Ladybird-Mediated Indirect Interactions between Two Aphid Species When Using a Banker Plant System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tested Insects
- (1)
- The initial C. septempunctata population was obtained from the laboratory of the Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences. Fifty male and 50 female adult lady bugs were reared, one per mesh cage (100 cages). There was an expanded female ladybird population for all cage trials. Broad bean seedlings infested with many Me. japonica were continuously provided as a food source and as oviposition sites for the ladybirds.
- (2)
- The My. persicae population originated from peppers in the greenhouse of Beijing Noah Agricultural Development Co., Ltd. (Beijing, China). Rearing was conducted using pepper seedlings as host plants.
- (3)
- Me. japonica was obtained from a long-term breeding population of the Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences. Inoculation was carried out on 1-year-old broad bean seedlings for population propagation in 100 mesh insect cages. Synonymy of Megoura crassicauda Mordvilko, 1919 with Megoura japonica (Matsumura,1918) [32].
2.2. Tested Plants
2.3. Experimental Methods
2.3.1. Effects of Different Release Times of C. septempunctata on the Population Dynamics of My. persicae and Me. japonica
2.3.2. Temporal Dynamic Effects of C. septempunctata on My. persicae and Me. japonica in Banker Plant Systems with Different Initial Ratios
2.3.3. The Effect of C. septempunctata on the Population of My. persicae in Alternative-Prey Banker Plant Systems with Different Initial Numbers
2.4. Statistical Analyses
3. Results
3.1. Effects of Different Release Times of C. septempunctata on My. persicae and Me. japonica Populations in the Banker Plant System
3.2. Effects of Different Initial Prey Ratios on the Temporal Dynamics of My. persicae and Me. japonica in a Banker Plant System with C. septempunctata
3.3. Temporal Dynamic Effects of C. septempunctata on My. persicae in the Banker Plant System with Different Initial Numbers of the Alternative Prey
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mkenda, P.A.; Ndakidemi, P.A.; Stevenson, P.C.; Arnold, S.E.J.; Belmain, S.R.; Chidege, M.; Gurr, G.M. Field margin vegetation in tropical African bean systems harbours diverse natural enemies for biological pest control in adjacent crops. Sustainability 2019, 11, 6399. [Google Scholar] [CrossRef] [Green Version]
- Desneux, N.; Han, P.; Mansour, R.; Arnó, J.; Brévault, T.; Campos, M.R.; Chailleux, A.; Guedes, R.N.C.; Karimi, J.; Konan, K.A.J.; et al. Integrated Pest Management of Tuta absoluta: Practical Implementations across Different World Regions. J. Pest Sci. 2022, 95, 17–39. [Google Scholar] [CrossRef]
- Santoiemma, G.; Tonina, L.; Marini, L.; Duso, C.; Mori, N. Integrated management of Drosophila suzukii in sweet cherry orchards. Entomol. Gen. 2020, 40, 297–305. [Google Scholar] [CrossRef]
- Han, P.; Lavoir, A.V.; Rodriquez-Saona, C.; Desneux, N. Bottom-up forces in agroecosystems and their potential impact on arthropod pest management. Annu. Rev. Entomol. 2022, 67, 239–259. [Google Scholar] [CrossRef] [PubMed]
- Gurr, G.M.; Wratten, S.D.; Landis, D.A.; You, M.S. Habitat management to suppress pest populations: Progress and prospects. Annu. Rev. Entomol. 2017, 62, 91–109. [Google Scholar] [CrossRef]
- Thomine, E.; Rusch, A.; Supplisson, C.; Monticelli, L.S.; Amiens-Desneux, E.; Lavoir, A.V.; Desneux, N. Highly diversified crop systems can promote the dispersal and foraging activity of the generalist predator Harmonia axyridis. Entomol. Gen. 2020, 40, 133–145. [Google Scholar] [CrossRef] [Green Version]
- Zang, L.S.; Wang, S.; Zhang, F.; Desneux, N. Biological control with Trichogramma in China: History, present status, and perspectives. Annu. Rev. Entomol. 2021, 66, 463–484. [Google Scholar] [CrossRef]
- Huang, N.X.; Jaworski, C.C.; Desneux, N.; Zhang, F.; Yang, P.Y.; Wang, S. Long-term and large-scale releases of Trichogramma promote pesticide decrease in maize in northeastern China. Entomol. Gen. 2020, 40, 331–335. [Google Scholar] [CrossRef]
- Pijnakker, J.; Vangansbeke, D.; Duarte, M.; Moerkenset, R.; Wäckers, F.L. Predators and parasitoids-in-first: From inundative releases to preventative biological control in greenhouse crops. Front. Sustain. Food Syst. 2020, 4, 595630. [Google Scholar] [CrossRef]
- Sanchez, J.A.; López-Gallego, E.; Pérez-Marcos, M.; Perera−Fernández, L. The effect of banker plants and pre-plant release on the e ablishment and pest control of Macrolophus pygmaeus in tomato greenhouses. J. Pest Sci. 2021, 94, 297–307. [Google Scholar] [CrossRef]
- Ardanuy, A.; Figueras, M.; Matas, M.; Arnóet, J.; Agustí, N.; Alomar, Ò.; Albajes, R.; Gabarra, R. Banker plants and landscape composition influence colonisation precocity of tomato greenhouses by mirid predators. J. Pest Sci. 2022, 95, 447–459. [Google Scholar] [CrossRef]
- Xiao, Y.F.; Avery, P.; Chen, J.J.; McKenzie, C.; Osborne, L.S. Ornamental pepper as banker plants for establishment of Amblyseius swirskii (Acari: Phytoseiidae) for biological control of multiple pests in greenhouse vegetable production. Biol. Control 2012, 63, 279–286. [Google Scholar] [CrossRef]
- Jaworski, C.C.; Xiao, D.; Xu, Q.; Ramirez-Romero, G.; Guo, X.J.; Wang, S.; Desneux, N. Varying the spatial arrangement of synthetic herbivore-induced plant volatiles and companion plants to improve conservation biological control. J. Appl. Ecol. 2019, 56, 1176–1188. [Google Scholar] [CrossRef]
- Huang, N.X.; Enkegaard, A.; Osborne, L.S.; Ramakers, P.M.J.; Messelink, G.J.; Pijnakker, J.; Murphy, G. The banker plant method in biological control. Crit. Rev. Plant Sci. 2011, 30, 259–278. [Google Scholar] [CrossRef]
- Frank, S.D. Biological control of arthropod pests using banker plant systems: Past progress and future directions. Biol. Control 2010, 52, 8–16. [Google Scholar] [CrossRef]
- Parolin, P.; Bresch, C.; Desneux, N.; Brun, R.; Bout, A.; Boll, R.; Poncet, C. Secondary plants used in biological control: A review. Int. J. Pest Manag. 2012, 58, 91–100. [Google Scholar] [CrossRef]
- Chen, X.; Jaworski, C.C.; Dai, H.; Liang, Y.; Guo, X.; Wang, S.; Zang, L.S.; Desneux, N. Combining banker plants to achieve long-term pest control in multi-pest and multi-natural enemy cropping systems. J. Pest Sci. 2022, 95, 685–697. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Yang, J.; Guo, M.; Dai, H.; Ramirez-Romero, R.; Jin, Z.; Wang, S. The fitness of mass rearing food on the establishment of Chrysopa pallens in a banker plant system under fluctuating temperature conditions. Insects 2021, 12, 1014. [Google Scholar] [CrossRef]
- Zhang, R.F.; Ji, D.Z.; Zhang, Q.Q.; Jin, L.H. Evaluation of eleven plant species as potential banker plants to support predatory Orius sauteri in tea plant systems. Insects 2021, 12, 162. [Google Scholar] [CrossRef]
- Parolin, P.; Bresch, C.; Poncet, C.; Desneux, N. Functional characteristics of secondary plants for increased pest management. Int. J. Pest Manag. 2012, 58, 369–377. [Google Scholar] [CrossRef]
- Wang, Y.S.; Yao, F.L.; Soares, M.A.; Basiri, S.E.; Amiens-Desneux, E.; Campos, M.R.; Lavoir, A.V.; Desneux, N. Effects of four non-crop plants on life history traits of the lady beetle Harmonia axyridis. Entomol. Gen. 2020, 40, 243–252. [Google Scholar] [CrossRef]
- Avery, P.B.; Kumar, V.; Xiao, Y.F.; Powell, C.A.; McKenzie, C.L.; Osborne, L.S. Selecting an ornamental pepper banker plant for Amblyseius swirskii in floriculture crops. Arthropod-Plant Interact. 2014, 8, 49–56. [Google Scholar] [CrossRef]
- Desneux, N.; O’neil, R.J. Potential of an alternative prey to disrupt predation of the generalist predator, Orius insidiosus, on the pest aphid, Aphis glycines, via short-term indirect interactions. Bull. Entomol. Res. 2008, 98, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Bonsall, M.B.; Hassell, M.P. Apparent competition structures ecological assemblages. Nature 1997, 388, 371–373. [Google Scholar] [CrossRef]
- Srinivasu, P.D.N.; Vamsi, D.K.K.; Ananth, V.S. Additional food supplements as a tool for biological conservation of predator-prey systems involving type III functional response: A qualitative and quantitative investigation. J. Theor. Biol. 2018, 455, 303–318. [Google Scholar] [CrossRef]
- Desneux, N.; Kaplan, I.; Yoo, H.J.S.; Wang, S.; O’Neil, R.J. Temporal synchrony mediates the outcome of indirect effects between prey via a shared predator. Entomol. Gen. 2019, 39, 127–136. [Google Scholar] [CrossRef]
- Abrams, P.A.; Matsuda, H. Positive indirect effects between prey species that share predators. Ecology 1996, 77, 610–616. [Google Scholar] [CrossRef]
- Monticelli, L.S.; Desneux, N.; Heimpel, G.E. Parasitoid-mediated indirect interactions between unsuitable and suitable hosts generate apparent predation in microcosm and modeling studies. Ecol. Evol. 2021, 11, 2449–2460. [Google Scholar] [CrossRef]
- Brassil, C.E.; Abrams, P.A. The prevalence of asymmetrical indirect effects in two-host–one-parasitoid systems. Theor. Popul. Biol. 2004, 66, 71–82. [Google Scholar] [CrossRef]
- Gibson, L. The role of lethal control in managing the effects of apparent competition on endangered prey species. Wildlife Soc. B 2006, 34, 1220–1224. [Google Scholar] [CrossRef]
- Jaworski, C.C.; Chailleux, A.; Bearez, P.; Desneux, N. Apparent competition between major pests reduces pest population densities on tomato crop, but not yield loss. J. Pest Sci. 2015, 88, 793–803. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Holman, J.; Havelka, J. Taxonomic revision of the genus Megoura Buckton (Hemiptera: Aphididae) from the Korean Peninsula with the description of a new species and a key to the world species. Proc. Entomol. Soc. Wash. 2002, 104, 447–457. [Google Scholar]
- Kaplan, I.; Denno, R.F. Interspecific interactions in phytophagous insects revisited: A quantitative assessment of competition theory. Ecol. Lett. 2007, 10, 977–994. [Google Scholar] [CrossRef]
- Blitzer, E.J.; Welter, S.C. Emergence asynchrony between herbivores leads to apparent competition in the field. Ecology 2011, 92, 2020–2026. [Google Scholar] [CrossRef] [Green Version]
- Stige, L.C.; Chan, K.S.; Zhang, Z.; Frank, D.; Stenseth, N.C. Thousand-year-long Chinese time series reveals climatic forcing of decadal locust dynamics. Proc. Natl. Acad. Sci. USA 2007, 104, 16188–16193. [Google Scholar] [CrossRef] [Green Version]
- Van Maanen, R.; Messelink, G.J.; Van Holstein-Saj, R.; Sabelis, M.W.; Janssen, A. Prey temporarily escape from predation in the presence of a second prey species. Ecol. Entomol. 2012, 37, 529–535. [Google Scholar] [CrossRef]
- Frost, C.M.; Peralta, G.; Rand, T.A.; Didham, R.K.; Varsani, A.; Tylianakis, J.M. Apparent competition drives community-wide parasitism rates and changes in host abundance across ecosystem boundaries. Nat. Commun. 2016, 7, 12644. [Google Scholar] [CrossRef] [Green Version]
- Karimzadeh, R.; Sciarretta, A. Spatial patchiness and association of pests and natural enemies in agro-ecosystems and their application in precision pest management: A review. Precis. Agric. 2022, 23, 1836–1855. [Google Scholar] [CrossRef]
- Park, T. Experimental studies of interspecies competition II. Temperature, humidity, and competition in two species of Tribolium. Physiol. Zool. 1954, 27, 177–238. [Google Scholar] [CrossRef] [Green Version]
- Van Veen, F.J.F.; Morris, R.J.; Godfray, H.C.J. Apparent competition, quantitative food webs, and the structure of phytophagous insect communities. Annu. Rev. Entomol. 2006, 51, 187–208. [Google Scholar] [CrossRef]
- Leman, A.; Messelink, G.J. Supplemental food that supports both predator and pest: A risk for biological control? Exp. Appl. Acarol. 2015, 65, 511–524. [Google Scholar] [CrossRef]
- Holt, R.D.; Lawton, J.H. The ecological consequences of shared natural enemies. Annu. Rev. Ecol. Syst. 1994, 48, 495–520. [Google Scholar] [CrossRef]
- Holt, R.D.; Hochberg, M.E. When is biological control evolutionarily stable (or is it)? Ecology 1997, 78, 1673–1683. [Google Scholar] [CrossRef]
- Emery, S.E.; Mills, N.J. Effects of predation pressure and prey density on short−term indirect interactions between two prey species that share a common predator. Ecol. Entomol. 2020, 45, 821–830. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Zhong, S.; Agarwal, R.P. Mathematics and dynamic analysis of an apparent competition community model with impulsive effect. Math. Comput. Model. 2010, 52, 25–36. [Google Scholar] [CrossRef]
- Kaser, J.M.; Ode, P.J. Hidden risks and benefits of natural enemy-mediated indirect effects. Curr. Opin. Insect Sci. 2016, 14, 105–111. [Google Scholar] [CrossRef]
- Liu, C.Z.; Yan, L.; Li, H.R.; Wang, G. Effects of predator-mediated apparent competition on the population dynamics of Tetranychus urticae on apples. BioControl 2006, 51, 453–463. [Google Scholar] [CrossRef]
- Yang., F.; Wang, Q.; Wang, D.; Xu, B.; Xu, J.; Lu, Y.H.; Harwood, J.D. Intraguild predation among three common coccinellids (Coleoptera: Coccinellidae) in China: Detection using DNA-based gut-content analysis. Environ. Entomol. 2017, 46, 1–10. [Google Scholar] [CrossRef]
- Ovchinnikov, A.N.; Belyakova, N.A.; Ovchinnikova, A.A.; Reznik, S.Y. Factors determining larval cannibalistic behavior in invasive and native populations of the multicolored Asian ladybird, Harmonia axyridis. Entomol. Gen. 2019, 38, 243–254. [Google Scholar] [CrossRef]
- Liang, Y.Y.; Chen, X.; Dai, H.J.; Wang, J.; Guo, X.J.; Wang, S.; Jaworski, C.C. Flower provision reduces intraguild predation between predators and increases aphid biocontrol in tomato. J. Pest Sci. 2022, 95, 461–472. [Google Scholar] [CrossRef]
- Chailleux, A.; Mohl, E.K.; Teixeira Alves, M.; Messelink, G.J.; Desneux, N. Natural enemy-mediated indirect interactions among prey species: Potential for enhancing biocontrol services in agroecosystems. Pest Manag. Sci. 2014, 70, 1769–1779. [Google Scholar] [CrossRef]
- Lorusso, N.S.; Faillace, C.A. Indirect facilitation between prey promotes asymmetric apparent competition. J. Anim. Ecol. 2022, 91, 1869–1879. [Google Scholar] [CrossRef]
- Wootton, J.T. The nature and consequences of indirect effects in ecological communities. Annu. Rev. Ecol. Syst. 1994, 25, 443–466. [Google Scholar] [CrossRef]
- Werner, E.E.; Peacor, S.D. A review of trait−mediated indirect interactions in ecological communities. Ecology 2003, 84, 1083–1100. [Google Scholar] [CrossRef] [Green Version]
- Han, P.; Becker, C.; Le Bot, J.; Larbat, R.; Lavoir, A.V.; Desneux, N. Plant nutrient supply alters the magnitude of indirect interactions between insect herbivores: From foliar chemistry to community dynamics. J. Ecol. 2020, 108, 1497–1510. [Google Scholar] [CrossRef]
- Yang, F.; Yao, Z.W.; Zhu, Y.L.; Wu, Y.K.; Liu, L.T.; Liu, B.; Desneux, N.; Lu, Y.H. A molecular detection approach for assessing wheat aphid-parasitoid food webs in northern China. Entomol. Gen. 2020, 40, 273–284. [Google Scholar] [CrossRef]
- Xiao, D.; Xu, Q.X.; Chen, X.; Du, X.Y.; Desneux, N.; Thomine, E.; Dai, H.J.; Harwood, J.D.; Wang, S. Development of a molecular gut-content identification system to identify aphids preyed upon by the natural enemy Coccinella septempunctata. Entomol. Gen. 2021, 4, 591–599. [Google Scholar] [CrossRef]
- Messelink, G.J.; van Maanen, R.; van Steenpaal, S.E.F.; Janssen, A. Biological control of thrips and whiteflies by a shared predator: Two pests are better than one. Biol. Control 2008, 44, 372–379. [Google Scholar] [CrossRef] [Green Version]
- Bompard, A.; Jaworski, C.C.; Bearez, P.; Desneux, N. Sharing a predator: Can an invasive alien pest affect the predation on a local pest? Popul. Ecol. 2013, 55, 433–440. [Google Scholar] [CrossRef]
- Jaworski, C.C.; Bompard, A.; Genies, L.; Amiens-Desneux, E.; Desneux, N. Preference and prey switching in a generalist predator attacking local and invasive alien pests. PLoS ONE 2013, 8, e82231. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Fang, Y.; Zhang, F.; Jin, Z.Y.; Desneux, N.; Wang, S. Enhanced and sustainable control of Myzus persicae by repellent plants in organic pepper and eggplant greenhouses. Pest Manag. Sci. 2022, 78, 428–437. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Desneux, N.; Fan, Y.; Han, P.; Ali, A.; Song, D.; Gao, X. Impact of imidacloprid and natural enemies on cereal aphids: Integration or ecosystem service disruption? Entomol. Gen. 2018, 37, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Varikou, K.; Garantonakis, N.; Birouraki, A. Exposure of Bombus terrestris L. to three different active ingredients and two application methods for olive pest control. Entomol. Gen. 2019, 39, 53–60. [Google Scholar] [CrossRef]
- Xiao, D.; Zhao, J.; Guo, X.; Chen, H.; Qu, M.; Zhai, W.; Desneux, N.; Biondi, A.; Zhang, F.; Wang, S. Sublethal effects of imidacloprid on the predatory seven-spot ladybird beetle Coccinella septempunctata. Ecotoxicology 2016, 25, 1782–1793. [Google Scholar] [CrossRef] [PubMed]
- Taning, C.N.T.; Vanommeslaeghe, A.; Smagghe, G. With or without foraging for food, field-realistic concentrations of sulfoxaflor are equally toxic to bumblebees (Bombus terrestris). Entomol. Gen. 2019, 39, 151–155. [Google Scholar] [CrossRef]
- Desneux, N.; Decourtye, A.; Delpuech, J.M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Wang, J.; Mi, Y.; Gu, J.; Benelli, G.; Desneux, N.; Wang, S.; Li, S.; Yue, Y. Ladybird-Mediated Indirect Interactions between Two Aphid Species When Using a Banker Plant System. Agronomy 2022, 12, 3134. https://doi.org/10.3390/agronomy12123134
Yang Y, Wang J, Mi Y, Gu J, Benelli G, Desneux N, Wang S, Li S, Yue Y. Ladybird-Mediated Indirect Interactions between Two Aphid Species When Using a Banker Plant System. Agronomy. 2022; 12(12):3134. https://doi.org/10.3390/agronomy12123134
Chicago/Turabian StyleYang, Yajie, Jie Wang, Yingying Mi, Junjie Gu, Giovanni Benelli, Nicolas Desneux, Su Wang, Shu Li, and Yanli Yue. 2022. "Ladybird-Mediated Indirect Interactions between Two Aphid Species When Using a Banker Plant System" Agronomy 12, no. 12: 3134. https://doi.org/10.3390/agronomy12123134
APA StyleYang, Y., Wang, J., Mi, Y., Gu, J., Benelli, G., Desneux, N., Wang, S., Li, S., & Yue, Y. (2022). Ladybird-Mediated Indirect Interactions between Two Aphid Species When Using a Banker Plant System. Agronomy, 12(12), 3134. https://doi.org/10.3390/agronomy12123134