A Comparative Study on the Nutrients, Mineral Elements, and Antioxidant Compounds in Different Types of Cruciferous Vegetables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Field Management
2.2. Sample Preparation
2.3. Determination of Antioxidant Indices
2.3.1. Vitamin C
2.3.2. Polyphenol
2.3.3. Flavonoids
2.3.4. Glucosinolates
2.4. Determination of Quality Indices
2.4.1. Soluble Sugars
2.4.2. Soluble Proteins
2.4.3. Nitrates
2.5. Determination of Mineral Elements
2.6. Data Analysis
3. Results
3.1. Differences among Species for Leaf Ball and Curd Composition Profile
3.2. Correlation Analysis
3.3. PCA
3.4. Cluster Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Agaguenduez, D.; Sahin, T.O.; Yilmaz, B.; Ekenci, K.D.; Oezer, S.D.; Capasso, R. Cruciferous Vegetables and Their Bioactive Metabolites: From Prevention to Novel Therapies of Colorectal Cancer. Evid. Based Complement. Altern. Med. 2022, 2022, 1534083. [Google Scholar] [CrossRef]
- Mitra, S.; Emran, T.B.; Chandran, D.; Zidan, B.; Das, R.; Mamada, S.S.S.; Masyita, A.; Salampe, M.; Nainu, F.; Khandaker, M.U.; et al. Cruciferous vegetables as a treasure of functional foods bioactive compounds: Targeting p53 family in gastrointestinal tract and associated cancers. Front. Nutr. 2022, 9, 951935. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Becker, V.; Qiu, M.Q.; Tang, T.C.; Ampofo, E.; Menger, M.D.; Laschke, M.W. Brassinin Promotes the Degradation of Tie2 and FGFR1 in Endothelial Cells and Inhibits Triple-Negative Breast Cancer Angiogenesis. Cancers 2022, 14, 3540. [Google Scholar] [CrossRef] [PubMed]
- Kjeldsen, G. Cultivars of Chinese cabbage for storage. Grøn Viden Havebrug 1990. [Google Scholar]
- Rokayya, S.; Li, C.J.; Yan, Z.; Li, Y.; Sun, C.H. Cabbage (Brassica oleracea L. var. capitata) phytochemicals with antioxidant and anti-inflammatory potential. Asian Pac. J. Cancer Prev. 2013, 14, 6657–6662. [Google Scholar] [CrossRef] [Green Version]
- Suido, H.; Tanaka, T.; Tabei, T.; Takeuchi, A.; Okita, M.; Kishimoto, T.; Kasayama, S.; Higashino, K. A mixed green vegetable and fruit beverage decreased the serum level of low-density lipoprotein cholesterol in hypercholesterolemic patients. J. Agric. Food Chem. 2002, 50, 3346–3350. [Google Scholar] [CrossRef]
- Nilsson, J.; Olsson, K.; Engqvist, G.; Ekvall, J.; Nyman, M.; Akesson, B. Variation in the content of glucosinolates, hydroxycinnamic acids, carotenoids, total antioxidant capacity and low-molecular-weight carbohydrates in Brassica vegetables. J. Sci. Food Agric. 2006, 86, 528–538. [Google Scholar] [CrossRef]
- Kusznierewicz, B.; Bartoszek, A.; Wolska, L.; Drzewiecki, J.; Gorinstein, S.; Namieśnik, J. Partial characterization of white cabbages (Brassica oleracea var. capitata f. alba) from different regions by glucosinolates, bioactive compounds, total antioxidant activities and proteins. LWT Food Sci. Technol. 2008, 41, 1–9. [Google Scholar] [CrossRef]
- Zanfini, A.; Corbini, G.; La Rosa, C.; Dreassi, E. Antioxidant activity of tomato lipophilic extracts and interactions between carotenoids and a-tocopherol in synthetic mixtures. Food Sci. Technol. 2010, 43, 67–72. [Google Scholar] [CrossRef]
- Samec, D.; Piljac-Zagarac, J.; Bogovic, M.; Habjanic, K.; Gruz, J. Antioxidant potency of white (Brassica oleracea L. var. capitata) and Chinese (Brassica rapa L. var. pekinensis (Lour.) cabbage: The influence of development stage, cultivar choice and seed selection. Sci. Hortic. 2011, 128, 78–83. [Google Scholar] [CrossRef]
- Wennberg, M.; Ekvall, J.; Olsson, K.; Nyman, M. Changes in carbohydrate and glucosinolate composition in white cabbage (Brassica oleracea var. capitata) during blanching and treatment with acetic acid. Food Chem. 2006, 95, 226–236. [Google Scholar] [CrossRef]
- Wang, H.; Guo, X.; Hu, X.; Li, T.; Fu, X.; Liu, R. Comparison of phytochemical profiles, antioxidant and cellular antioxidant activities of different varieties of blueberry (Vaccinium spp.). Food Chem. 2017, 217, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Krisetherton, P.M. Bioactive components in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 2002, 113, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Jagdish, S.; Rai, M.; Upadhyay, A.K.; Bahadur, A.; Singh, K.P. Antioxidant phytochemicals in broccoli (Brassica oleracea L. var. italica Plenck) cultivars. J. Food Sci. Technol. Mysore 2006, 43, 391–393. [Google Scholar]
- Bongoni, R.; Verkerk, R.; Steenbekkers, B.; Dekker, M.; Stieger, M. Evaluation of different cooking conditions on broccoli (Brassica oleracea var. italica) to improve the nutritional value and consumer acceptance. Plant Foods Hum. Nutr. 2014, 69, 228–234. [Google Scholar] [CrossRef]
- Novotny, C.; Schulzova, V.; Krmela, A.; Hajslova, J.; Svobodova, K.; Koudela, M. Ascorbic acid and glucosinolate levels in new Czech cabbage cultivars: Effect of production system and fungal infection. Molecules 2018, 23, 1855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, L.G.; Meyer, K.A.; Balch, B.A.; Rossi, F.J.; Schultz, M.R.; Haas, G.W.J. Glucoraphanin and 4-hydroxyglucobrassicin contents in seeds of 59 cultivars of Broccoli, raab, kohlrabi, radish, cauliflower, brussels sprouts, kale, and cabbage. Agric. Food Chem. 2004, 52, 916–926. [Google Scholar] [CrossRef]
- Bennett, R.N.; Mellon, F.A.; Kroon, P.A. Screening crucifer seeds as sources of specific intact glucosinolates using ion-pair high-performance liquid chromatography negative ion electrospray mass spectrometry. J. Agric. Food Chem. 2004, 52, 428–438. [Google Scholar] [CrossRef]
- Charron, C.S.; Saxton, A.M.; Sams, C.E. Relationship of climate and genotype to seasonal variation in the glucosinolate–myrosinase system. II. Myrosinase activity in ten cultivars of Brassica oleracea grown in fall and spring seasons. J. Sci. Food Agric. 2010, 85, 671–681. [Google Scholar] [CrossRef]
- Hart, D.J.; Scott, K.J. Development and evaluation of an HPLC method for the analysis of carotenoids in foods, and the measurement of the carotenoid content of vegetables and fruits commonly consumed in the UK. Food Chem. 1995, 54, 101–111. [Google Scholar] [CrossRef]
- Ríos, P.; Obregón, S.; de Haro, A.; Fernández-Rebollo, P.; Serrano, M.S.; Sánchez, M.E. Effect of Brassica biofumigant amendments on different stages of the life cycle of phytophthora cinnamomi. J. Phytopathol. 2016, 164, 582–594. [Google Scholar] [CrossRef]
- Moreb, N.; Murphy, A.; Jaiswal, S.; Jaiswal, A.K. Cabbage-science direct. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Academic Press: Cambridge, MA, USA, 2020; pp. 33–54. [Google Scholar] [CrossRef]
- Xin, C.; Wang, W.; Song, S.; Tang, X.; Zheng, S.; Wei, L.; He, H. Effect of storage and boiling on glucosinolate content of Brassica vegetables. In Proceedings of the Vegetable Production, Quality & Process Standardization in Chain: A Worldwide Perspective, Beijing, China, 14 October 2008. [Google Scholar]
- Jin, N.; Jin, L.; Luo, S.L.; Tang, Z.Q.; Liu, Z.C.; Wei, S.H.; Liu, F.H.; Zhao, X.Q.; Yu, J.H.; Zhong, Y. Comprehensive Evaluation of Amino Acids and Polyphenols in 69 Varieties of Green Cabbage (Brassica oleracea L. var. capitata L.) Based on Multivariate Statistical Analysis. Molecules 2021, 26, 5355. [Google Scholar] [CrossRef]
- Wei, S.H.; Xiao, X.M.; Wei, L.J.; Li, L.S.; Li, G.C.; Liu, F.H.; Xie, J.M.; Yu, J.H.; Zhong, Y. Development and comprehensive HS-SPME/GC-MS analysis optimization, comparison, and evaluation of different cabbage cultivars (Brassica oleracea L. var. capitata L.) volatile components. Food Chem. 2021, 340, 128166. [Google Scholar] [CrossRef] [PubMed]
- Arya, S.P.; Mahajan, M.; Jain, P. Non-spectrophotometric methods for the determination of Vitamin C. Anal. Chim. Acta 2000, 417, 1–14. [Google Scholar] [CrossRef]
- Debnath, B.; Hussain, M.; Li, M.; Lu, X.; Sun, Y.; Qiu, D. Exogenous melatonin improves fruit quality features, health promoting antioxidant compounds and yield traits in tomato fruits under acid rain stress. Molecules 2019, 23, 1868. [Google Scholar] [CrossRef] [Green Version]
- Xuanxia, L.; Li, Y. Spectrophotometric determination of glucosinolates in rapeseed. Shanxi Agric. Sci. 2002, 6, 5. [Google Scholar]
- Wen, C.F.; Dong, A.W.; Li, G.Z.; Shu, L.; Yong, L. Determination of total sugar and reducing sugar in viola philippicassp Munda W. Becker by anthrone colorimetry. Guangzhou Food Sci. Technol. 2005, 21, 122–124. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Cataldo, D.; Maroon, M.; Schrader, L.E.; Youngs, V.L. Rapid colorimetric determination of nitrate in plant-tissue by nitration of salicylic-acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Wang, S.; Jin, N.; Jin, L.; Xiao, X.; Hu, L.; Liu, Z.; Wu, Y.; Xie, Y.; Zhu, W.; Lyu, J.; et al. Response of tomato fruit quality depends on period of LED supplementary light. Front. Nutr. 2022, 9, 833723. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yao, Y.D.; Li, J.; Zhang, J.; Zhang, X.D.; Hu, L.X.; Ding, D.X.; Bakpa, E.P.; Xie, J.M. Trehalose Alleviated Salt Stress in Tomato by Regulating ROS Metabolism, Photosynthesis, Osmolyte Synthesis, and Trehalose Metabolic Pathways. Front. Plant Sci. 2022, 13, 772948. [Google Scholar] [CrossRef]
- Lam, T.K.; Gallicchio, L.; Lindsley, K.; Shiels, M.; Hammond, E.; Tao, X.; Chen, L.; Robinson, K.A.; Caulfield, L.E.; Herman, J.G.P. Cruciferous vegetable consumption and lung cancer risk: A systematic review. Cancer Epidemiol. Biomark. Prev. 2009, 18, 184–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenjie, Y.; Xinjun, L.; Yi, Z.; Yang, Q. Effect of cooking methods on the health-promoting compounds, antioxidant activity and nitrate of tatsoi (Brassica rapa L. ssp. narinosa). J. Food Processing Preserv. 2019, 43, e14008. [Google Scholar] [CrossRef]
- Hord, N.G. Dietary nitrates, nitrites, and cardiovascular disease. Curr. Atheroscler. Rep. 2011, 13, 484–492. [Google Scholar] [CrossRef]
- Maggio, A.; Pascale, S.D.; Paradiso, R.; Barbieri, G. Quality and nutritional value of vegetables from organic and conventional farming. Sci. Hortic. 2013, 164, 532–539. [Google Scholar] [CrossRef]
- Shree, B.; Kumar, S.; Sharma, S.; Katoch, V. Functional significance of underutilized high value cruciferous vegetables- an exotic gleam in the gloomy guise of their functional importance. S. Afr. J. Bot. 2022, 145, 420–437. [Google Scholar] [CrossRef]
- Feng, X.; Ma, J.; Liu, Z.; Li, X.; Wu, Y.; Hou, L.; Li, M. Analysis of glucosinolate content and metabolism related genes in different parts of Chinese flowering cabbage. Front. Plant Sci. 2022, 12, 767898. [Google Scholar] [CrossRef]
- Bajkacz, S.; Ligor, M.; Baranowska, I.; Buszewski, B. Separation and Determination of Chemopreventive Phytochemicals of Flavonoids from Brassicaceae Plants. Molecules 2021, 26, 4734. [Google Scholar] [CrossRef]
- Sarikamis, G.; Aydin, B.; Yavuz, M. Glucosinolates in Heads and Sprouts of Green, White and Romanesco Cauliflower. Fresenius Environ. Bull. 2017, 26, 618623. [Google Scholar]
- Djenidi, H.; Khennouf, S.; Bouaziz, A. Antioxidant activity and phenolic content of commonly consumed fruits and vegetables in Algeria. Prog. Nutr. 2020, 22, 224–235. [Google Scholar] [CrossRef]
- Avila, F.W.; Yang, Y.; Faquin, V.; Ramos, S.J.; Guilherme, L.R.G.; Thannhauser, T.W.; Li, L. Impact of selenium supply on Se-methylselenocysteine and glucosinolate accumulation in selenium-biofortified Brassica sprouts. Food Chem. 2014, 165, 578–586. [Google Scholar] [CrossRef]
- Llorach, R.; Espín, J.C.; Tomás-Barberán, F.A.; Ferreres, F. Valorization of cauliflower (Brassica oleracea L. var. botrytis) by-products as a source of antioxidant phenolics. J. Agric. Food Chem. 2003, 51, 2181–2187. [Google Scholar] [CrossRef] [PubMed]
- Drabinska, N.; Jez, M.; Nogueira, M. Variation in the accumulation of phytochemicals and their bioactive properties among the aerial parts of cauliflower. Antioxidants 2021, 10, 1597. [Google Scholar] [CrossRef] [PubMed]
- Flyman, M.V.; Afolayan, A.J. The implication of the mineral ratios of Cucumis myriocarpus Naud. and Pergularia daemia (Forsk.) Chiov. in human diets. J. Med. Food 2007, 10, 548–551. [Google Scholar] [CrossRef] [PubMed]
- Mobeen; Wang, X.; Saleem, M.; Parveen, A.; Mumtaz, S.; Hassan, A.; Adnan, M.; Fiaz, S.; Ali, S.; Khan, Z. Proximate composition and nutritive value of some leafy vegetables from Faisalabad, Pakistan. Sustainability 2021, 13, 8444. [Google Scholar] [CrossRef]
- Ai, S.W.; Guo, R.; Liu, B.L.; Ren, L.; Naeem, S.; Zhang, W.Y.; Zhang, Y.M. A field study on the dynamic uptake and transfer of heavy metals in Chinese cabbage and radish in weak alkaline soils. Environ. Sci. Pollut. Res. 2016, 23, 20719–20727. [Google Scholar] [CrossRef]
- Brazaityte, A.; Miliauskiene, J.; Vastakaite-Kairiene, V.; Sutuliene, R.; Lauzike, K.; Duchovskis, P.; Malek, S. Effect of different ratios of blue and red LED light on Brassicaceae microgreens under a controlled environment. Plants 2021, 10, 801. [Google Scholar] [CrossRef]
- Xiao, Z.; Codling, E.E.; Luo, Y.; Nou, X.; Lester, G.E.; Wang, Q. Microgreens of Brassicaceae: Mineral composition and content of 30 varieties. J. Food Compos. Anal. 2016, 49, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Rubio, V.; Bustos, R.; Irigoyen, M.L.; Cardona-López, X.; Rojas-Triana, M.; Paz-Ares, J. Plant hormones and nutrient signaling. Plant Mol. Biol. 2009, 69, 361–373. [Google Scholar] [CrossRef]
- Li, G.H.; Tan, J.Q.; Chen, H.C.; Lu, M.L.; Zhang, Y.; Li, T.Y.; Ye, Y.Y.; Zhang, H. Comparative experiment on nutritional quality of different varieties of Chinese cabbage. Guangdong Agric. Sci. 2016, 43, 26–32. [Google Scholar] [CrossRef]
- Tai, X.; Chen, J.X.; Guo, S.H.; Zhu, X.W.; Bo, T.Y. Analysis of quality characters of different cabbage inbred lines. Mol. Plant Breed. 2021, 19, 9. [Google Scholar]
- Bhandari, S.R.; Kwak, J.H. Chemical composition and antioxidant activity in different tissues of Brassica vegetables. Molecules 2015, 20, 1228–1243. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.H. Comparative experiment on nutritional quality of sightseeing and picking cauliflower varieties. Seed World 2015, 16–17. [Google Scholar]
Total Nitrogen (g·kg−1) | Total Phosphorus (g·kg−1) | Total Potassium (g·kg−1) | Nitrogen Alkali Digestion (mg·kg−1) | Fast-Acting Phosphorus (mg·kg−1) | Fast-Acting Potassium (mg·kg−1) | Organic Matter (g·kg−1) | pH | EC (ms·c m−1) |
---|---|---|---|---|---|---|---|---|
0.522 | 0.894 | 15.1 | 76.317 | 116.8 | 232.5 | 13.93 | 8.03 | 0.231 |
Cultivars | Abbreviations | Species | Leaf Balls/Curds | Types |
---|---|---|---|---|
Luyizihong | Cab_1 | Cabbage | purple | purple |
Xinhonglu | Cab_2 | Cabbage | purple | purple |
Tianzi 17 | Cab_3 | Cabbage | purple | purple |
GA1826 | Cab_4 | Cabbage | green | green oblate |
Lixia287 | Cab_5 | Cabbage | green | green oblate |
Zhuixia | Cab_6 | Cabbage | green | green oblate |
Zhenniu | Cab_7 | Cabbage | green | green bull heart |
Jianmei | Cab_8 | Cabbage | green | green bull heart |
Jianfeng | Cab_9 | Cabbage | green | green bull heart |
Fugui | Cab_10 | Cabbage | green | green round |
Weigan 105 | Cab_11 | Cabbage | green | green round |
Sijibao | Cab_12 | Cabbage | green | green round |
GSS-07 | Cau_1 | Cauliflower | white | white |
Yunyiqingeng | Cau_2 | Cauliflower | white | white |
Youmei 88 | Cau_3 | Cauliflower | white | white |
Xiulv | Cau_4 | Cauliflower | green | green |
Fuzhi | Cau_5 | Cauliflower | green | green |
Yanxiu | Cau_6 | Cauliflower | green | green |
Zijian 1 | Cau_7 | Cauliflower | purple | purple |
Ziyu 90 | Cau_8 | Cauliflower | purple | purple |
Zihonghua | Cau_9 | Cauliflower | purple | purple |
Ziyi | Chi_1 | Chinese cabbage | purple | purple |
Zibao 5 | Chi_2 | Chinese cabbage | purple | purple |
Qianbaocai | Chi_3 | Chinese cabbage | purple | purple |
Qiuhuan | Chi_4 | Chinese cabbage | green | green |
HC104 | Chi_5 | Chinese cabbage | green | green |
Wanqiu | Chi_6 | Chinese cabbage | green | green |
Quanmei 102 | Chi_7 | Chinese cabbage | green | green upright |
Jincui | Chi_8 | Chinese cabbage | green | green upright |
NX0010 | Chi_9 | Chinese cabbage | green | green upright |
Minixiaoqiao | Chi_10 | Chinese cabbage | green | green mini |
Zhongwa 1 | Chi_11 | Chinese cabbage | green | green mini |
Jiaowa | Chi_12 | Chinese cabbage | green | green mini |
Leaf Balls/Curds Composition Trait | Abbreviations | Units |
---|---|---|
Soluble protein | SP | mg·kg−1 FW |
Nitrate | NI | mg·kg−1 FW |
Soluble sugar | SS | mg·kg−1 FW |
Vitamin C | VC | mg·g−1 FW |
Flavonoid | FL | mg·g−1 FW |
Polyphenol | PO | mg·g−1 FW |
Glucosinolate | GLS | μmol·g−1 FW |
Macronutrients (Potassium, Calcium, Magnesium, Phosphorus) | K, Ca, Mg, P | mg·kg−1 DW |
Micronutrients (Copper, Iron, Manganese, Zinc) | Cu, Fe, Mn, Zn | mg·kg−1 DW |
Traits | Cabbage | Cauliflower | Chinese Cabbage | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean ± SE | CV (%) | Range | Mean ± SE | CV (%) | Range | Mean ± SE | CV (%) | Range | |
Soluble protein (mg·kg−1 FW) | 424.69 ± 15.07 b | 6.15 | 304.72–569.01 | 603.04 ± 3.41 a | 0.98 | 540.91–638.55 | 426.95 ± 5.89 b | 2.39 | 232.56–569.01 |
Nitrate (mg·kg−1 FW) | 163.32 ± 6.76 b | 7.17 | 68.27–261.11 | 93.92 ± 2.09 c | 3.85 | 54.06–146.45 | 207.78 ± 0.88 a | 0.73 | 114.36–340.61 |
Soluble sugar (mg·kg−1 FW) | 27.73 ± 0.56 a | 3.51 | 23.36–31.66 | 22.31 ± 0.58 b | 4.51 | 13.35–28.64 | 17.50 ± 0.62 c | 6.14 | 14.43–22.08 |
Traits | Cabbage | Cauliflower | Chinese Cabbage | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean ± SE | CV (%) | Range | Mean ± SE | CV (%) | Range | Mean ± SE | CV (%) | Range | |
Vitamin C (mg·g−1 FW) | 0.42 ± 0.01 a | 3.67 | 0.17–0.70 | 0.37 ± 0.01 b | 4.09 | 0.21–0.61 | 0.45 ± 0.01 a | 4.44 | 0.28–0.56 |
Flavonoid (mg·g−1 FW) | 5.90 ± 0.06 a | 1.70 | 1.46–12.95 | 2.96 ± 0.25 b | 14.68 | 0.24–6.68 | 1.87 ± 0.07 c | 6.23 | 0.61–6.49 |
Polyphenol (mg·g−1 FW) | 1.06 ± 0.01 b | 2.38 | 0.31–1.97 | 1.53 ± 0.02 a | 2.10 | 1.01–2.22 | 0.91 ± 0.01 c | 1.10 | 0.57–1.39 |
Glucosinolate (μmol·g−1 FW) | 13.40 ± 0.68 b | 8.74 | 5.83–24.51 | 25.27 ± 0.83 a | 5.71 | 17.91–33.08 | 12.56 ± 0.66 b | 9.11 | 8.15–16.23 |
Traits | Cabbage | Cauliflower | Chinese Cabbage | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean ± SE | CV (%) | Range | Mean ± SE | CV (%) | Range | Mean ± SE | CV (%) | Range | |
K (mg·kg−1 DW) | 4624.45 ± 16.14 c | 0.60 | 3306.67–6173.33 | 4764.44 ± 24.48 b | 0.89 | 3146.67–6773.33 | 9206.67 ± 45.01 a | 0.85 | 7506.67–11640.00 |
P (mg·kg−1 DW) | 4020.10 ± 21.26 c | 0.92 | 3051.13–5915.81 | 4726.61 ± 68.53 b | 2.51 | 3449.59–6378.23 | 5614.78 ± 25.87 a | 0.80 | 4531.84–8095.07 |
Ca (mg·kg−1 DW) | 2384.72 ± 15.27 b | 1.11 | 1722.67–3321.00 | 1891.52 ± 13.02 c | 1.19 | 1563.67–2566.67 | 3297.00 ± 20.84 a | 1.09 | 2828.00–3890.00 |
Mg (mg·kg−1 DW) | 2737.33 ± 13.94 b | 0.88 | 2302.20–3548.00 | 2454.25 ± 11.91 c | 0.84 | 1747.00–3160.00 | 3322.79 ± 10.23 a | 0.53 | 2799.90–4026.00 |
Cu (mg·kg−1 DW) | 3.56 ± 0.05 b | 2.66 | 2.15–4.51 | 4.25 ± 0.01 a | 0.54 | 1.84–5.69 | 2.12 ± 0.02 c | 1.51 | 1.06–4.76 |
Fe (mg·kg−1 DW) | 46.90 ± 0.27 a | 1.01 | 20.62–75.92 | 31.98 ± 0.19 c | 1.04 | 19.11–62.30 | 44.02 ± 0.37 b | 1.44 | 20.33–119.54 |
Mn (mg·kg−1 DW) | 6.06 ± 0.06 b | 1.82 | 3.48–10.83 | 5.42 ± 0.11 c | 3.56 | 2.80–7.28 | 15.36 ± 0.13 a | 1.47 | 8.28–26.46 |
Zn (mg·kg−1 DW) | 19.33 ± 0.20 b | 1.81 | 14.61–25.43 | 21.62 ± 0.32 a | 2.58 | 18.52–26.16 | 21.87 ± 0.58 a | 4.60 | 16.58–27.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Liu, Z.; Dou, J.; Lv, J.; Jin, N.; Jin, L.; Li, Z.; Zhang, B.; Tang, Z.; Yu, J. A Comparative Study on the Nutrients, Mineral Elements, and Antioxidant Compounds in Different Types of Cruciferous Vegetables. Agronomy 2022, 12, 3121. https://doi.org/10.3390/agronomy12123121
Wang J, Liu Z, Dou J, Lv J, Jin N, Jin L, Li Z, Zhang B, Tang Z, Yu J. A Comparative Study on the Nutrients, Mineral Elements, and Antioxidant Compounds in Different Types of Cruciferous Vegetables. Agronomy. 2022; 12(12):3121. https://doi.org/10.3390/agronomy12123121
Chicago/Turabian StyleWang, Jie, Zeci Liu, Jianhua Dou, Jian Lv, Ning Jin, Li Jin, Zhaozhuang Li, Bo Zhang, Zhongqi Tang, and Jihua Yu. 2022. "A Comparative Study on the Nutrients, Mineral Elements, and Antioxidant Compounds in Different Types of Cruciferous Vegetables" Agronomy 12, no. 12: 3121. https://doi.org/10.3390/agronomy12123121
APA StyleWang, J., Liu, Z., Dou, J., Lv, J., Jin, N., Jin, L., Li, Z., Zhang, B., Tang, Z., & Yu, J. (2022). A Comparative Study on the Nutrients, Mineral Elements, and Antioxidant Compounds in Different Types of Cruciferous Vegetables. Agronomy, 12(12), 3121. https://doi.org/10.3390/agronomy12123121