ | 28°14′29.78″ | 18.50 |
2012 | 111°18′27.81″ | 28°14′54.92″ | 20.80 |
2013 | 111°10′25.60″ | 28°12′28.34″ | 15.56 |
2014 | 111°3′11.62″ | 28°12′53.44″ | 13.42 |
2015 | 111°0′07.99″ | 28°11′04.27″ | 6.59 |
2016 | 110°47′03.52″ | 28°12′54.10″ | 24.45 |
2017 | 110°43′01.70″ | 28°10′23.05″ | 8.80 |
References
- Chang, K. World Tea Production and Trade Current and Future Development; FAO: Rome, Italy, 2015; Available online: http://www.fao.org/3/i4480e/i4480e.pdf (accessed on 12 October 2019).
- Zhang, C.; Zhang, D.; Li, X.; Xiao, R. Techniques of tea counter-season production in the tea production areas of Jiangnan. Nonwood For. Res. 2006, 24, 55–58. (In Chinese) [Google Scholar] [CrossRef]
- CMA. Blue Book on Climate Change in China; Science Press: Beijing, China, 2018. [Google Scholar]
- Elbehri, A.; Azapagic, A.; Cheserek, B.; Raes, D.; Kiprono, P.; Ambasa, C. Kenya’s Tea Sector under Climate Change: An Impact Assessment and Formulation of a Climate Smart Strategy; FAO: Rome, Italy, 2015; Available online: https://www.fao.org/3/a-i4824e.pdf (accessed on 12 October 2019).
- FAO. Report of the Working Group on Climate Change of the FAO Intergovernmental Group on Tea; FAO: Rome, Italy, 2016. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Boehm, R.; Cash, S.; Anderson, B.; Ahmed, S.; Griffin, T.; Robbat, A.; Stepp, J.; Han, W.; Hazel, M.; Orians, C. Association between Empirically Estimated Monsoon Dynamics and Other Weather Factors and Historical Tea Yields in China: Results from a Yield Response Model. Climate 2016, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability; Cambridge University Press: Cambridge, UK, 2022; Available online: http://www.ipcc.ch/report/ar6/wg2/ (accessed on 9 August 2022).
- Ministry of Science and Technology. The Third National Report on Climate Change; Science Press: Beijing, China, 2015. [Google Scholar]
- Tian, Y.; Liang, Y.; Wei, J.; Zhou, G. Effect of disastrous climate on Tea trees. Guizhou Agric. Sci. 2003, 31, 20–23. (In Chinese) [Google Scholar] [CrossRef]
- Ahmed, S.; Griffin, T.; Cash, S.B.; Han, W.Y.; Xue, D. Global climate change, ecological stress, and tea production. In Stress Physiology of Tea in the Face of Climate Change; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, J.; Liu, J. Countermeasures for drought disaster in tea garden of Guiyang. Tillage Cultiv. 2014, 65–67. (In Chinese) [Google Scholar] [CrossRef]
- Lou, W.; Xiao, Q.; Sun, K.; Deng, S.; Yang, M. Heat stress risk regionalization of tea plant in Zhejiang province. J. Tea Sci. 2018, 38, 480–486. (In Chinese) [Google Scholar] [CrossRef]
- Qiang, Y.; Zhi, X.; Jiang, Y. Climatic change characteristic of low temperature and frost and its impact on first plucking date of spring tea in Lishui. J. Henan Agric. Sci. 2017, 46, 33–37. (In Chinese) [Google Scholar] [CrossRef]
- Li, B.; Xie, J.; Kong, P.; Yin, J. Comprehensive risk division of agro-meteorological disaster for tea in Southern Yangtze River. J. Arid Meteorol. 2015, 33, 1017–1023. (In Chinese) [Google Scholar] [CrossRef]
- Zhu, X.; Honggang, Y.; Zheng, H. Analysis of climatic causes of tea freezing injury in Shandong in recent 45 years. China Tea 2012, 11–13. (In Chinese) [Google Scholar] [CrossRef]
- Ahmed, S.; Stepp, J.R.; Orians, C.; Griffin, T.; Matyas, C.; Robbat, A.; Cash, S.; Xue, D.; Long, C.; Unachukwu, U.; et al. Effects of extreme climate events on tea (Camellia sinensis) functional quality validate indigenous farmer knowledge and sensory preferences in tropical China. PLoS ONE 2014, 9, e109126. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Stepp, J.R.; Toleno, R.A.J.; Peters, C.M. Increased Market Integration, Value, and Ecological Knowledge of Tea Agroforests in the Akha Highlands of Southwest China. Ecol. Soc. 2010, 15, 27. [Google Scholar] [CrossRef]
- Xu, H.; Liu, J. Implications of “Two Mountains” Theory on China’s Green Development. Chin. J. Urban Environ. Stud. 2019, 7, 1975008. [Google Scholar] [CrossRef]
- Yu, H.; Ruan, H.; Lin, Z. Response of processing suitability of spring tea to climate change in Eastern Fujian Province. Subtrop. Agric. Res. Res. 2018, 14, 203–208. (In Chinese) [Google Scholar] [CrossRef]
- Jin, Z.; Ye, J.; Yang, Z.; Sun, R.; Hu, B.; Li, R. Climate suitability for tea growing in Zhejiang Province. Chin. J. Appl. Ecol. 2014, 25, 967–973. (In Chinese) [Google Scholar] [CrossRef]
- Li, X.; Min, Q.; Yu, W. Study on climatic adaptability of tea plants in Nanjing area. J. Nanjing Inst. Meteorol. 1995, 18, 572–577. (In Chinese) [Google Scholar]
- Dutta, R. Climate change and its impact on tea in Northeast India. J. Water Clim. Change 2014, 5, 625–632. [Google Scholar] [CrossRef]
- Costa, W.A.J.M.D.; Mohotti, A.J.; Wijeratne, M.A. Ecophysiology of tea. Braz. J. Plant Physiol. 2007, 19, 299–332. [Google Scholar] [CrossRef]
- Yu, H. Variation characteristics of climate suitability of tea in eastern Fujian. Mt. Res. 2016, 34, 424–425. (In Chinese) [Google Scholar] [CrossRef]
- He, Y.; Chen, Y.; Tang, H.; Yao, Y.; Yang, P.; Chen, Z. Exploring spatial change and gravity center movement for ecosystem services value using a spatially explicit ecosystem services value index and gravity model. Environ. Monit. Assess. 2011, 175, 563–571. [Google Scholar] [CrossRef]
- Fu, C.; Zhu, Q.; Yang, G.; Xiao, Q.; Wei, Z.; Xiao, W. Influences of extreme weather conditions on the carbon cycles of Bamboo and Tea ecosystems. Forests 2018, 9, 629. [Google Scholar] [CrossRef] [Green Version]
- Weng, W. An Overview of China’s Tea Market in 2020 and First Half of 2021. China Tea 2021, 43, 74–76. [Google Scholar]
- Owuor, P.O.; Wachira, F.N.; Ng’etich, W.K. Influence of region of production on relative clonal plain tea quality parameters in Kenya. Food Chem. 2010, 119, 1168–1174. [Google Scholar] [CrossRef]
- Jayasinghe, S.L.; Kumar, L.; Hasan, M.K. Relationship between Environmental Covariates and Ceylon Tea Cultivation in Sri Lanka. Agronomy 2020, 10, 476. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Lin, E.; Ma, S.; Ju, H.; Guo, L.; Xiong, W.; Li, Y.; Xu, Y. Adaptation of agriculture to warming in Northeast China. Clim. Change 2007, 84, 45–58. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Guo, J.Q.; Zhang, C.J.; Sun, L.D.; Zhang, X.D.; Lin, J.J.; Wang, Y.H.; Fang, F.; Ma, P.L.; Liu, C.H.; et al. Climate change impacts and adaptation strategies in Northwest China. Adv. Clim. Change Res. 2014, 5, 7–16. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, P.; Tang, H.; Wu, W.; Zhang, L.; Yu, Q.; Li, Z. Shifts in the extent and location of rice cropping areas match the climate change pattern in China during 1980–2010. Reg. Environ. Change 2015, 15, 919–929. [Google Scholar] [CrossRef]
- Li, Z.; Tan, J.; Tang, P.; Chen, H.; Zhang, G.; Liu, H.; Wu, W.; Tang, H.; Yang, P.; Liu, Z. Spatial distribution of maize in response to climate change in northeast China during 1980–2010. J. Geogr. Sci. 2016, 26, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Huang, S. Meteorology of the tea plant in China: A review. Agric. For. Meteorol. 1989, 47, 19–30. [Google Scholar] [CrossRef]
- Han, W.; Li, X.; Yan, P.; Zhang, L.; Zhang, L. Effect of climate change on tea production and its adaptation technology prospect. China Tea 2020, 42, 19–23. (In Chinese) [Google Scholar]
- Zhao, H.; Zhang, Y.; Jia, S.; Chen, B.; Yao, C. The variation trend of tea temperature suitability—Case study of Tai’an. J. Guizhou Meteorol. 2017, 41, 57–62. (In Chinese) [Google Scholar] [CrossRef]
- Han, W.; Li, X. Comprehensive control technology of late frost damage of tea trees. China Tea 2015, 37, 16–17. [Google Scholar] [CrossRef]
- Zhao, Y.C.; Zhao, M.Y.; Zhang, L.; Wang, C.Y.; Xu, Y.L. Predicting Possible Distribution of Tea (Camellia sinensis L.) under Climate Change Scenarios Using MaxEnt Model in China. Agriculture 2021, 11, 1122. [Google Scholar] [CrossRef]
- Lowe, C.B.; Kellis, M.; Siepel, A.; Raney, B.J.; Clamp, M.; Salama, S.R.; Kingsley, D.M.; Lindblad-Toh, K.; Haussler, D. Three Periods of Regulatory Innovation During Vertebrate Evolution. Science 2011, 333, 1019–1024. [Google Scholar] [CrossRef] [Green Version]
- Lenoir, J.; Svenning, J.C. Climate-related range shifts—A global multidimensional synthesis and new research directions. Ecography 2015, 38, 15–28. [Google Scholar] [CrossRef]
- Yang, X.; Chen, F.; Lin, X.; Liu, Z.; Zhang, H.; Zhao, J.; Li, K.; Ye, Q.; Li, Y.; Lv, S.; et al. Potential benefits of climate change for crop productivity in China. Agric. For. Meteorol. 2015, 208, 76–84. [Google Scholar] [CrossRef]
- Wang, H.; Hijmans, R.J. Climate change and geographic shifts in rice production in China. Environ. Res. Commun. 2019, 1, 11008. [Google Scholar] [CrossRef]
- Mori, A.S.; Dee, L.E.; Gonzalez, A.; Ohashi, H.; Cowles, J.; Wright, A.J.; Loreau, M.; Hautier, Y.; Newbold, T.; Reich, P.B.; et al. Biodiversity–productivity relationships are key to nature-based climate solutions. Nat. Clim. Change 2021, 11, 543–550. [Google Scholar] [CrossRef]
- Fadrique, B.; Báez, S.; Duque, Á.; Malizia, A.; Blundo, C.; Carilla, J.; Osinaga-Acosta, O.; Malizia, L.; Silman, M.; Farfán-Ríos, W.; et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature 2018, 564, 207–212. [Google Scholar] [CrossRef]
- Barnes, M.L.; Wang, P.; Cinner, J.E.; Graham, N.A.J.; Guerrero, A.M.; Jasny, L.; Lau, J.; Sutcliffe, S.R.; Zamborain-Mason, J. Social determinants of adaptive and transformative responses to climate change. Nat. Clim. Change 2020, 10, 823–828. [Google Scholar] [CrossRef]
- Xiao, Z.; Huang, X.; Meng, H.; Zhao, Y. Spatial structure and evolution of tea production in China from 2009 to 2014. Geogr. Res. 2017, 36, 109–120. [Google Scholar] [CrossRef]
- Lin, Z.; He, P.; Li, X.; Chen, C. Spatial structure evolution of tea production in Sichuan province, 1990 to 2015. Chin. Agric. Sci. Bull. 2018, 34, 76–84. (In Chinese) [Google Scholar]
- Xiao, Z.; Huang, X.; Zang, Z.; Yang, H. Spatio-temporal variation and the driving forces of tea production in China over the last 30 years. J. Geogr. Sci. 2018, 28, 275–290. [Google Scholar] [CrossRef]
- Sano, S.; Takemoto, T.; Ogihara, A.; Suzuki, K.; Masumura, T.; Satoh, S.; Takano, K.; Mimura, Y.; Morita, S. Stress Responses of Shade-Treated Tea Leaves to High Light Exposure after Removal of Shading. Plants 2020, 9, 302. [Google Scholar] [CrossRef] [Green Version]
- Rigden, A.J.; Ongoma, V.; Huybers, P. Kenyan tea is made with heat and water: How will climate change influence its yield? Environ. Res. Lett. 2020, 15, 44003. [Google Scholar] [CrossRef]
- Jayasinghe, S.L.; Kumar, L. Potential Impact of the Current and Future Climate on the Yield, Quality, and Climate Suitability for Tea [Camellia sinensis (L.) O. Kuntze]: A Systematic Review. Agronomy 2021, 11, 619. [Google Scholar] [CrossRef]
- Spies, T.A.; Giesen, T.W.; Swanson, F.J.; Franklin, J.F.; Lach, D.; Johnson, K.N. Climate change adaptation strategies for federal forests of the Pacific Northwest, USA: Ecological, policy, and socio-economic perspectives. Landsc. Ecol. 2010, 25, 1185–1199. [Google Scholar] [CrossRef]
- Kotikot, S.M.; Flores, A.; Griffin, R.E.; Nyaga, J.; Case, J.L.; Mugo, R.; Sedah, A.; Adams, E.; Limaye, A.; Irwin, D.E. Statistical characterization of frost zones: Case of tea freeze damage in the Kenyan highlands. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101971. [Google Scholar] [CrossRef]
- Wang, P.; Tang, J.; Ma, Y.; Wu, D.; Yang, J.; Jin, Z.; Huo, Z. Mapping Threats of Spring Frost Damage to Tea Plants Using Satellite-Based Minimum Temperature Estimation in China. Remote Sens. 2021, 13, 2713. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Xu, Y.; Zhang, L.; Zhao, M.; Wang, C. Adapting Tea Production to Climate Change under Rapid Economic Development in China from 1987 to 2017. Agronomy 2022, 12, 3192. https://doi.org/10.3390/agronomy12123192
Zhao Y, Xu Y, Zhang L, Zhao M, Wang C. Adapting Tea Production to Climate Change under Rapid Economic Development in China from 1987 to 2017. Agronomy. 2022; 12(12):3192. https://doi.org/10.3390/agronomy12123192
Chicago/Turabian StyleZhao, Yuncheng, Yinlong Xu, Lei Zhang, Mingyue Zhao, and Chunyi Wang. 2022. "Adapting Tea Production to Climate Change under Rapid Economic Development in China from 1987 to 2017" Agronomy 12, no. 12: 3192. https://doi.org/10.3390/agronomy12123192
APA StyleZhao, Y., Xu, Y., Zhang, L., Zhao, M., & Wang, C. (2022). Adapting Tea Production to Climate Change under Rapid Economic Development in China from 1987 to 2017. Agronomy, 12(12), 3192. https://doi.org/10.3390/agronomy12123192