Machine Learning as a Diagnosis Tool of Groundwater Quality in Zones with High Agricultural Activity (Region of Campo de Cartagena, Murcia, Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Studied Zone
2.2. Origin of the Data
2.3. Methodology of Machine Learning Models
3. Results and Discussion
3.1. Naïve-Bayes Model
3.2. Decision-Tree Model
3.3. Evaluation of Model Accuracy
3.4. Groundwater Quality Results by Machine Learning Methods and Its Likely Relation with the Crops in the Studied Region
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wada, Y.; Van Beek, L.P.H.; Van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P. Global depletion of groundwater resources. Geophys. Res. Lett. 2010, 37, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Perez, M.; Tujchneider, O.; Paris, M.; D’Elía, M. Sustainability indicators of groundwater resources in the Central Area of Santa Fe Province, Argentina. Environ. Earth Sci. 2015, 73, 2671–2682. [Google Scholar] [CrossRef]
- Poeter, E.; Fan, Y.; Cherry, J.; Wood, W.M.D. The below-ground portion of our water cycle. In Groundwater in Our Water Cycle, 1st ed.; Cherry, J., Moran, S., de Oliveira, E.P.E., Eds.; Elsevier: Milton, ON, Canada, 2020; ISBN 978-1-7770541-1-3. [Google Scholar]
- Leduc, C.; Pulido-Bosch, A.; Remini, B. Anthropization of groundwater resources in the Mediterranean Region: Processes and challenges. Hydrogeol. J. 2017, 25, 1529–1547. [Google Scholar] [CrossRef]
- Kinzelbach, W.; Bauer, P.; Siegfried, T.; Brunner, P. Sustainable groundwater management—Problems and scientific tools. Episodes 2003, 26, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, A.; Sillanpää, M. A Review of emerging adsorbents for nitrate removal from water. Chem. Eng. J. 2011, 168, 493–504. [Google Scholar] [CrossRef]
- Abascal, E.; Gómez-Coma, L.; Ortiz, I.; Ortiz, A. Global diagnosis of nitrate pollution in groundwater and review of removal technologies. Sci. Total Environ. 2022, 810, 152233. [Google Scholar] [CrossRef]
- Herschy, R. Water quality for drinking: WHO Guidelines. In Encyclopedia of Lakes and Reservoirs; Encyclopedia of Earth Sciences Series; Bengtsson, L., Herschy, R.W., Fairbridge, R.W., Eds.; World Health Organization: Geneva, Switzerland, 2012; pp. 876–883. ISBN 978-92-4-154995-0. [Google Scholar]
- Heaton, T.H.E.; Stuart, M.E.; Sapiano, M.; Micallef Sultana, M. An isotope study of the sources of Nitrate in Malta’s Groundwater. J. Hydrol. 2012, 414–415, 244–254. [Google Scholar] [CrossRef]
- Re, V.; Sacchi, E.; Kammoun, S.; Tringali, C.; Trabelsi, R.; Zouari, K.; Daniele, S. Integrated socio-hydrogeological approach to tackle nitrate contamination in groundwater resources. The Case of Grombalia Basin (Tunisia). Sci. Total Environ. 2017, 593–594, 664–676. [Google Scholar] [CrossRef]
- Kapembo, M.L.; Laffite, A.; Bokolo, M.K.; Mbanga, A.L.; Maya-Vangua, M.M.; Otamonga, J.P.; Mulaji, C.K.; Mpiana, P.T.; Wildi, W.; Poté, J. Evaluation of water quality from suburban shallow wells under tropical conditions according to the seasonal variation, bumbu, kinshasa, democratic republic of the congo. Exp. Health 2016, 8, 487–496. [Google Scholar] [CrossRef] [Green Version]
- Comunidad de Regantes Campo de Cartagena. Available online: https://www.crcc.es/informacion-general/informacion-c-r-c-c/ (accessed on 9 January 2022).
- Martínez Fernández, J.; Fitz, C.; Esteve-Selma, M.Á.; Guaita, N.; Martinez-Lopez, J. Modelización del efecto de los cambios de uso del suelo sobre los flujos de nutrientes En Cuencas Agrícolas Costeras: El Caso Del Mar Menor (Sudeste de España). Ecosistemas 2013, 22, 84–94. [Google Scholar] [CrossRef]
- Pedrero Salcedo, F.; Pérez Cutillas, P.; Aziz, F.; Llobet Escabias, M.; Boesveld, H.; Bartholomeus, H.; Tallou, A. Soil salinity prediction using remotely piloted aircraft systems under semi-arid environments irrigated with salty non-conventional water resources. Agronomy 2022, 12, 2022. [Google Scholar] [CrossRef]
- Alcolea, A.; Contreras, S.; Hunink, J.E.; García-Aróstegui, J.L.; Jiménez-Martínez, J. Hydrogeological modelling for the watershed management of the Mar Menor Coastal Lagoon (Spain). Sci. Total Environ. 2019, 663, 901–914. [Google Scholar] [CrossRef] [PubMed]
- UN Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/development-agenda/ (accessed on 13 March 2022).
- Armenta-Medina, D.; Ramirez-Delreal, T.A.; Villanueva-Vásquez, D.; Mejia-Aguirre, C. Trends on advanced information and communication technologies for improving agricultural productivities: A bibliometric analysis. Agronomy 2020, 10, 1989. [Google Scholar] [CrossRef]
- Gholami, V.; Booij, M.J. Use of machine learning and geographical information system to predict nitrate concentration in an unconfined aquifer in Iran. J. Clean. Prod. 2022, 360, 131847. [Google Scholar] [CrossRef]
- Awais, M.; Aslam, B.; Maqsoom, A.; Khalil, U.; Ullah, F.; Azam, S.; Imran, M. Assessing nitrate contamination risks in groundwater: A machine learning approach. Appl. Sci. 2021, 11, 10034. [Google Scholar] [CrossRef]
- El Bilali, A.; Taleb, A.; Brouziyne, Y. Groundwater quality forecasting using machine learning algorithms for irrigation purposes. Agric. Water Manag. 2021, 245, 106625. [Google Scholar] [CrossRef]
- Alkindi, K.M.; Mukherjee, K.; Pandey, M.; Arora, A.; Janizadeh, S.; Pham, Q.B.; Anh, D.T.; Ahmadi, K. Prediction of groundwater nitrate concentration in a Semiarid region using hybrid bayesian artificial intelligence approaches. Environ. Sci. Pollut. Res. 2022, 29, 20421–20436. [Google Scholar] [CrossRef]
- Chazarra Bernabé, A.; Flórez García, E.; Peraza Sánchez, B.; Tohá Rebull, T.; Lorenzo Mariño, B.; Criado Pinto, E.; Moreno García, J.V.; Romero Fresneda, R.; Botey Fullat, R. Mapas Climáticos de España (1981–2010) y ETo (1996–2016); Agencia Estatal de Meteorología (AEMET), Ministerio para la Transición Ecológica y el Reto Demográfico: Madrid, Spain, 2018; p. 75.
- Agencia Estatal de Meteorologia (AEMET). Ministerio para la Transición Ecológica y el Reto Demográfico. Valores Climatológicos Normales. San Javier Aeropuerto. Available online: https://www.aemet.es/es/serviciosclimaticos/datosclimatologicos/valoresclimatologicos?l=7031&k=undefined (accessed on 22 November 2022).
- Instituto Tecnológico y Geominero de España (ITGE). Las Aguas Subterráneas del Campo de Cartagena (Murcia) Madrid; ITGE: Madrid, Spain, 1993. [Google Scholar]
- Jiménez-Martínez, J.; Aravena, R.; Candela, L. The role of leaky boreholes in the contamination of a regional confined aquifer. A case study: The Campo de Cartagena Region, Spain. Water Air Soil Pollut. 2011, 215, 311–327. [Google Scholar] [CrossRef]
- ISO 5667-11:2009; Water Quality Sampling Part 11: Guidance on Sampling of Groundwaters. International Organization for Standardization: Geneva, Switzerland, 2009.
- Rodger, B.; Bridgewater, L. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- ISO 14911:1998; Water Quality. Determination Dissolved of Li+, Na+, NH4+, K+, Mn2+, Ca2+, Mg2+, Sr2+ and Ba2+ Using Ion ChromatographyMethod for Water and Waste Water. International Organization for Standardization: Geneva, Switzerland, 2000.
- Buenadicha García, A. La Degradación Del Mar Menor: Causas y Planteamiento de Posible Solución Relacionada Con La Ingeniería Civil. Bachelor’s Thesis, Escuela Técnica Superior de Ingeniería Civil, Madrid, Spain, 2021. [Google Scholar]
- Karim, M.; Rahman, R.M. Decision tree and naïve bayes algorithm for classification and generation of actionable knowledge for direct marketing. J. Softw. Eng. Appl. 2013, 6, 196–206. [Google Scholar] [CrossRef] [Green Version]
- Platform, K.A. KoNstanz Information MinEr. Available online: https://www.knime.com/software-overview (accessed on 5 February 2022).
- European Union Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption (recast). Off. J. Eur. Union 2020, 435, 12–23.
- BOE. Real Decreto 47/2022, de 18 de Enero, Sobre Protección de las Aguas Contra la Contaminación Difusa Producida Por Los Nitratos Procedentes de Fuentes Agrarias. Available online: https://www.boe.es/boe/dias/2022/01/20/pdfs/BOE-A-2022-860.pdf (accessed on 26 October 2022).
- BOE. Real Decreto 1514/2009, de 2 de Octubre, Por el Que Se Regula la Protección de las Aguas Subterráneas Contra la Contaminación y el Deterioro. Available online: https://www.boe.es/buscar/pdf/2009/BOE-A-2009-16772-consolidado.pdf (accessed on 26 October 2022).
- Pérez Hernándes, F.; Martínez Vicente, D.; Carmona Cabrera, A.; Barba Martínez, E.; Portillo Muñoz, J.M.; Mora Rufete, I.; Corbalán Pellicer, J.; Campillo Moreno, F. Estadística Agraria de Murcia 2017/18; Informe 26; Dirección General de Innovación, Producciones y Mercados Agroalimentarios. Consejería de Agua, Agricultura, Ganadería y Pesca. Comunidad Autónoma de la Región de Murcia: Murcia, Spain, 2018; pp. 61–90.
- Ministerio de Agricultura, Pesca y Alimentación. Mapa de Cultivos y Aprovechamientos de España. Available online: https://www.mapa.gob.es/es/agricultura/temas/sistema-de-informacion-geografica-de-datos-agrarios/mca.aspx (accessed on 9 June 2022).
- Ministerio para la Transición Ecológica y el Reto Demográfico. Análisis de Soluciones para el Vertido Cero al Mar Menor Proveniente del Campo de Cartagena. Estudio del Impacto Ambiental. APÉNDICE 1 Diagnóstico de la Problemática del Mar Menor; Ministerio para la Transición Ecológica y el Reto Demográfico: Madrid, Spain, 2019; pp. 1–23.
- Domingo-Pinillos, J.C.; Senent-Aparicio, J.; García-Aróstegui, J.L.; Baudron, P. Long term hydrodynamic effects in a semi-arid mediterranean multilayer aquifer: Campo de cartagena in South-Eastern Spain. Water 2018, 10, 1320. [Google Scholar] [CrossRef]
- Velasco, J.; Lloret, J.; Millan, A.; Marin, A.; Barahona, J.; Abellan, P.; Sanchez-Fernandez, D. Nutrient and particulate inputs into the Mar Menor Lagoon (SE Spain) from an intensive agricultural watershed. Water Air Soil Pollut. 2006, 176, 37–56. [Google Scholar] [CrossRef]
- Ministerio para la Transición Ecológica y el Reto Demográfico. Estado de Situación de las Actuaciones Previstas por la Administración General del Estado para Abordar la Situación del Mar Menor; Ministerio para la Transición Ecológica y el Reto Demográfico: Madrid, Spain, 2020.
Zone | Sampling Points | Geographic Coordinates (X-Y UTM) | Sampling Points | Geographic Coordinates (X-Y UTM) |
---|---|---|---|---|
Center | C1 | (678652-4180779) | C6 | (684489-4176462) |
C2 | (678651-4178378) | C7 | (685400-4177655) | |
C3 | (681013-4178572) | C8 | (685886-4176189) | |
C4 | (682822-4177692 | C9 | (681013-4173533) | |
C5 | (682888-4177302) | C10 | (689915-4173913) | |
South | S1 | (678134-4169109) | S9 | (679034-4164293) |
S2 | (680169-4169009) | S10 | (679840-4163229) | |
S3 | (681177-4167963) | S11 | (680573-4164666) | |
S4 | (687788-4167392) | S12 | (694476-4164593) | |
S5 | (680826-4168169) | S13 | (694575-4164931) | |
S6 | (692485-4168946) | S14 | (695333-4165861) | |
S7 | (676797-4164479) | S15 | (700773-4166663) | |
S8 | (676986-4163637) | |||
North | N1 | (680664-4198075) | N10 | (692809-4193259) |
N2 | (680703-4198219) | N11 | (673688-4189992) | |
N3 | (680826-4197634) | N12 | (672248-4189785) | |
N4 | (675789-4195142) | N13 | (672188-4189692) | |
N5 | (671637-4192846) | N14 | (671820-4188127) | |
N6 | (679973-4191938) | N15 | (679302-4185182) | |
N7 | (691092-4193273) | N16 | (688113-4185836) | |
N8 | (691695-4192247) | N17 | (691717-4187562) | |
N9 | (692703-4193059) | N18 | (695504-4190549) | |
West | O1 | (650134-4177265) | O3 | (657176-4177458) |
O2 | (652084-4178079) | O4 | (658556-4175594) |
Zone | Parameter | Unit | Minimum Value | Maximum Value | Mean | Standard Deviation | N |
---|---|---|---|---|---|---|---|
Center | pH | 7.0 | 8.52 | 7.5 | 0.4 | 78 | |
Nitrate | mg L−1 | 8.29 | 321 | 12 × 101 | 7 × 101 | 78 | |
Chloride | mg L−1 | 135 | 3576 | 17 × 102 | 8 × 102 | 78 | |
Sulfate | mg L−1 | 186 | 2832 | 15 × 102 | 5 × 102 | 78 | |
Electrical conductivity | μS cm−1 | 1409 | 11,000 | 7 × 103 | 2 × 103 | 78 | |
North | pH | 6.30 | 9.00 | 7.5 | 0.5 | 116 | |
Nitrate | mg L−1 | n.d. | 417 | 1 × 102 | 1 × 102 | 116 | |
Chloride | mg L−1 | 45 | 4018 | 12 × 102 | 1 × 102 | 116 | |
Sulfate | mg L−1 | 48 | 2831 | 283 × 101 | 5 × 101 | 116 | |
Electrical conductivity | μS cm−1 | 1210 | 12,350 | 5 × 103 | 2 × 103 | 116 | |
South | pH | 6.74 | 8.40 | 7.4 | 0.3 | 67 | |
Nitrate | mg L−1 | n.d. | 522 | 2 × 102 | 1 × 102 | 67 | |
Chloride | mg L−1 | n.d. | 2559 | 11 × 102 | 5 × 102 | 67 | |
Sulfate | mg L−1 | 36 | 4409 | 1 × 103 | 1 × 103 | 67 | |
Electrical conductivity | μS cm−1 | 696 | 11,060 | 5 × 103 | 2 × 103 | 67 | |
West | pH | 7.10 | 8.10 | 7.5 | 0.2 | 21 | |
Nitrate | mg L−1 | 8 | 142 | 6 × 101 | 2 × 101 | 21 | |
Chloride | mg L−1 | 708.00 | 1280 | 9 × 102 | 1 × 102 | 21 | |
Sulfate | mg L−1 | 930 | 1807 | 12 × 102 | 2 × 102 | 21 | |
Electrical conductivity | μS cm−1 | 3530 | 5804 | 46 × 103 | 6 × 103 | 21 |
Parameter | Groundwater Quality | ||
---|---|---|---|
High | Medium | Low | |
Nitrate (mg L−1) | <37.5 | 37.5–50 | >50 |
Electrical conductivity (μS cm−1) | <2500 | 2500–6500 | >6500 |
Chloride (mg L−1) | <250 | 250–1500 | >1500 |
Sulfate (mg L−1) | <250 | 250–1500 | >1500 |
Variable | Statistic | Electrical Conductivity | Chloride | Sulfate | Nitrate |
---|---|---|---|---|---|
Electrical conductivity | r | 1 | 0.887 | 0.706 | 0.175 |
p-value | 0.000 | 0.000 | 0.009 | ||
Chloride | r | 0.887 | 1 | 0.656 | 0.161 |
p-value | 0.000 | 0.000 | 0.016 | ||
Sulfate | r | 0.706 | 0.656 | 1 | −0.004 |
p-value | 0.000 | 0.000 | 0.947 | ||
Nitrate | r | 0.175 | 0.161 | −0.004 | 1 |
p-value | 0.009 | 0.016 | 0.947 |
Actual Quality | Predicted Quality | Actual Quality | Predicted Quality | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Zone SP 1 | Low | Medium | High | Low | Medium | High | Zone SP 1 | Low | Medium | High | Low | Medium | High |
Center | Center | ||||||||||||
C1 | 4 | 2 | 2 | C6 | 5 | 5 | |||||||
C2 | 5 | 5 | C8 | 2 | 2 | ||||||||
C3 | 3 | 3 | |||||||||||
North | North | ||||||||||||
N1 | 2 | 2 | N12 | 4 | 4 | ||||||||
N3 | 1 | 1 | 2 | N13 | 1 | 4 | 1 | 4 | |||||
N7 | 3 | 3 | N14 | 1 | 1 | ||||||||
N8 | 1 | 1 | N15 | 5 | 5 | ||||||||
N9 | 8 | 7 | 1 | N17 | 2 | 2 | |||||||
N11 | 3 | 3 | N18 | 5 | 5 | ||||||||
West | West | ||||||||||||
O1 | 2 | 2 | O3 | 1 | 1 | ||||||||
South | South | ||||||||||||
S1 | 1 | 1 | S8 | 2 | 2 | ||||||||
S2 | 6 | 6 | S9 | 2 | 2 | ||||||||
S3 | 5 | 5 | S10 | 1 | 1 | ||||||||
S5 | 1 | 1 | S13 | 2 | 2 | ||||||||
S6 | 1 | 1 | S15 | 1 | 1 | ||||||||
Total Actual Quality | Low | 60 | Medium | 24 | High | 1 | |||||||
Total Predicted Quality | Low | 56 | Medium | 27 | High | 2 |
Actual Quality | Predicted Quality | Actual Quality | Predicted Quality | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Zone SP 1 | Low | Medium | High | Low | Medium | High | Zone SP 1 | Low | Medium | High | Low | Medium | High |
Center | Center | ||||||||||||
C1 | 6 | 6 | C6 | 4 | 4 | ||||||||
C2 | 1 | 1 | C7 | 1 | 1 | ||||||||
C3 | 3 | 3 | C8 | 3 | 1 | 1 | 3 | 2 | |||||
C4 | 4 | 4 | |||||||||||
North | North | ||||||||||||
N1 | 3 | 3 | N12 | 1 | 1 | ||||||||
N3 | 2 | 1 | 3 | N13 | 1 | 2 | 1 | 2 | |||||
N6 | 1 | 1 | N14 | 1 | 1 | ||||||||
N7 | 2 | 2 | N15 | 3 | 3 | ||||||||
N9 | 2 | 2 | N17 | 4 | 4 | ||||||||
N11 | 5 | 2 | 4 | 3 | N18 | 1 | 1 | ||||||
West | West | ||||||||||||
O1 | 6 | 2 | 6 | 2 | O3 | 3 | 3 | ||||||
South | South | ||||||||||||
S1 | 2 | 2 | S8 | 1 | 1 | ||||||||
S2 | 4 | 4 | S9 | 2 | 2 | ||||||||
S3 | 1 | 1 | S12 | 1 | 1 | ||||||||
S5 | 1 | 1 | S13 | 2 | 2 | ||||||||
S6 | 3 | 3 | S15 | 2 | 2 | ||||||||
Total Actual Quality | Low | 61 | Medium | 23 | High | 1 | |||||||
Total Predicted Quality | Low | 57 | Medium | 28 | High | 0 |
Model | Classification of Groundwater Quality | |||
---|---|---|---|---|
Low | Medium | High | ||
Naïve-Bayes | Low | 56 | 4 | 0 |
Medium | 0 | 23 | 1 | |
High | 0 | 0 | 1 | |
Decision-tree | Low | 57 | 4 | 0 |
Medium | 0 | 23 | 0 | |
High | 0 | 1 | 0 |
Zone | Crop System | Area (Ha) |
---|---|---|
Center | Irrigated land 1 | 5154.70 |
Forestry 2 | 1253.11 | |
Rainfed 3 | 224.42 | |
South | Irrigated land 1 | 18,957.57 |
Forestry 2 | 26,847.15 | |
Rainfed 3 | 11,661.44 | |
North | Irrigated land 1 | 18,302.80 |
Forestry 2 | 3815.86 | |
Rainfed 3 | 747.84 | |
West | Irrigated land 1 | 6178.58 |
Forestry 2 | 6695.73 | |
Rainfed 3 | 14,318.43 |
Crops | Sampling Zone | |||
---|---|---|---|---|
Center | South | North | West | |
Area (Ha) | ||||
Herbaceous | 4430 | 9587 | 3496.5 | 2270 |
Cereals for grain | 0 | 10 | 4 | 0 |
Industrial crops | 9.75 | 71 | 7.25 | 0 |
Flowers | 7.5 | 18 | 34.5 | 0 |
Vegetables and forced crops | 4195 | 5978 | 1992 | 2228 |
Human consumption tubers | 218.25 | 3510 | 156.75 | 42 |
Citrus fruits | 1703 | 2657 | 2369 | 938 |
Almond tree | 112.5 | 328 | 42.5 | 393 |
Peach tree | 1.5 | 8 | 52.5 | 0 |
Olive grove | 91 | 48 | 62 | 149 |
Vineyard | 0 | 20 | 1 | 20 |
Others | 33.75 | 24 | 70.25 | 24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-del-Toro, E.M.; García-Salgado, S.; Mateo, L.F.; Quijano, M.Á.; Más-López, M.I. Machine Learning as a Diagnosis Tool of Groundwater Quality in Zones with High Agricultural Activity (Region of Campo de Cartagena, Murcia, Spain). Agronomy 2022, 12, 3076. https://doi.org/10.3390/agronomy12123076
García-del-Toro EM, García-Salgado S, Mateo LF, Quijano MÁ, Más-López MI. Machine Learning as a Diagnosis Tool of Groundwater Quality in Zones with High Agricultural Activity (Region of Campo de Cartagena, Murcia, Spain). Agronomy. 2022; 12(12):3076. https://doi.org/10.3390/agronomy12123076
Chicago/Turabian StyleGarcía-del-Toro, Eva M., Sara García-Salgado, Luis F. Mateo, M. Ángeles Quijano, and M. Isabel Más-López. 2022. "Machine Learning as a Diagnosis Tool of Groundwater Quality in Zones with High Agricultural Activity (Region of Campo de Cartagena, Murcia, Spain)" Agronomy 12, no. 12: 3076. https://doi.org/10.3390/agronomy12123076
APA StyleGarcía-del-Toro, E. M., García-Salgado, S., Mateo, L. F., Quijano, M. Á., & Más-López, M. I. (2022). Machine Learning as a Diagnosis Tool of Groundwater Quality in Zones with High Agricultural Activity (Region of Campo de Cartagena, Murcia, Spain). Agronomy, 12(12), 3076. https://doi.org/10.3390/agronomy12123076