Characteristics of Soil Organic Carbon in Croplands and Affecting Factors in Hubei Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Field Sampling and Laboratory Analysis
2.3. Quality Control
2.4. Calculation of SOC Density (SOCD) and SOCS
3. Results
3.1. Exploratory Data Analysis
3.2. The SOCD Demonstrated Significant Distribution
3.3. Variability in SOCD and SOCS among Soil Types and Topography
4. Discussion
4.1. SOCD Distribution and SOC Storage
4.2. The Factors Influencing SOCS
4.3. Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piao, S.; Zhang, X.; Chen, A.; Liu, Q.; Lian, X.; Wang, X.; Peng, S.; Wu, X. The impacts of climate extremes on the terrestrial carbon cycle: A review. Sci. China Earth Sci. 2019, 62, 1551–1563. [Google Scholar] [CrossRef]
- Xiao, J.; Chevallier, F.; Gomez, C.; Guanter, L.; Hicke, J.A.; Huete, A.R.; Ichii, K.; Ni, W.; Pang, Y.; Rahman, A.F.; et al. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sens. Environ. 2019, 233, 111383. [Google Scholar]
- Moharana, P.C.; Jena, R.K.; Kumar, N.; Singh, R.S.; Rao, S.S. Assessment of soil organic and inorganic carbon stock at different soil depths after conversion of desert into arable land in the hot arid regions of India. Carbon Manag. 2021, 12, 153–165. [Google Scholar] [CrossRef]
- Wang, L.; Gao, J.X.; Shen, W.M.; Shi, W.L.; Zhang, H.W. Carbon storage in vegetation and soil in Chinese ecosystems estimated by carbon transfer rate method. Ecosphere 2021, 12, e03341. [Google Scholar] [CrossRef]
- Zhou, J.; Xue, D.; Lei, L.; Wang, L.; Zhong, G.; Liu, C. Impacts of Climate and Land Cover on Soil Organic Carbon in the Eastern Qilian Mountains, China. Sustainability 2019, 11, 5790. [Google Scholar] [CrossRef][Green Version]
- Were, K.; Bui, D.T.; Dick, Ø.B.; Singh, B.R. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecol. Indic. 2015, 52, 394–403. [Google Scholar] [CrossRef]
- Li, Q.C.; Li, X.J.; Min, X.Y.; Xiao, Y. Distribution of SOC and δ~(13)C in Typical Reclaimed Land and Relation with Soil Physicochemical Properties. J. Shandong Agric. Univ. (Nat. Sci. Ed.) 2019, 50, 513–519. [Google Scholar]
- Ghimire, R.; Bista, P.; Machado, S. Long-term Management Effects and Temperature Sensitivity of Soil Organic Carbon in Grassland and Agricultural Soils. Sci. Rep. 2019, 9, 12151. [Google Scholar] [CrossRef][Green Version]
- Rumpel, C.; Amiraslani, F.; Chenu, C.; Cardenas, M.G.; Kaonga, M.; Koutika, L.S.; Ladha, J.; Madari, B.; Shirato, Y.; Smith, P.; et al. The 4p1000 initiative: Opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy. Ambio 2020, 49, 350–360. [Google Scholar] [CrossRef][Green Version]
- Li, M.; Han, X.; Du, S.; Li, L.J. Profile stock of soil organic carbon and distribution in croplands of Northeast China. Catena 2019, 174, 285–292. [Google Scholar] [CrossRef]
- Guerrero-Ramírez, N.R.; Pizarro, V.; Turner, B.L. Soil and microbial nutrient status are heterogeneous within an elevational belt on a neotropical mountain. Pedobiologia 2020, 83, 150689. [Google Scholar] [CrossRef]
- Walter, K.; Don, A.; Tiemeyer, B.; Freibauer, A. Determining Soil Bulk Density for Carbon Stock Calculations: A Systematic Method Comparison. Soil Sci. Soc. Am. J. 2016, 80, 579. [Google Scholar] [CrossRef]
- Dayathilake, D.; Lokupitiya, E.; Wijeratne, V. Estimation of Soil Carbon Stocks of Urban Freshwater Wetlands in the Colombo Ramsar Wetland City and their Potential Role in Climate Change Mitigation. Wetlands 2021, 41, 29. [Google Scholar] [CrossRef]
- Zhang, Y.; Hartemink, A.E. Sampling designs for soil organic carbon stock assessment of soil profiles. Geoderma 2017, 307, 220–230. [Google Scholar] [CrossRef]
- Bennett, L.T.; Hinko-Najera, N.; Aponte, C.; Nitschke, C.R.; Kasel, S.; Fairman, T.A.; Fedrigo, M.; Kasel, S. Refining benchmarks for soil organic carbon in Australia’s temperate forests. Geoderma 2020, 368, 114246. [Google Scholar] [CrossRef]
- Fernandez-Romero, M.L.; Lozano-Garcia, B.; Parras-Alcantara, L. Topography and land use change effects on the soil organic carbon stock of forest soils in Mediterranean natural areas. Agric. Ecosyst. Environ. 2014, 195, 1–9. [Google Scholar] [CrossRef]
- Prietzel, J.; Wiesmeier, M. A concept to optimize the accuracy of soil surface area and SOC stock quantification in mountainous landscapes. Geoderma 2019, 356, 113922. [Google Scholar] [CrossRef]
- Grilli, E.; Carvalho, S.; Chiti, T.; Coppola, E.; Castaldi, S. Critical range of soil organic carbon in southern Europe lands under desertification risk. J. Environ. Manag. 2021, 287, 112285. [Google Scholar] [CrossRef]
- Sun, W.; Liu, S.; Zhang, X.; Li, Y. Estimation of soil organic matter content using selected spectral subset of hyperspectral data. Geoderma 2022, 409, 115653. [Google Scholar] [CrossRef]
- Martin, M.P.; Orton, T.G.; Lacarce, E.; Meersmans, J.; Saby, N.; Paroissien, J.B.; Jolivet, C.; Boulonne, L.; Arrouays, D. Evaluation of modelling approaches for predicting the spatial distribution of soil organic carbon stocks at the national scale. Geoderma 2014, 223–225, 97–107. [Google Scholar] [CrossRef][Green Version]
- Chen, L.-C.; Guan, X.; Li, H.M.; Wang, Q.K.; Zhang, W.D.; Yang, Q.P.; Wang, S.L. Spatiotemporal patterns of carbon storage in forest ecosystems in Hunan Province, China. For. Ecol. Manag. 2019, 432, 656–666. [Google Scholar] [CrossRef]
- Hassink, J.; Bouwman, L.A.; Zwart, K.B.; Bloem, J.; Brussaard, L. Relationships between soil texture, physical protection of organic matter, soil biota, and c and n mineralization in grassland soils. Geoderma 1993, 57, 105–128. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, X.; Dungait, J.; Green, S.M.; Quine, T.A. Contribution of soil microbial necromass to SOC stocks during vegetation recovery in a subtropical karst ecosystem. Sci. Total Environ. 2020, 761, 143945. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zha, T.; Zhang, X.; Ma, L. Vertical distribution and influencing factors of soil organic carbon in the Loess Plateau, China. Sci. Total Environ. 2019, 693, 133632. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Song, R.; Sun, S.; Li, Y.; Hu, K. Land use/land cover change and its impact on ecosystem carbon storage in coastal areas of China from 1980 to 2050. Ecol. Indic. 2022, 142, 109178. [Google Scholar] [CrossRef]
- Cambou, A.; Shaw, R.K.; Huot, H.; Vidal-Beaudet, L.; Hunault, G.; Cannavo, P.; Nold, F.; Schwartz, C. Estimation of soil organic carbon stocks of two cities, New York City and Paris. Sci. Total Environ. 2018, 644, 452–464. [Google Scholar] [CrossRef][Green Version]
- Guan, J.H.; Deng, L.; Zhang, J.-G.; He, Q.-Y.; Shi, W.-Y.; Li, G.; Du, S. Soil organic carbon density and its driving factors in forest ecosystems across a northwestern province in China. Geoderma 2019, 352, 1–12. [Google Scholar] [CrossRef]
- Chen, S.; Arrouays, D.; Angers, D.A.; Chenu, C.; Barré, P.; Martin, M.P.; Saby, N.P.; Walter, C. National estimation of soil organic carbon storage potential for arable soils: A data-driven approach coupled with carbon-landscape zones. Sci. Total Environ. 2019, 666, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Cai, Z.; Wang, S.; Smith, P. Direct measurement of soil organic carbon content change in the croplands of China. Glob. Chang. Biol. 2011, 17, 1487–1496. [Google Scholar] [CrossRef]
- Du, Y.; Geng, Z.; Guo, X.; Cao, G. Spatial distribution of grassland soil organic carbon and potential carbon storage on the Qinghai Plateau. Grassl. Sci. 2019, 65, 141–146. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Song, K.S.; Liu, D.W.; Zhang, S.M. Soil organic carbon under different landscape attributes in croplands of Northeast China. Plant Soil Environ. 2008, 54, 420–427. [Google Scholar]
- Ponge, J.-F.; Sartori, G.; Garlato, A.; Ungaro, F.; Zanella, A.; Jabiol, B.; Obber, S. The impact of parent material, climate, soil type and vegetation on Venetian forest humus forms: A direct gradient approach. Geoderma 2014, 226, 290–299. [Google Scholar] [CrossRef][Green Version]
- Wang, L.; Huang, G.Q.; Sun, D.P.; Wang, S.B. Crop yield and soil nutrients under paddy-upland multiple cropping rotation systems. Chin. J. Ecol. 2018, 37, 3284–3290. [Google Scholar]
- Tong, W.B.; Yang, L.Y.; Zhang, M.K. Comparative Study on Soil Fertility between Upland and Paddy Field in Red Soil Hilly Region of Zhejiang Province. Acta Agric. Jiangxi 2019, 31, 46–50. [Google Scholar]
- Man, W.; Yu, H.; Li, L.; Liu, M.; Mao, D.; Ren, C.; Wang, Z.; Jia, M.; Miao, Z.; Lu, C.; et al. Spatial Expansion and Soil Organic Carbon Storage Changes of Croplands in the Sanjiang Plain, China. Sustainability 2017, 9, 563. [Google Scholar] [CrossRef]
- Yang, M.; Wang, S.; Zhao, X.; Gao, X.; Liu, S. Soil properties of apple orchards on China’s Loess Plateau. Sci. Total Environ. 2020, 723, 138041. [Google Scholar] [CrossRef] [PubMed]
- Arunrat, N.; Sereenonchai, S.; Hatano, R. Impact of burning on soil organic carbon of maize-upland rice system in Mae Chaem Basin of Northern Thailand. Geoderma 2021, 392, 115002. [Google Scholar] [CrossRef]
- Tang, M.; Wang, S.; Zhao, M.; Qin, F.; Liu, X. Simulated Soil Organic Carbon Density Changes from 1980 to 2016 in Shandong Province Dry Farmlands Using the CENTURY Model. Sustainability 2020, 12, 5384. [Google Scholar] [CrossRef]
Item | Analysis Method | Reference |
---|---|---|
Organic matter | Oil bath heating potassium dichromate oxidation volumetric method | NY/T1121.6 |
Available phosphorus | Sodium bicarbonate extraction–molybdenum antimony anti-colorimetric method | NY/T1121.7 |
Rapidly available K | Ammonium acetate extraction–flame photometry | NY/T889 |
Soil texture | Simple hydrometer | NY/T |
Soil bulk density | Cutting-ring method | NY/T1121.4 |
CEC | EDTA–ammonium acetate exchange method | NY/T295 |
Total nitrogen | Kjeldahl distillation | NY/T53 |
Slowly available K | Nitric acid extraction–flame photometry | NY/T889 |
Available sulfur | Phosphate-acetic acid or calcium chloride extraction–barium sulfate turbidimetry | NY/T1121.14 |
Available silicon | Citric acid extraction–silicon molybdenum blue colorimetry | NY/T1121.15 |
Effective copper, zinc, iron, manganese | DTPA extraction–atomic absorption spectrophotometry | NY/T890 |
Available boron | Methimide H colorimetric method | NY/T1121.8 |
Soil Parameters | Mean | Min | Max | V | S | K | CV(%) |
---|---|---|---|---|---|---|---|
SOCD (kg/m2) | 3.3710 ± 0.0337 | 0.559 | 10.613 | 1.68 | 0.69 | 1.12 | 38.50 |
SOCC (g/kg) | 13.454 ± 0.127 | 2.494 | 40.545 | 24.12 | 0.60 | 1.01 | 36.51 |
Soil bulk density | 1.2534 ± 0.1459 | 0.800 | 1.700 | 0.02 | 0.06 | 0.34 | 11.64 |
Total N (g/kg) | 1.3341 ± 0.0127 | 0.258 | 3.550 | 0.24 | 0.47 | 0.26 | 36.49 |
Available phosphorus (mg/kg) | 13.265 ± 0.258 | 2.000 | 50.000 | 99.26 | 1.47 | 1.78 | 75.11 |
Rapidly available K (mg/kg) | 105.470 ± 1.42 | 20.000 | 300.000 | 3000.68 | 1.08 | 1.21 | 51.94 |
Slowly available K (mg/kg) | 425.050 ± 7.380 | 105.000 | 1488.000 | 80,770.66 | 1.29 | 1.28 | 66.86 |
Available zinc (mg/kg) | 1.6563 ± 0.0285 | 0.100 | 4.990 | 1.20 | 1.13 | 0.78 | 66.22 |
Available boron (mg/kg) | 0.5039 ± 0.0126 | 0.020 | 4.480 | 0.24 | 4.27 | 23.27 | 96.48 |
Effective copper (mg/kg) | 2.9704 ± 0.0480 | 0.200 | 10.000 | 3.46 | 1.05 | 1.11 | 62.58 |
Available iron (mg/kg) | 57.286 ± 1.366 | 5.000 | 482.300 | 2768.61 | 2.46 | 9.34 | 91.85 |
Effective manganese (mg/kg) | 25.936 ± 0.437 | 1.000 | 97.800 | 282.51 | 1.31 | 2.32 | 64.81 |
Efficient sulfur (mg/kg) | 50.510 ± 1.078 | 10.000 | 352.880 | 1724.82 | 2.03 | 6.17 | 82.22 |
Effective silicon (mg/kg) | 201.470 ± 2.99 | 10.250 | 498.100 | 13,227.50 | 0.65 | −0.47 | 57.08 |
Plain Cultivation Areas | Hilly Cultivated Area | Mountain Cultivated Area | |||||||
---|---|---|---|---|---|---|---|---|---|
Sub Type | N | SOCD | SOCS | N | SOCD | SOCS | N | SOCD | SOCS |
Alluvial soil * | 903 | 2.7937 | 2.2936 | 45 | 2.9065 | 0.2584 | 10 | 3.8228 | 0.0184 |
Typical chao soil | 48 | 2.7909 | 0.2169 | 24 | 2.6650 | 0.0642 | 2 | 3.4168 | 0.0027 |
Calcareous chao soil | 853 | 2.8004 | 2.0779 | 21 | 3.1826 | 0.2066 | 8 | 3.9243 | 0.0161 |
Yellow brown soil * | 62 | 2.9483 | 0.5773 | 273 | 3.0466 | 1.9370 | 480 | 4.1718 | 1.9391 |
Typical yellow brown soil | 40 | 2.9777 | 0.2742 | 162 | 3.1328 | 1.0636 | 216 | 4.2225 | 0.6135 |
Dark-yellow-brown soil | 7 | 2.5793 | 0.0155 | 29 | 2.8836 | 0.0225 | 138 | 4.0866 | 0.6784 |
Yellow brown loam | 15 | 3.0420 | 0.2972 | 82 | 2.9340 | 0.8462 | 126 | 4.1783 | 0.6414 |
Limestone soils * | 1 | - | - | 67 | 3.1904 | 0.1018 | 56 | 4.1460 | 0.4299 |
Brown calcareous soil | 1 | - | - | 60 | 3.1153 | 0.0816 | 56 | 4.1460 | 0.3781 |
Rendzina | - | - | - | 3 | 3.8832 | 0.0140 | - | - | - |
Terra rossa | - | - | - | 4 | 3.7969 | 0.0068 | - | - | - |
Paddy soil * | 1723 | 3.4199 | 3.7472 | 1251 | 3.2579 | 3.6902 | 202 | 4.5883 | 0.7442 |
Bleached paddy soil | 3 | 4.4565 | 0.0036 | 2 | 4.4912 | 0.0103 | - | - | - |
Gleyed paddy soil | 145 | 3.3711 | 0.3560 | 25 | 3.5501 | 0.0408 | 5 | 5.0488 | 0.0384 |
Submergenic paddy soil | 376 | 3.5987 | 0.5956 | 351 | 3.3681 | 0.1950 | 72 | 4.2870 | 0.0219 |
Hydragric paddy soil | 1199 | 3.3671 | 2.7742 | 873 | 3.2024 | 3.3977 | 125 | 4.7435 | 0.7092 |
Red soil * | 50 | 3.5857 | 0.0111 | 37 | 3.2389 | 0.0042 | 13 | 2.1401 | 0.0178 |
Brown-red soil | 19 | 2.9376 | 0.0015 | 29 | 3.6459 | 0.0004 | 2 | 3.8658 | 0.0008 |
Yellow red earth | 30 | 4.1157 | 0.0111 | 5 | 2.8216 | 0.0031 | 7 | 2.8700 | 0.0227 |
Yellow soil * | 11 | 2.8113 | 0.0160 | 181 | 2.8431 | 0.0131 | 162 | 3.8180 | 0.2970 |
Typical yellow soil | 11 | 2.8113 | 0.0132 | 178 | 2.8222 | 0.0119 | 124 | 3.8006 | 0.2733 |
Yellow loam | - | - | - | 3 | 4.0821 | 0.0012 | 38 | 3.8748 | 0.0229 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, J.; Xie, T.; Han, S.; Zhang, H.; He, X.; Ren, W.; Song, M.; He, L. Characteristics of Soil Organic Carbon in Croplands and Affecting Factors in Hubei Province. Agronomy 2022, 12, 3025. https://doi.org/10.3390/agronomy12123025
Miao J, Xie T, Han S, Zhang H, He X, Ren W, Song M, He L. Characteristics of Soil Organic Carbon in Croplands and Affecting Factors in Hubei Province. Agronomy. 2022; 12(12):3025. https://doi.org/10.3390/agronomy12123025
Chicago/Turabian StyleMiao, Jie, Ting Xie, Shiting Han, Hui Zhang, Xun He, Wenhai Ren, Mingwei Song, and Liyuan He. 2022. "Characteristics of Soil Organic Carbon in Croplands and Affecting Factors in Hubei Province" Agronomy 12, no. 12: 3025. https://doi.org/10.3390/agronomy12123025