Responses of Maize (Zea mays L.) Roots to Nitrogen Heterogeneity and Intraspecific Competition: Evidence from a Pot Experiment Using the ‘Root Splitting’ Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Site
2.2. Experiment Design
2.3. Seedlings Preparation and Planting
2.4. Samples and Measurements
2.5. Data Analysis
3. Results
3.1. Analysis of Variance (ANOVA) Table of Intraspecific Competition and Nitrogen Distribution Patterns
3.2. Influence of Intraspecific Competition and Nitrogen Distribution Patterns on Relative Interaction Index and Root Foraging Precision
3.3. Effects of Intraspecific Competition and Nitrogen Distribution Patterns on Maize Growth and Development
3.4. Effect of Intraspecific Competition and Nitrogen Distribution Patterns on Total Biomass, Root/Shoot Ratio, Yield, and Harvest Coefficient
3.5. Effect of Intraspecific Competition and Nitrogen Distribution Patterns on Root Traits of Maize
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cao, Y.J.; Wang, L.C.; Wan-Rong, G.U.; Wang, Y.J.; Zhang, J.H. Increasing photosynthetic performance and post-silking N uptake by moderate decreasing leaf source of maize under high planting density. J. Integr. Agric. 2021, 20, 494–510. [Google Scholar] [CrossRef]
- Ye, X.U.; Deng, Y.; Cao, J.; Jiang, Z.; Yue, X.; Zhu, Z.; Mnr, C. Spatial heterogeneity of soil fertility in karst faulted basin and its influencing factors. Res. Soil Water Conserv. 2019, 26, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Kou, L.; Wang, H.; Fu, X.; Dai, X.; Li, S. Contrasting root foraging strategies of two subtropical coniferous forests under an increased diversity of understory species. Plant Soil 2019, 436, 427–438. [Google Scholar] [CrossRef]
- Sayer, E.J.; Baxendale, C.; Birkett, A.J.; Bréchet, L.M.; Castro, B.; Kerdraon-Byrne, D.; Lopez-Sangil, L.; Rodtassana, C. Altered litter inputs modify carbon and nitrogen storage in soil organic matter in a lowland tropical forest. Biogeochemistry 2021, 156, 115–130. [Google Scholar] [CrossRef]
- Kaparwan, D.; Rana, N.S.; Vivek; Dhyani, B.P. Effect of different row ratios and nutrient management strategies on growth, yield and quality of mustard in chickpea + mustard intercropping system. J. Pharmacogn. Phytochem. 2020, 9, 852–857. [Google Scholar] [CrossRef]
- García-Palacios, P.; Maestre, F.T.; Gallardo, A. Soil nutrient heterogeneity modulates ecosystem responses to changes in the identity and richness of plant functional groups. J. Ecol. 2011, 99, 551–562. [Google Scholar] [CrossRef] [Green Version]
- García-Palacios, P.; Maestre, F.T.; Bardgett, R.D.; de Kroon, H. Plant responses to soil heterogeneity and global environmental change. J. Ecol. 2012, 100, 1303–1314. [Google Scholar] [CrossRef] [Green Version]
- Hodge, A.; Stewart, J.; Robinson, D.; Griffiths, B.S.; Fitter, A.H. Root proliferation, soil fauna and plant nitrogen capture from nutrient-rich patches in soil. New Phytol. 2010, 139, 479–494. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Rengel, Z.; Ma, Q.; Zhang, F.; Shen, J. Root over-production in heterogeneous nutrient environment has no negative effects on Zea mays shoot growth in the field. Plant Soil 2016, 409, 405–417. [Google Scholar] [CrossRef] [Green Version]
- Obayes, S.K.; Timber, L.; Head, M.; Sparks, E.E. Evaluation of brace root parameters and its effect on the stiffness of maize. Silico Plants 2022, 4, diac008. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, B.; Ge, X.; Cao, Y.; Brunner, I.; Shi, J.; Li, M.H. Species-Specific Responses of Root Morphology of Three Co-existing Tree Species to Nutrient Patches Reflect Their Root Foraging Strategies. Front. Plant Sci. 2020, 11, 618222. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, P.; Vyn, T.J. Full-Season Retrospectives on Causes of Plant-to-Plant Variability in Maize Grain Yield Response to Nitrogen and Tillage. Agron. J. 2014, 106, 1746–1757. [Google Scholar] [CrossRef]
- García-Palacios, P.; Maestre, F.T.; Bradford, M.A.; Reynolds, J.F. Earthworms modify plant biomass and nitrogen capture under conditions of soil nutrient heterogeneity and elevated atmospheric CO2 concentrations. Soil Biol. Biochem. 2014, 78, 182–188. [Google Scholar] [CrossRef]
- Wu, B.Z.; Fullen, M.A.; Li, J.B.; An, T.X.; Fan, Z.W.; Zhou, F.; Zi, S.H.; Yang, Y.Q.; Xue, G.F. Integrated response of intercropped maize and potatoes to heterogeneous nutrients and crop neighbours. Plant Soil 2014, 374, 185–196. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.-s.; Xue, G.; Peng, Y.; Song, H.-x. Effect of clonal integration on nitrogen cycling in rhizosphere of rhizomatous clonal plant, Phyllostachys bissetii, under heterogeneous light. Sci. Total Environ. 2018, 628–629, 594–602. [Google Scholar] [CrossRef]
- Zhang, Y.-W.; Yang, C.-F.; Gituru, W.R.; Guo, Y.-H. Within-season adjustment of sex expression in females and hermaphrodites of the clonal gynodioecious herb Glechoma longituba (Lamiaceae). Ecol. Res. 2008, 23, 873–881. [Google Scholar] [CrossRef]
- Kembel, S.W.; Cahill, J.F., Jr. Plant phenotypic plasticity belowground: A phylogenetic perspective on root foraging trade-offs. Am. Nat. 2005, 166, 216–230. [Google Scholar] [CrossRef] [PubMed]
- Wijesinghe, D.K.; John, E.A.; Beurskens, S.; Hutchings, M.J. Root system size and precision in nutrient foraging: Responses to spatial pattern of nutrient supply in six herbaceous species. J. Ecol. 2001, 89, 972–983. [Google Scholar] [CrossRef]
- Lamb, E.G.; Haag, J.J.; Cahill, J.F., Jr. Patch–background contrast and patch density have limited effects on root proliferation and plant performance in Abutilon theophrasti. Funct. Ecol. 2004, 18, 836–843. [Google Scholar] [CrossRef]
- McPhee, C.S.; Aarssen, L.W. The separation of above- and below-ground competition in plants A review and critique of methodology. Plant Ecol. 2001, 152, 119–136. [Google Scholar] [CrossRef]
- Hutchings, M.J.; John, E.A.; Wijesinghe, D.K. Toward understanding the consequences of soil heterogeneity for plant populations and communities. Ecology 2003, 84, 2322–2334. [Google Scholar] [CrossRef]
- Armas, C.; Ordiales, R.; Pugnaire, F.I. Measuring plant interactions: A new comparative index. Ecology 2004, 85, 2682–2686. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Liu, X.; Zhang, L.; Song, Z.; Zhou, S. The allometry of plant height explains species loss under nitrogen addition. Ecol. Lett. 2021, 24, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Nkebiwe, P.M.; Weinmann, M.; Bar-Tal, A.; Mueller, T. Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis. Field Crops Res. 2016, 196, 389–401. [Google Scholar] [CrossRef]
- Saengwilai, P.; Strock, C.; Rangarajan, H.; Chimungu, J.; Salungyu, J.; Lynch, J.P. Root hair phenotypes influence nitrogen acquisition in maize. Ann. Bot. 2021, 128, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.S.; Miao, L.F.; Yang, F. Neighbors, Drought, and Nitrogen Application Affect the Root Morphological Plasticity of Dalbergia odorifera. Front. Plant Sci. 2021, 12, 650616. [Google Scholar] [CrossRef]
- Weligama, C.; Tang, C.; Sale, P.W.G.; Conyers, M.K.; Liu, D.L. Localised nitrate and phosphate application enhances root proliferation by wheat and maximises rhizosphere alkalisation in acid subsoil. Plant Soil 2008, 312, 101–115. [Google Scholar] [CrossRef]
- Martin, A.C.; Macias-Fauria, M.; Bonsall, M.B.; Forbes, B.C.; Zetterberg, P.; Jeffers, E.S. Common mechanisms explain nitrogen-dependent growth of Arctic shrubs over three decades despite heterogeneous trends and declines in soil nitrogen availability. New Phytol. 2021, 233, 670–686. [Google Scholar] [CrossRef]
- Yang, L.; Zhu, P.; Wang, R.; Wang, T.; Yu, X. The effects of changing sedimentation disturbance on the invasiveness of Alternanthera philoxeroides are trait dependent. Aquat. Invasions 2020, 20, PR304. [Google Scholar] [CrossRef]
- Pillay, T.; Ward, D. Grass competition is more important than fire for suppressing encroachment of Acacia sieberiana seedlings. Plant Ecol. 2021, 222, 149–158. [Google Scholar] [CrossRef]
- Craine, J.M. Competition for Nutrients and Optimal Root Allocation. Plant Soil 2006, 285, 171–185. [Google Scholar] [CrossRef]
- Kim, B.M.; Horita, J.; Suzuki, J.I.; Tachiki, Y. Resource allocation in tragedy of the commons game in plants for belowground competition. J. Theor. Biol. 2021, 529, 110858. [Google Scholar] [CrossRef] [PubMed]
- Sta, C.; Ct, B.; Mkj, A.; Cfd, A.; Bke, A. Intraspecific interactions in the annual legume Medicago minima are shaped by both genetic variation for competitive ability and reduced competition among kin. Basic Appl. Ecol. 2021, 53, 49–61. [Google Scholar] [CrossRef]
- Zhang, G.; Meng, W.; Pan, W.; Han, J.; Liao, Y. Effect of soil water content changes caused by ridge-furrow plastic film mulching on the root distribution and water use pattern of spring maize in the Loess Plateau. Agric. Water Manag. 2022, 261, 107338. [Google Scholar] [CrossRef]
- Mcnickle, G.G.; Deyholos, M.K.; Cahill, J.F. Nutrient foraging behaviour of four co-occurring perennial grassland plant species alone does not predict behaviour with neighbours. Funct. Ecol. 2016, 30, 420–430. [Google Scholar] [CrossRef]
- Li, D.D.; Nan, H.W.; Zhao, C.Z.; Yin, C.Y.; Liu, Q. Effects of warming and fertilization interacting with intraspecific competition on fine root traits of Picea asperata. J. Plant Ecol. 2020, 14, 147–159. [Google Scholar] [CrossRef]
- Ward, D. Shade affects fine-root morphology in range-encroaching eastern redcedars (Juniperus virginiana) more than competition, soil fertility and pH. Pedobiologia 2021, 84, 150708. [Google Scholar] [CrossRef]
- Wu, K.; Fullen, M.A.; An, T.; Fan, Z.; Zhou, F.; Xue, G.; Wu, B. Above- and below-ground interspecific interaction in intercropped maize and potato: A field study using the ‘target’ technique. Field Crops Res. 2012, 139, 63–70. [Google Scholar] [CrossRef]
- Jeetze, P.; Zarebanadkouki, M.; Carminati, A. Spatial Heterogeneity Enables Higher Root Water Uptake in Dry Soil but Protracts Water Stress after Transpiration Decline: A Numerical Study. Water Resour. Res. 2020, 56, e2019WR025501. [Google Scholar] [CrossRef] [Green Version]
- Weligama, C.; Sale, P.W.G.; Conyers, M.K.; Liu, D.L.; Tang, C. Nitrate leaching stimulates subsurface root growth of wheat and increase rhizosphere alkalization in a highly acidic soil. Plant Soil 2010, 328, 119–132. [Google Scholar] [CrossRef]
- Blair, B. Effect of Soil Nutrient Heterogeneity on the Symmetry of Belowground Competition. Plant Ecol. 2001, 156, 199–203. [Google Scholar] [CrossRef] [Green Version]
- Zhao, N.; Xu, Y.; Chen, L.; Jiang, M.; Dong, K.; Wang, J.; Gao, Y. Species identities impact the responses of intensity and importance of competition to the soil fertility changes. Glob. Ecol. Conserv. 2021, 27, e01519. [Google Scholar] [CrossRef]
- Day, K.J.; John, M.J.H.A. The effects of spatial pattern of nutrient supply on the early stages of growth in plant populations. J. Ecol. 2010, 91, 305–315. [Google Scholar] [CrossRef]
- Adeyemi, T.A.; Jolaosho, A.O.; Dele, P.A.; Adekoya, A.T.; Amisu, A.A. Intraspecific pod and seed trait variation of two herbaceous legume seeds in response to competing neighbours and nutrient resource abundance. Acta Oecologica 2021, 111, 612–620. [Google Scholar] [CrossRef]
- Wang, N.; Kong, C.; Wang, P.; Meiners, S.J. Root exudate signals in plant-plant interactions. Plant Cell Environ. 2020, 44, 1044–1058. [Google Scholar] [CrossRef]
- Hodge, A. The plastic plant: Root responses to heterogeneous supplies of nutrients. New Phytol. 2010, 162, 9–24. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Brooker, R.W.; Rengel, Z.; Zhang, F.; Davies, W.J.; Shen, J. Root competition resulting from spatial variation in nutrient distribution elicits decreasing maize yield at high planting density. Plant Soil 2018, 439, 219–232. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.; Melissa, M.; Uwe, L.; Shen, J. Heterogeneous nutrient supply promotes maize growth and phosphorus acquisition: Additive and compensatory effects of lateral roots and root hairs. Ann. Bot. 2021, 128, 431–440. [Google Scholar] [CrossRef]
- Sheibanirad, A.; Haghighi, M. The effect of root zone temperature in low nitrogen level of nutrient solution in sweet pepper. J. Food Agric. Environ. 2021, 19, 64–70. [Google Scholar] [CrossRef]
- Forrester, D.I.; Jean-Marc, L.; Sebastian, P. The relationship between tree size and tree water-use: Is competition for water size-symmetric or size-asymmetric? Tree Physiol. 2022, 424, 85–94. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, Q.; Dai, Y.; Liu, Q.; Tang, J.; Bian, X.; Chen, X. Effects of arbuscular mycorrhizal fungi on plant growth depend on root system: A meta-analysis. Plant Soil 2015, 389, 361–374. [Google Scholar] [CrossRef]
- Ötvös, K.; Marconi, M.; Vega, A.; O’Brien, J.; Johnson, A.; Abualia, R.; Antonielli, L.; Montesinos, J.C.; Zhang, Y.; Tan, S.; et al. Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport. EMBO J. 2021, 40, e106862. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; White, P.J.; Hochholdinger, F.; Li, C. Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability. Planta 2014, 240, 667–678. [Google Scholar] [CrossRef] [PubMed]
Homogeneous (HO) | Heterogeneous (HE) | |||
---|---|---|---|---|
Left Side | Right Side | High Nitrogen Side | Low Nitrogen Side | |
Intraspecific Competition (IC) (2 plants) | 12 | 12 | 20 | 4 |
No competition (NC) (1 plant) | 6 | 6 | 10 | 2 |
Flowering Stage | Mature Stage | |||||
---|---|---|---|---|---|---|
Parameters | ND | RI | ND × RI | ND | RI | ND × RI |
Plant height | 0.08 | 17.70 ** | 6.09 * | 0.01 | 0.56 | 3.47 |
Stem diameter | 2.69 | 0.45 | 0.03 | 0.51 | 9.78 ** | 0.32 |
Leaf area | 0.52 | 0.80 | 0.37 | 0.16 | 0.47 | 6.59 * |
Total biomass | 0.02 | 7.09 * | 0.58 | 0.53 | 17.09 ** | <0.01 |
Root/shoot ratio | 0.32 | 10.09 ** | 4.12 | 0.03 | 12.24 ** | 1.57 |
Yield | - | - | - | 0.18 | 2.31 | 3.43 |
Harvest coefficient | - | - | - | 0.40 | 4.54 * | 8.27 ** |
Specific root length | 29.35 ** | 4.22 | 10.76 ** | 2.30 | 2.30 | 5.53 * |
Total root surface area | 2.06 | 7.14 * | 0.05 | 0.51 | 15.76 ** | 0.09 |
Total root biomass | 0.12 | 15.43 * | 0.31 | 0.06 | 22.35 ** | 0.95 |
Average root diameter | 3.58 | 9.59 ** | 0.36 | 1.12 | 5.12 * | 4.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Zhou, F.; Zi, X.; Rao, D.; Liu, K.; Wu, B. Responses of Maize (Zea mays L.) Roots to Nitrogen Heterogeneity and Intraspecific Competition: Evidence from a Pot Experiment Using the ‘Root Splitting’ Approach. Agronomy 2022, 12, 3101. https://doi.org/10.3390/agronomy12123101
Zhou S, Zhou F, Zi X, Rao D, Liu K, Wu B. Responses of Maize (Zea mays L.) Roots to Nitrogen Heterogeneity and Intraspecific Competition: Evidence from a Pot Experiment Using the ‘Root Splitting’ Approach. Agronomy. 2022; 12(12):3101. https://doi.org/10.3390/agronomy12123101
Chicago/Turabian StyleZhou, Shiyong, Feng Zhou, Xuejing Zi, Dongyun Rao, Kang Liu, and Bozhi Wu. 2022. "Responses of Maize (Zea mays L.) Roots to Nitrogen Heterogeneity and Intraspecific Competition: Evidence from a Pot Experiment Using the ‘Root Splitting’ Approach" Agronomy 12, no. 12: 3101. https://doi.org/10.3390/agronomy12123101
APA StyleZhou, S., Zhou, F., Zi, X., Rao, D., Liu, K., & Wu, B. (2022). Responses of Maize (Zea mays L.) Roots to Nitrogen Heterogeneity and Intraspecific Competition: Evidence from a Pot Experiment Using the ‘Root Splitting’ Approach. Agronomy, 12(12), 3101. https://doi.org/10.3390/agronomy12123101