Effects of Fertilizer Level and Intercropping Planting Pattern with Corn on the Yield-Related Traits and Insect Community of Soybean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location and Crop Cultivars
2.2. Experimental Design and Field Management
2.3. Sample Collection and Determination
2.4. Insect Investigation
2.5. Statistical Data Analysis
3. Results
3.1. Effects of Fertilizer Reduction and Intercropping on Soybean Biomass, 100-Seed Weight and Yield
3.2. Effects of Fertilizer Reduction and Intercropping on Enzyme Activities Related to Nitrogen Metabolism
3.3. Effects of Fertilizer Reduction and Intercropping on Insect Diversity Index and Population Dynamics of Major Pests
3.4. Correlation Analysis among Agronomic Traits, Nitrogen Metabolism Enzymatic Activity and Insect Community in Soybean
4. Discussion
4.1. Effects of Fertilizer Level and Intercropping Planting Pattern on Insect Communities
4.2. Effects of Fertilizer Level and Intercropping Planting Pattern on Enzyme Activities Related to Nitrogen Metabolism
4.3. Effects of Fertilizer Level and Intercropping Planting Pattern on Soybean Yield
4.4. Effects of Weather Conditions on the Growth and Development of Soybean and Insect Communities
4.5. Prospects for Corn–Soybean Strip Compound Planting
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zakharchenko, I.G.; Pirozhenko, G.S. Nitrogen Fixation by Legumes. Agrokhimiya 1970. Guide A-129. [Google Scholar]
- Gudynas, E. The new bonfire of vanities: Soybean cultivation and globalization in South America. Development 2008, 51, 512–518. [Google Scholar] [CrossRef]
- Mao, L.; Zhang, L.; Li, W.; Werf, W.V.D.; Sun, J.; Spiertz, H.; Long, L. Yield advantage and water saving in maize/pea intercrop. Field Crops Res. 2012, 138, 11–20. [Google Scholar] [CrossRef]
- Raza, M.A.; Khalid, M.H.B.; Zhang, X.; Feng, L.Y.; Khan, I.; Hassan, M.J.; Ahmed, M.; Ansar, M.; Chen, Y.K.; Fan, Y.F.; et al. Effect of planting patterns on yield, nutrient accumulation and distribution in maize and soybean under relay intercropping systems. Sci. Rep. 2019, 9, 4947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, T.; Liu, X.; Hussain, S.; Ahmed, S.; Chen, G.; Yang, F.; Chen, L.; Du, J.; Liu, W.; Yang, W. Water use efficiency and evapotranspiration in maize-soybean relay strip intercrop systems as affected by planting geometries. PLoS ONE 2017, 12, e0178332. [Google Scholar] [CrossRef] [Green Version]
- Loreau, N.; Inchaussti, B.; Grime, J.P. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 2001, 294, 804–808. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Rahman, T.; Song, C.; Su, B.; Yang, F.; Yong, T.; Wu, Y.; Zhang, C.; Yang, W. Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems. Field Crops Res. 2017, 200, 38–46. [Google Scholar] [CrossRef]
- Xu, W.; Chang, Z.; Dian, F.F.; Nai, J.L.; Xiao, Y.; Yang, L. Effects of the strip compound planting system on photosynthetic characteristics and grain yield of maize and soybean. Soybean Sci. 2017, 36, 540–546. [Google Scholar]
- Yang, W.Y.; Yang, X.C.; Liu, W.G.; Yang, F.; Wang, H. High yield and high efficiency integrated cultivation technology of maize interplanting soybean. Soybean Sci. Technol. 2011, 2, 52–53. [Google Scholar]
- Rashwan, E.; Zeneldin, A. Effect of two patterns of intercropping soybean with maize on yield and its components under different nitrogen fertilizer levels. Egypt. J. Agron. 2017, 39, 449–466. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.A.I.; Abbas, A.; Nadeem, R. Spatio-temporal reconciliation to lessen losses in yield and quality of forage soybean (Glycine max L.) in soybean-sorghum intercropping systems. Bragantia 2018, 77, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Dolijanovic, Z.; Oljaca, S.; Kovacevic, D.; Simic, M.; Jovanovic, Z. Dependence of the productivity of maize and soybean intercropping systems on hybrid type and plant arrangement pattern. Genetika 2013, 45, 135–144. [Google Scholar] [CrossRef]
- Cheng, B.; Raza, A.; Wang, L.; Xu, M.; Lu, J.; Gao, Y.; Qin, S.; Zhang, Y.; Ahmad, I.; Zhou, T.; et al. Effects of multiple planting densities on lignin metabolism and lodging resistance of the strip intercropped soybean stem. Agronomy 2020, 10, 1177. [Google Scholar] [CrossRef]
- Liu, J.; Yang, C.Q.; Zhang, Q.; Lou, Y.; Wu, H.J.; Deng, J.C.; Yang, F.; Yang, W.Y. Partial improvements in the flavor quality of soybean seeds using intercropping systems with appropriate shading. Food Chem. 2016, 207, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, K.; Murakami, T.; Takeda, M.; Murayama, T. Intercropping green manure crops—Effects on rooting patterns. Plant Soil 2009, 331, 231–239. [Google Scholar] [CrossRef]
- Kebebew, S.; Belete, K.; Tana, T. Productivity evaluation of maize—Soybean intercropping system under rain fed condition at Bench-Maji Zone, Ethiopia. Eur. Res. 2014, 79, 1301–1309. [Google Scholar]
- Sani, G.K.; Jamshidi, K.; Moghadam, M. Evaluation of quality and quantity of corn and soybean grain yield in intercropping under deficit irrigation. J. Biol. Agric. Healthc. 2014, 4, 133–139. [Google Scholar]
- Lv, J.; Xiao, J.; Guo, Z.; Dong, K.; Dong, Y. Nitrogen supply and intercropping control of Fusarium wilt in faba bean depend on organic acids exuded from the roots. Sci. Rep. 2021, 11, 9589. [Google Scholar] [CrossRef]
- Ye, C.; Chen, D.; Hall, S.J.; Pan, S.; Yan, X.; Bai, T.; Guo, H.; Zhang, Y.; Bai, Y.; Hu, S. Reconciling multiple impacts of nitrogen enrichment on soil carbon: Plant, microbial and geochemical controls. Ecol. Lett. 2018, 21, 1162–1173. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Shen, T.; Yang, Y.; Li, Y.C.; Wan, Y.; Zhang, M.; Tang, Y.; Allen, S.C. Controlled-release urea reduced nitrogen leaching and improved nitrogen use efficiency and yield of direct-seeded rice. J. Environ. Manag. 2018, 220, 191–197. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Q.; Meissle, M.; Peng, Y.; Wu, K.; Romeis, J.; Li, Y. Bt rice could provide ecological resistance against nontarget planthoppers. Plant Biotechnol. J. 2018, 16, 1748–1755. [Google Scholar] [CrossRef] [Green Version]
- Du, E.; Terrer, C.; Pellegrini, A.F.A.; Ahlström, A.; van Lissa, C.J.; Zhao, X.; Xia, N.; Wu, X.; Jackson, R.B. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 2020, 13, 221–226. [Google Scholar] [CrossRef]
- Miflin, L. The pathway of nitrogen assimilation in plants. Phytochemistry 1976, 15, 873–885. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, L.; Sun, X.; Wang, X.; Pu, T.; Yang, H.; Rengel, Z.; Liu, W.; Yang, W. Improved post-silking light interception increases yield and P-use efficiency of maize in maize/soybean relay strip intercropping. Field Crops Res. 2021, 262, 108054. [Google Scholar] [CrossRef]
- Du, J.B.; Han, T.F.; Gai, J.Y.; Yong, T.W.; Sun, X.; Wang, X.C.; Yang, F.; Liu, J.; Shu, K.; Liu, W.G.; et al. Maize-soybean strip intercropping: Achieved a balance between high productivity and sustainability. J. Integr. Agric. 2018, 17, 747–754. [Google Scholar] [CrossRef]
- Chen, P.; Song, C.; Liu, X.M.; Zhou, L.; Yang, H.; Zhang, X.; Zhou, Y.; Du, Q.; Pang, T.; Fu, Z.D.; et al. Yield advantage and nitrogen fate in an additive maize-soybean relay intercropping system. Sci. Total Environ. 2019, 657, 987–999. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Wang, L.; Yang, H.; Gao, Y.; Liu, W.; Yang, W. Ameliorated light conditions increase the P uptake capability of soybean in a relay-strip intercropping system by altering root morphology and physiology in the areas with low solar radiation. Sci. Total Environ. 2019, 688, 1069–1080. [Google Scholar] [CrossRef]
- Liu, X.; Rahman, T.; Song, C.; Yang, F.; Su, B.; Cui, L.; Bu, W.; Yang, W. Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize-soybean strip intercropping. Field Crops Res. 2018, 224, 91–101. [Google Scholar] [CrossRef]
- Altieri, M.A.; Glaser, D.L.; Schmidt, L.L. Diversification of agroecosystems for insect pest regulation: Experiments with collards. In Agroecology, Esearching the Ecological Basis for Sustainable Agriculture; Gliessman, S.R., Ed.; Springer: New York, NY, USA, 1990; pp. 72–82. [Google Scholar]
- Zhou, H.B.; Chen, J.I.; Liu, Y.; Francis, F.; Haubruge, E.; Bragard, C.; Sun, J.R.; Cheng, D.F. Influence of garlic intercropping or active emitted volatiles in releasers on aphid and related beneficial in wheat fields in China. J. Integr. Agric. 2013, 12, 467–473. [Google Scholar] [CrossRef]
- Stratton, C.A.; Hodgdon, E.; Rodriguez-Saona, C.; Shelton, A.M.; Chen, Y.H. Odors from phylogenetically-distant plants to Brassicaceae repel an herbivorous Brassica specialist. Sci. Rep. 2019, 9, 10621. [Google Scholar] [CrossRef] [Green Version]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, K.; Fathi, S.A.A.; Razmjou, J.; Naseri, B. Evaluation of the effect of strip intercropping green bean/garlic on the control of Tetranychus urticae in the field. Exp. Appl. Acarol. 2021, 83, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Mayse, M.A.; Price, P.W. Seasonal development of soybean arthropod communities in east central Illinois. Agro-Ecosyst. 1978, 4, 387–405. [Google Scholar] [CrossRef]
- Yamamoto, F.C.F. Pests and their natural enemies on soybean and corn grown in diversified systems. Sci. Agric. 2002, 59, 683–687. [Google Scholar]
- Snaydon, R.W. Replacement or additive designs for competition studies? J. Appl. Ecol. 1991, 28, 930–946. [Google Scholar] [CrossRef]
- Li, L.; Duan, R.C.; Li, R.Z.; Zou, Y.; Liu, J.W.; Chen, F.; Xing, G. Impacts of corn intercropping with soybean, peanut and millet through different planting patterns on population dynamics and community diversity of insects under fertilizer reduction. Front. Plant Sci. 2022, 13, 936039. [Google Scholar] [CrossRef]
- Fehr, W.R.; Caviness, C.E.; Burmood, D.T.; Pennington, J.S. Stage of development descriptions for soybeans, Glycine max (L) merrill. Crop Sci. 1971, 11, 929–931. [Google Scholar] [CrossRef]
- Root, R.B. Organization of a plant-arthropod association in simple and diverse habitats: The fauna of collards (Brassica Oleracea). Ecol. Monogr. 1973, 43, 95–124. [Google Scholar] [CrossRef]
- Tang, S.; Tang, G.; Qin, W. Codimension-1 sliding bifurcations of a filippov pest growth model with threshold policy. Int. J. Bifurc. Chaos 2014, 24, 1450122. [Google Scholar] [CrossRef]
- Xing, G.; Liu, K.; Gai, J. A high-throughput phenotyping procedure for evaluation of antixenosis against common cutworm at early seedling stage in soybean. Plant Methods 2017, 13, 66. [Google Scholar] [CrossRef] [Green Version]
- Chang, E.H.; Chung, R.S.; Tsai, Y.H. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Sci. Plant Nutr. 2007, 53, 132–140. [Google Scholar] [CrossRef]
- Wei, J.; Zhou, H.P.; Xie, W.Y.; Guan, C.L.; Gao, C.H.; Shi, Y.Q. Effects of long-term inorganic fertilizer combined with organic manure on microbial biomass C, N and enzyme activity in cinnamon soil. J. Plant Nutr. Fertil. 2008, 14, 700–705. [Google Scholar]
- Li, L.; Zou, Y.; Wang, Y.; Chen, F.; Xing, G. Effects of corn intercropping with soybean/peanut/millet on the biomass and yield of corn under fertilizer reduction. Agriculture 2022, 12, 151. [Google Scholar] [CrossRef]
- Li, X.; Mu, Y.; Cheng, Y.; Liu, X.; Nian, H. Effects of intercropping sugarcane and soybean on growth, rhizosphere soil microbes, nitrogen and phosphorus availability. Acta Physiol. Plant. 2012, 35, 1113–1119. [Google Scholar] [CrossRef]
- Tan, X.; Guo, T.; Zhang, G.; Chen, G. Effects of rotation and intercropping on soil microbial and enzyme activity in the rhizosphere of potato. J. Irrig. Drain. 2016, 35, 45–50. [Google Scholar]
- Dapaah, H.K.; Asafu-Agyei, J.N.; Ennin, S.A.; Yamoah, C. Yield stability of cassava, maize, soya bean and cowpea intercrops. J. Agric. Sci. 2003, 140, 73–82. [Google Scholar] [CrossRef]
- Li, L.; Sun, J.; Zhang, F.; Li, X.; Yang, S.; Rengel, Z. Wheat/maize or wheat/soybean strip intercropping I. Yield advantage and interspecific interactions on nutrients. Field Crops Res. 2001, 71, 123–137. [Google Scholar] [CrossRef]
- Ferguson, B.J.; Indrasumunar, A.; Hayashi, S.; Lin, M.H.; Lin, Y.H.; Reid, D.E.; Gresshoff, P.M. Molecular analysis of legume nodule development and autoregulation. J. Integr. Plant Biol. 2010, 52, 61–76. [Google Scholar] [CrossRef]
- Chen, R.; Liu, L.; Liu, X. The negative impact of excessive moisture contributes to the seasonal dynamics of photosynthesis in Amazon moist forests. Earths Future 2022, 10, e2021EF002306. [Google Scholar] [CrossRef]
- Davies, Z.G.; Wilson, R.J.; Coles, S.; Thomas, C.D. Changing habitat associations of a thermally constrained species, the sliver-spotted skipper butterfly, in response to climate warming. J. Anim. Ecol. 2006, 75, 247–256. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.C.; Zhou, Y.; Chen, P.; Zhang, X.N.; Du, Q.; Yang, H.; Wang, X.C.; Yang, F.; Xiao, T.; Li, L.; et al. Maize-legume intercropping promote N uptake through changing the root spatial distribution, legume nodulation capacity, and soil N availability. J. Integr. Agric. 2022, 21, 1755–1771. [Google Scholar]
- Raza, M.A.; Cui, L.; Khan, I.; Din, A.M.U.; Chen, G.; Ansar, M.; Ahmed, M.; Ahmad, S.; Manaf, A.; Titriku, J.K.; et al. Compact maize canopy improves radiation use efficiency and grain yield of maize/soybean relay intercropping system. Environ. Sci. Pollut. Res. 2021, 28, 41135–41148. [Google Scholar] [CrossRef] [PubMed]
Source of Variation | Biomass Per Plant (g) | 100-Seed Weight (g) | Yield (kg/hm2) | |
---|---|---|---|---|
R2 | R5 | |||
Sampling year (Y) | 157.3/<0.001 *** | 0.9/0.344 | 0.6/0.438 | 2.1/0.154 |
Fertilizer level (F) | 18.9/<0.001 *** | 15.5/<0.001 *** | 40.6/<0.001 *** | 8.4/0.005 ** |
Planting pattern (P) | 42.8/<0.001 *** | 64.0/<0.001 *** | 80.3/<0.001 *** | 111.4/<0.001 *** |
Y × F | 7.8/0.007 ** | 2.5/0.116 | 0.3/0.599 | 1.4/0.247 |
Y × P | 5.7/0.002 ** | 6.9/<0.001 *** | 0.4/0.773 | 0.8/0.512 |
F × P | 1.0/0.383 | 5.4/0.002 ** | 9.7/<0.001 *** | 1.5/0.223 |
Y × F × P | 0.1/0.934 | 9.1/<0.001 *** | 0.2/0.885 | 0.5/0.690 |
Indicator | Growth Stage | Fertilizer | Intercropping Planting Pattern | ||||
---|---|---|---|---|---|---|---|
Normal | Reduction (%) | C2S2 (%) | C2S3 (%) | C2S4 (%) | S | ||
Biomass (g) | R2 | 270.2 a | 238.1 (−11.9) b | 206.5 (−35.8) b | 232.3 (−27.8) b | 256.1 (−20.4) ab | 321.7 a |
R5 | 423.9 a | 373.5 (−11.9) b | 284.5 (−46.7) b | 379.0 (−28.9) ab | 398.0 (−25.4) ab | 533.4 a | |
HSW (g) | 25.8 a | 24.0 (−7.0) b | 22.0 (−22.0) b | 23.7 (−16.0) b | 25.7 (−8.9) ab | 28.2 a | |
Yield (kg/hm2) | 3879.7 a | 3643.3 (−6.1) b | 2867.0 (−40.2) b | 3279.3 (−31.6) b | 4104.4 (−14.4) ab | 4795.3 a |
Source of Variation | S-ALPT | GOGAT | GS | NR |
---|---|---|---|---|
Sampling year (Y) | 2.4/0.127 | 2.1/0.155 | 20.7/<0.001 *** | 149.4/<0.001 *** |
Fertilizer level (F) | 35.3/<0.001 *** | 79.0/<0.001 *** | 87.5/<0.001 *** | 46.7/<0.001 *** |
Planting pattern (P) | 7.0/<0.001 *** | 32.5/<0.001 *** | 54.7/<0.001 *** | 7.0/<0.001 *** |
Growth stage (G) | 261.5/<0.001 *** | 5614.9/<0.001 *** | 6.2/0.015 * | 263.5/<0.001 *** |
Y × F | <0.01/0.931 | 10.6/0.002 ** | 0.6/0.435 | 1.7/0.193 |
Y × P | 1.8/0.149 | 7.0/<0.001 *** | 15.2/<0.001 *** | 6.2/<0.001 *** |
Y × G | 15.7/<0.001 *** | 10.3/0.002 ** | <0.1/0.907 | 179.6/<0.001 *** |
F × P | 0.3/0.834 | 0.5/0.067 | 2.3/0.087 | 0.4/0.763 |
F × G | 4.1/0.048 * | 8.6/0.005 ** | <0.01/0.939 | 1.5/0.220 |
P × G | 7.6/<0.001 *** | 8.5/<0.001 *** | 3.2/0.029 * | 33.4/<0.001 *** |
Y × F × P | 0.9/0.445 | 0.7/0.553 | 0.2/0.896 | 0.5/0.654 |
Y × F × G | 0.3/0.601 | 8.5/0.005 ** | 4.1/0.046 * | 0.2/0.656 |
Y × P × G | 4.0/0.011 * | 1.9/0.137 | 1.8/0.150 | 19.2/<0.001 *** |
F × P × G | 0.3/0.834 | 0.4/0.772 | 2.6/0.058 | 0.6/0.642 |
Y × F × P × G | 0.6/0.642 | 0.6/0.644 | 1.2/0.319 | 0.1/0.958 |
Growth Stage | Indicator | Fertilizer | Intercropping Planting Pattern | ||||
---|---|---|---|---|---|---|---|
Normal | Reduce (%) | C2S2 (%) | C2S3 (%) | C2S4 (%) | S | ||
R2 | SALPT | 5.7 a | 5.3 (−7.0) b | 5.6 (−1.8) a | 5.5 (−3.3) ab | 5.2 (−9.8) b | 5.7 a |
GOGAT | 26.1 a | 23.2 (−11.1) b | 22.0 (−18.8) b | 25.1 (−7.6) ab | 24.5 (−9.8) ab | 27.2 a | |
GS | 28.4 a | 24.0 (−15.4) b | 21.2 (−30.2) b | 26.3 (−13.6) ab | 27.1 (−10.9) ab | 30.4 a | |
NR | 7.2 a | 5.3 (−26.0) b | 5.8 (−27.4) b | 6.7 (−15.8) a | 6.7 (−16.3) a | 8.0 a | |
R5 | SALPT | 4.3 a | 3.5 (−18.4) b | 3.3 (−26.1) b | 3.9 (−11.4) ab | 4.1 (−7.5) ab | 4.4 a |
GOGAT | 16.5 a | 13.6 (−17.7) b | 12.8 (−24.1) c | 15.6 (−7.4) ab | 14.9 (−11.6) b | 16.9 a | |
GS | 27.2 a | 22.9 (−15.8) b | 20.8 (−26.0) b | 27.0 (−3.9) a | 24.3 (−13.8) ab | 28.1 a | |
NR | 6.4 a | 4.7 (−25.4) b | 5.3 (+17.9) a | 5.2 (+14.6) ab | 5.1 (+12.6) ab | 4.5 b |
Insect Species | C2S4 | C2S3 | C2S2 | S | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
18+ | 18− | 19+ | 19− | 18+ | 18− | 19+ | 19− | 18+ | 18− | 19+ | 19− | 18+ | 18− | 19+ | 19− | |
Pest | ||||||||||||||||
Greenhouse whitefly (Trialeurodes vaporarioru) | 481 | 686 | 81 | 150 | 457 | 759 | 26 | 145 | 336 | 621 | 114 | 74 | 669 | 928 | 323 | 308 |
Green leafhopper (Cicadella viridis) | 23 | 23 | 45 | 57 | 17 | 23 | 45 | 49 | 21 | 19 | 46 | 46 | 58 | 61 | 102 | 111 |
Bean bug (Riptortus pedestris) | 18 | 10 | 1 | 1 | 22 | 19 | 2 | 1 | 29 | 16 | 1 | 1 | 9 | 34 | 3 | 1 |
Slender rice bug (Cletus trigonus) | 2 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
Yellow–brown stink bug (Halyomorpha halys) | 7 | 2 | 0 | 1 | 10 | 11 | 0 | 0 | 5 | 6 | 0 | 0 | 7 | 11 | 0 | 0 |
Cotton red bearded blind bug (Trigonotylus coelestialium) | 0 | 4 | 0 | 0 | 2 | 8 | 0 | 0 | 6 | 8 | 1 | 0 | 5 | 1 | 0 | 0 |
Black striped plant bug (Adelphocoris suturalis) | 2 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 3 | 0 | 0 | 1 | 2 | 0 | 0 |
Three-pointed bug (Adelphocoris fasciaticollis) | 2 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 2 | 3 | 0 | 0 | 5 | 4 | 0 | 1 |
Weevil (Sympiezomias velatus) | 10 | 15 | 0 | 0 | 14 | 13 | 0 | 0 | 13 | 15 | 0 | 0 | 8 | 9 | 1 | 0 |
Chinese grasshopper (Acrida cinerea) | 3 | 9 | 7 | 5 | 2 | 8 | 7 | 0 | 1 | 0 | 12 | 3 | 10 | 2 | 9 | 10 |
Yellow-shank locust (Oedaleus infernalis Sauss) | 1 | 10 | 6 | 11 | 3 | 7 | 20 | 7 | 1 | 8 | 5 | 0 | 4 | 3 | 5 | 5 |
Strychia breviflora (Xenocatantops brachycerus) | 1 | 3 | 0 | 1 | 1 | 2 | 9 | 4 | 1 | 1 | 1 | 1 | 5 | 2 | 4 | 4 |
Cricket (Gryllulus) | 4 | 4 | 1 | 8 | 8 | 0 | 4 | 8 | 6 | 1 | 3 | 3 | 1 | 0 | 2 | 14 |
Asiatic migratory locust (Locusta migratoria manilensis) | 3 | 2 | 15 | 17 | 3 | 8 | 1 | 15 | 3 | 1 | 0 | 18 | 4 | 4 | 6 | 23 |
Corn borer (Pyrausta nubilalis) | 4 | 8 | 9 | 4 | 6 | 13 | 6 | 1 | 3 | 3 | 3 | 7 | 9 | 16 | 4 | 1 |
Common cutworm (Spodoptera litura Fabricius) | 28 | 6 | 1 | 3 | 24 | 2 | 0 | 2 | 26 | 5 | 0 | 0 | 14 | 7 | 0 | 1 |
Beet armyworm (Spodoptera exigua) | 5 | 1 | 0 | 1 | 10 | 2 | 0 | 1 | 3 | 3 | 0 | 0 | 14 | 8 | 0 | 2 |
Bean bump night moth (Bomolocha tristalis Lederer) | 18 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 14 | 8 | 0 | 0 |
Small brown planthopper (Laodelphax striatellus) | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 16 | 0 | 0 | 0 |
Natural enemy insect | ||||||||||||||||
Green river long fly (Dolichopus qinghensis) | 23 | 25 | 0 | 1 | 30 | 26 | 0 | 0 | 26 | 21 | 1 | 0 | 29 | 35 | 0 | 2 |
Pilose three-pronged insect fly (Trichomachimus pubescens) | 4 | 4 | 1 | 1 | 4 | 3 | 1 | 2 | 3 | 3 | 0 | 1 | 1 | 3 | 1 | 1 |
Hoverfly (Episyrphus balteatus) | 3 | 2 | 4 | 0 | 2 | 2 | 1 | 0 | 4 | 5 | 1 | 0 | 2 | 1 | 1 | 2 |
Harlequin ladybird (Harmonia axyridis) | 2 | 7 | 1 | 1 | 2 | 10 | 0 | 0 | 4 | 9 | 1 | 0 | 1 | 2 | 3 | 0 |
Moire ladybird (Propylaea japonica Thunberg) | 0 | 6 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 4 | 0 | 0 | 1 | 0 | 0 | 0 |
Source of Variation | S | H | E | D |
---|---|---|---|---|
Sampling year (Y) | 274.7/<0.001 *** | 62.1/<0.001 *** | 5.7/0.023 * | 43.7/<0.001 *** |
Fertilizer level (F) | 0.1/0.813 | 2.4/0.129 | 68.9/<0.001 *** | 2.3/0.142 |
Planting pattern (P) | 90.2/<0.001 *** | 96.2/<0.001 *** | 102.6/<0.001 *** | 73.7/<0.001 *** |
Y × F | <0.01/0.937 | 12.4/0.001 ** | 129.0/<0.001 *** | 44.9/<0.001 *** |
Y × P | 32.7/<0.001 *** | 12.3/<0.001 *** | 6.8/0.001 ** | 3.0/0.044 * |
F × P | 0.5/0.710 | 0.4/0.748 | 5.7/0.003 ** | 2.0/0.129 |
Y × F × P | 0.8/0.477 | 0.7/0.545 | 1.0/0.399 | 0.8/0.526 |
Source of Variation | Greenhouse Whitefly | Green Leafhopper | Bean Bug | Asiatic Migratory Locust | Common Cutworm |
---|---|---|---|---|---|
Sampling year (Y) | 5.9/0.017 * | 23.2/<0.001 *** | 12.2/<0.001 *** | 6.5/0.013 * | 7.6/0.007 ** |
Fertilizer level (F) | 11.7/<0.001 *** | 1.1/0.295 | 0.1/0.773 | 2.9/0.094 | 4.6/0.035 * |
Planting pattern (P) | 0.5/0.679 | 7.5/<0.001 *** | 0.2/0.903 | 0.2/0.910 | 0.2/0.927 |
Y×F | 0.6/0.428 | 2.3/0.137 | 0.1/0.813 | 2.4/0.124 | 3.7/0.058 |
Y×P | 0.3/0.794 | 3.1/0.031 | 0.2/0.887 | 0.4/0.788 | 0.2/0.924 |
F×P | 0.5/0.670 | 0.3/0.793 | 0.9/0.408 | 0.3/0.836 | 0.2/0.883 |
Y×F×P | 0.5/0.685 | 1.0/0.405 | 0.6/0.583 | 0.3/0.860 | 0.2/0.915 |
Indicator | Fertilizer | Intercropping Planting Pattern | ||||
---|---|---|---|---|---|---|
Normal | Reduce (%) | C2S2 (%) | C2S3 (%) | C2S4 (%) | S | |
S | 4.6 a | 4.6 (+1.3) a | 5.1 (+111.7) a | 5.6 (+133.8) a | 5.2 (+117.1) a | 2.4 b |
H | 0.9 a | 0.9 (−4.4) a | 1.0 (+117.4) a | 1.1 (+134.8) a | 1.0 (+126.1) a | 0.5 b |
E | 0.7 a | 0.6 (−19.1) b | 0.7 (+65.9) a | 0.7 (+68.3) a | 0.7 (+65.9) a | 0.4 b |
D | 0.5 a | 0.5 (+3.8) a | 0.5 (−39.5) b | 0.5 (−40.8) b | 0.5 (−40.8) b | 0.8 a |
NGL | 2.1 a | 2.3 (+8.9) a | 1.7 (−56.1) b | 1.6 (−59.6) b | 1.6 (−59.6) b | 4.0 a |
NGWF | 29.3 b | 63.1 (+115.2) a | 36.1 (−33.3) a | 48.0 (−11.3) a | 46.6 (−13.8) a | 54.1 a |
CCW | 0.6 a | 0.1 (−83.3) b | 0.4 (+33.3) a | 0.4 (+33.3) a | 0.5 (+66.7) a | 0.3 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Chen, F.; Xing, G. Effects of Fertilizer Level and Intercropping Planting Pattern with Corn on the Yield-Related Traits and Insect Community of Soybean. Agronomy 2022, 12, 3080. https://doi.org/10.3390/agronomy12123080
Li L, Chen F, Xing G. Effects of Fertilizer Level and Intercropping Planting Pattern with Corn on the Yield-Related Traits and Insect Community of Soybean. Agronomy. 2022; 12(12):3080. https://doi.org/10.3390/agronomy12123080
Chicago/Turabian StyleLi, Likun, Fajun Chen, and Guangnan Xing. 2022. "Effects of Fertilizer Level and Intercropping Planting Pattern with Corn on the Yield-Related Traits and Insect Community of Soybean" Agronomy 12, no. 12: 3080. https://doi.org/10.3390/agronomy12123080
APA StyleLi, L., Chen, F., & Xing, G. (2022). Effects of Fertilizer Level and Intercropping Planting Pattern with Corn on the Yield-Related Traits and Insect Community of Soybean. Agronomy, 12(12), 3080. https://doi.org/10.3390/agronomy12123080