Genetic and Genomics Resources of Cross-Species Vigna Gene Pools for Improving Biotic Stress Resistance in Mungbean (Vigna radiata L. Wilczek)
Abstract
:1. Introduction
2. Approaches to Combat Biotic Stresses
2.1. Pathogen Characterization and Screening
2.2. Understanding the Genetics of Pathogen-Specific Biotic Stress Resistance
2.3. Exploring Cross-Specific Newer Gene Pools for Potential Donors
2.4. Characterizing Vigna Diversity: From Conventional to Omics Approaches
2.5. Highlights of Vigna Genomic Resources
2.6. Tagging, Mapping, and Exploiting QTL
2.7. Expanding Genomic Regions for Tagging New Candidate Genes
2.8. Comprehensive RNA-Seq Approach
2.9. Gene-Based Functional Markers
2.10. Developing Potential SCARs
2.11. Marker-Assisted Breeding
3. Conclusions and Way Forward
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pratap, A.; Gupta, S.; Rathore, M.; Basavaraja, T.; Singh, C.M.; Prajapati, U.; Singh, P.; Singh, Y.; Kumari, G. Mungbean. In The Beans and the Peas: From Orphan to Mainstream Crops; Pratap, A., Gupta, S., Eds.; Woodhead Publishing: Cambridge, UK, 2021; pp. 1–32. [Google Scholar]
- Sriphadet, S.; Lambrides, C.J.; Srinives, P. Inheritance of agronomic traits and their interrelationship in mungbean (Vigna radiata (L.) Wilczek). J. Crop Sci. Biotechnol. 2007, 10, 249–256. [Google Scholar]
- Keatinge, J.D.H.; Easdown, W.J.; Yang, R.Y.; Chadha, M.L.; Shanmugasundaram, S. Overcoming chronic malnutrition in a future warming world: The key importance of mungbean and vegetable soybean. Euphytica 2011, 180, 129–141. [Google Scholar] [CrossRef]
- Karuppanapandian, T.; Karuppudurai, T.; Sinha, P.B.; Kamarul, H.A.; Manoharan, K. Genetic diversity in green gram [Vigna radiata (L.)] landraces analyzed by using random amplified polymorphic DNA (RAPD). Afr. J. Biotechnol. 2006, 5, 1214–1219. [Google Scholar]
- Jat, S.L.; Shivay, Y.S.; Parihar, C.M.; Meena, H.N. Evaluation of summer legumes for their economic feasibility, nutrient accumulation and soil fertility. J. Food Legumes 2012, 25, 240–243. [Google Scholar]
- Singh, C.M.; Pratap, A.; Kumar, H.; Singh, S.; Singh, B.K.; Prasad, D.; Dhaliwal, I.; Kumar, M. Recent advances in omics approaches for mungbean improvement. In Technologies in Plant Biotechnology and Breeding of Field Crops; Kamaluddin, Kiran, U., Abdin, M.Z., Eds.; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The impact of climate change on agricultural insects pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Tutlani, A.; Banshidhar, P.J.; Janeja, H.S. Abiotic and biotic stresses and their effect on Vigna radiata L. Pharma Innov. J. 2022, 11, 230–237. [Google Scholar]
- Qazi, J.; Ilyas, M.; Mansoor, S.; Briddon, R.W. Legume yellow mosaic viruses: Genetically isolated begomoviruses. Mol. Plant Pathol. 2007, 8, 343–348. [Google Scholar] [CrossRef]
- Ilyas, M.; Qazi, J.; Mansoor, S.; Briddon, R.W. Genetic diversity and phylogeography of begomoviruses infecting legumes in Pakistan. J. Gen. Virol. 2010, 91, 2091–2101. [Google Scholar] [CrossRef]
- Akhtar, K.P.; Kitsanachandee, R.; Srinives, P.; Abbas, G.; Asghar, M.; Shah, T.; Atta, B.; Chatchawankanphanich, O.; Sarwar, G.; Ahmad, M.; et al. Field Evaluation of Mungbean Recombinant Inbred Lines against Mungbean Yellow Mosaic Disease Using New Disease Scale in Thailand. Plant Pathol. J. 2009, 25, 422–428. [Google Scholar] [CrossRef] [Green Version]
- Cayalvizhi, B.; Nagarajan, P.; Raveeendran, M.; Rabindran, R.; Selvam, N.J.; Bapu, J.K.; Senthil, N. Unraveling the responses of mungbean (Vigna radiata) to mungbean yellow mosaic virus through 2D-protein expression. Physiol. Mol. Plant Pathol. 2015, 90, 65–77. [Google Scholar] [CrossRef]
- Schoelz, J.E.; Harries, P.A.; Nelson, R.S. Intracellular transport of plant viruses: Finding the door out of the cell. Mol. Plant 2011, 4, 813–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morinaga, T.; Ikegami, M.; Miura, K.-I. The Nucleotide Sequence and Genome Structure of Mung Bean Yellow Mosaic Geminivirus. Microbiol. Immunol. 1993, 37, 471–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bos, L. Plant Viruses, Unique and Intriguing Pathogens: A Textbook of Plant Virology; Backhuys Publishers: Leiden, The Netherlands, 1999. [Google Scholar]
- Ahmad, M.; Harwood, R.F. Studies on a whitefly-transmitted yellow mosaic of urd bean (Phaseolus mungo). Plant Dis. Rep. 1973, 57, 800–802. [Google Scholar]
- Malathi, V.G.; John, P. Mungbean Yellow Mosaic Viruses. In Encyclopedia of Virology, 3rd ed.; Mahy, B.W.J., Van Regenmortel, M.H.V., Eds.; Academic Press: Oxford, UK, 2008; pp. 364–372. [Google Scholar]
- Sohal, B.S.; Bajaj, K.L. Effects of yellow mosaic virus on polyphenol metabolism in resistant and susceptible mungbean (Vigna radiata L. Wilczek) leaves. Biochem. Physiol. Pflanz 1993, 188, 419–423. [Google Scholar] [CrossRef]
- Conrath, U. Systemic Acquired Resistance. Plant Signal. Behav. 2006, 1, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, H.I.; El-Shazly, H.H.; Badr, A. Role of salicylic acid in biotic and abiotic stress tolerance in plants. In Plant Phenolics in Sustainable Agriculture; Lone, R., Shuab, R., Kamili, A.N., Eds.; Springer: Singapore, 2020; pp. 533–554. [Google Scholar]
- Lee, B.-J.; Kim, S.-K.; Choi, S.B.; Bae, J.; Kim, K.-J.; Kim, Y.-J.; Paek, K.-H. Pathogen-inducible CaUGT1 is involved in resistance response against TMV infection by controlling salicylic acid accumulation. FEBS Lett. 2009, 583, 2315–2320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naylor, M.; Murphy, A.M.; Berry, J.O.; Carr, J.P. Salicylic acid can induce resistance to plant virus movement. Mol. Plant Microbe Interact. 1998, 11, 860–868. [Google Scholar] [CrossRef] [Green Version]
- Mohase, L.; van der Westhuizen, A.J. Salicylic acid is involved in resistance responses in the Russian wheat aphid-wheat interaction. J. Plant Physiol. 2002, 159, 585–590. [Google Scholar] [CrossRef]
- Loake, G.; Grant, M. Salicylic acid in plant defence—The players and protagonists. Curr. Opin. Plant Biol. 2007, 10, 466–472. [Google Scholar] [CrossRef]
- Savaliya, A.S.; Chopada, G.B.; Sekhada, M.R.; Bhimani, A.A. Survey of the Powdery Mildew of Mungbean (Vigna radiata (L). Wilczek) in Selected Districts of South Gujarat. Trends Biosci. 2018, 11, 3004–3009. [Google Scholar]
- Shen, Y.M.; Liu, H.L.; Chang, S.T.; Chao, C.H. First report of Anthracnose caused by Colletotrichum acutatum on mung bean sprouts in Taiwan. Plant Dis. 2010, 94, 131. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Souframanien, J.; Chand, R.; Pawar, S.E. Genetic diversity study of Cercospora canescens (Ellis & Martin) isolates, the pathogen of Cercospora leaf spot in legumes. Curr. Sci. 2006, 90, 564–568. [Google Scholar]
- Iqbal, U.; Mukhtar, T. Morphological and Pathogenic Variability among Macrophomina phaseolina Isolates Associated with Mungbean (Vigna radiata L.) Wilczek from Pakistan. Sci. World J. 2014, 2014, 950175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, A.K.; Burlakoti, R.R.; Kenyon, L.; Nair, R.M. Perspectives and challenges for sustainable management of fungal diseases of mungbean [Vigna radiata (L.) R. Wilczek var. radiata]: A review. Front. Environ. Sci. 2018, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Kaur, L. Multiple disease resistant sources of mungbean. Acta Hortic. 2006, 752, 423–426. [Google Scholar] [CrossRef]
- Reddy, K.S.; Pawar, S.E.; Bhatia, C.R. Inheritance of powdery mildew (Erysiphe polygoni DC) resistance in mungbean (Vigna radiata L. Wilczek). Theor. Appl. Genet. 1994, 88, 945–948. [Google Scholar] [CrossRef]
- Kumar, H.; Singh, R.B. Genetic analysis of adult plant resistance to powdery mildew in pea (Pisum sativum L.). Euphytica 1981, 30, 147–151. [Google Scholar] [CrossRef]
- Majid, S. Annals report of Department of Agriculture, Assam for year ending 31st March 1/950. II. Grow More Food Campaign 1953, 11, 107. [Google Scholar]
- Sharma, H.C.; Khare, M.N.; Joshi, L.K.; Kumar, S.M. Efficacy of fungicides in the control of diseases of kharif pulses mung and urid. In Proceedings of the All India Workshop on Kharif Pulses, Hissar, India, 18–20 March 1971; p. 2. [Google Scholar]
- Kulkarni, S.A. Epidemiology and Integrated Management of Anthracnose of Greengram. Master’s Thesis, University of Agricultural Sciences, Dharwad, India, 2009. [Google Scholar]
- Koller, W.; Parker, D.M. Purification and characterization of cutinase from Venturia inaequalis. Phytopathology 1989, 79, 278–283. [Google Scholar] [CrossRef] [Green Version]
- Dickman, M.B.; Podila, G.K.; Kolattukudy, P.E. Insertion of cutinase gene into a wound pathogen enables it to infect intact host. Nature 1989, 342, 446–448. [Google Scholar] [CrossRef]
- Skamnioti, P.; Gurr, S.J. Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence. Plant Cell 2007, 19, 2674–2689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deising, H.; Nicholson, R.L.; Haug, M.; Howard, R.J.; Mendgen, K. Adhesion pad formation and the involvement of cutinase and esterases in the attachment of uredospores to the host cuticle. Plant Cell 1992, 4, 1101–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, A. Studies on the Diseases Caused by Rhizoctonia Solani Kuhn in Green Gram (Phaseolus aureus Roxb). Ph.D. Thesis, Rani Durgavati Vishwavidyalaya, Jabalpur, India, 1993. [Google Scholar]
- Dwivedi, R.P.; Saksena, H.K. Occurrence of web blight caused by Thanatephorus cucumeris on mung bean. Int. J. Farm Sci. 1974, 2, 100. [Google Scholar]
- Juroszek, P.; Von Tiedemann, A. Potential strategies and future requirements for plant disease management under a changing climate. Plant Pathol. 2011, 60, 100–112. [Google Scholar] [CrossRef]
- Selvi, R.; Muthiah, A.R.; Manivannan, N.; Raveendran, T.S.; Manickam, A.; Samiyappan, R. Tagging of RAPD marker for MYMV resistance in mungbean (Vigna radiata (L.) Wilczek). Asian J. Plant Sci. 2006, 5, 277–280. [Google Scholar]
- Singh, S.R.; Emden, H.F. Van Insect pests of grain legumes. Annu. Rev. Entomol. 1979, 24, 255–278. [Google Scholar] [CrossRef]
- Saxena, H.P. Pests of grain legumes and their control in India. In Pests of Grain Legumes: Ecology and Control; Singh, S., Van Emden, H.F., Taylor, T.A., Eds.; Academic Press: London, UK, 1978; pp. 15–23. [Google Scholar]
- Ram, S.; Bhattacharya, A. Consumption of soybean by Diacrisia obliqua Walker. Indian J. Entomol. 1978, 40, 335–336. [Google Scholar]
- Sethi, G.R.; Prasad, S.; Singh, K.M. Population build up of Diacrisia obliqua Walker on sunflower at Delhi. Indian J. Entomol. 1979, 41, 36–38. [Google Scholar]
- Aidbhavi, R.; Pratap, A.; Verma, P.; Lamichaney, A.; Bandi, S.M.; Nitesh, S.D.; Akram, M.; Rathore, M.; Singh, B.; Singh, N.P. Screening of endemic wild Vigna accessions for resistance to three bruchid species. J. Stored Prod. Res. 2021, 93, 101864. [Google Scholar] [CrossRef]
- Talekar, N.S. Biology, Damage, and Control of Bruchid Pests of Mungbean. In Proceedings of the 2nd International Symposium on Mungbean, Bangkok, Thailand, 16–20 November 1987; pp. 329–342. [Google Scholar]
- Somta, P.; Ammaranan, C.; Ooi, P.A.-C.; Srinives, P. Inheritance of seed resistance to bruchids in cultivated mungbean (Vigna radiata, L. Wilczek). Euphytica 2007, 155, 47–55. [Google Scholar] [CrossRef]
- Miah, M.A. Host Preference of Pulse Beetles (Callosobruchus chinensis and C. maculatus) on Different Mungbean (Vigna radiata) Varieties. Curr. Trends Entomol. Zool. Std. 2020, 3, 114–2690. [Google Scholar]
- Singh, I.; Sandhu, J.S.; Gupta, S.K.; Singh, S. Introgression of productivity and other desirable traits from ricebean (Vigna umbellata) into black gram (Vigna mungo). Plant Breed. 2013, 132, 401–406. [Google Scholar] [CrossRef]
- Pratap, A.; Chaturvedi, S.K.; Tomar, R.; Rajan, N.; Malviya, N.; Thudi, M.; Saabale, P.R.; Prajapati, U.; Varshney, R.K.; Singh, N.P. Marker-assisted introgression of resistance to fusarium wilt race 2 in Pusa 256, an elite cultivar of desi chickpea. Mol. Genet. Genom. 2017, 292, 1237–1245. [Google Scholar] [CrossRef] [Green Version]
- Sehrawat, N.; Yadav, M.; Bhat, K.V.; Sairam, R.K.; Jaiwal, P.K. Introgression of mungbean yellow mosaic virus resistance in Vigna mungo (L.) Hepper and purity testing of F1 hybrids using SSRs. Turk. J. Agric. For. 2016, 40, 95–100. [Google Scholar] [CrossRef]
- Pratap, A.; Basu, P.S.; Gupta, S.; Malviya, N.; Rajan, N.; Tomar, R.; Madhavan, L.; Nadarajan, N.; Singh, N.P. Identification and characterization of sources for photo- and thermo-insensitivity in Vigna species. Plant Breed. 2014, 133, 756–764. [Google Scholar] [CrossRef]
- Kang, Y.J.; Kim, S.K.; Kim, M.Y.; Lestari, P.; Kim, K.H.; Ha, B.-K.; Jun, T.H.; Hwang, W.J.; Lee, T.; Lee, J. Genome sequence of mungbean and insights into evolution within Vigna species. Nat. Commun. 2014, 5, 5443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, K.; Li, X.; Guo, W.; Yuan, X.; Cui, X.; Chen, X. Genome re-sequencing of two accessions and fine mapping the locus of lobed leaflet margins in mungbean. Mol. Breed. 2016, 36, 128. [Google Scholar] [CrossRef]
- Ha, J.; Satyawan, D.; Jeong, H.; Lee, E.; Cho, K.; Kim, M.Y.; Lee, S. A near-complete genome sequence of mungbean (Vigna radiata L.) provides key insights into the modern breeding program. Plant Genome 2021, 14, e20121. [Google Scholar] [CrossRef] [PubMed]
- Jegadeesan, S.; Raizada, A.; Dhanasekar, P.; Suprasanna, P. Draft genome sequence of the pulse crop blackgram [Vigna mungo (L.) Hepper] reveals potential R-genes. Sci. Rep. 2021, 11, 11247. [Google Scholar] [CrossRef]
- Lonardi, S.; Muñoz-Amatriaín, M.; Liang, Q.; Shu, S.; Wanamaker, S.I.; Lo, S.; Tanskanen, J.; Schulman, A.H.; Zhu, T.; Luo, M. The genome of cowpea (Vigna unguiculata [L.] Walp.). Plant J. 2019, 98, 767–782. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, Y.; Sakai, H.; Yoshitsu, Y.; Muto, C.; Anai, T.; Pandiyan, M.; Senthil, N.; Tomooka, N.; Naito, K. Domesticating Vigna stipulacea: A potential legume crop with broad resistance to biotic stresses. Front. Plant Sci. 2019, 10, 1607. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.J.; Satyawan, D.; Shim, S.; Lee, T.; Lee, J.; Hwang, W.J.; Kim, S.K.; Lestari, P.; Laosatit, K.; Kim, K.H. Draft genome sequence of adzuki bean, Vigna angularis. Sci. Rep. 2015, 5, 8069. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Velmurugan, A.; Gupta, D.S.; Kumar, J.; Kesari, R.; Konda, A.; Singh, N.P.; Roy, S.D.; Biswas, U.; Kumar, R.R.; et al. Draft genome sequence of a less-known wild Vigna: Beach pea (V. marina cv. ANBp-14-03). Crop J. 2019, 7, 660–666. [Google Scholar] [CrossRef]
- Pratap, A.; Das, A.; Kumar, S.; Gupta, S. Current perspectives on introgression breeding in food legumes. Front. Plant Sci. 2021, 11, 589189. [Google Scholar] [CrossRef]
- Pratap, A.; Gupta, S.; Nair, R.M.; Schafleitner, R.; Basu, P.S.; Singh, C.M.; Prajapati, U.; Gupta, A.K.; Nayyar, H.; Mishra, A.K.; et al. Using Plant Phenomics to Exploit the Gains of Genomics. Agronomy 2019, 9, 126. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Mishra, A.K.; Singh, C.M. Genome-wide identification and characterization of Lectin receptor-like kinase (LecRLK) genes in mungbean (Vigna radiata L. Wilczek). J. Appl. Genet. 2021, 62, 223–234. [Google Scholar] [CrossRef]
- Singh, C.M.; Singh, P.; Tiwari, C.; Purwar, S.; Kumar, M.; Pratap, A.; Singh, S.; Chugh, V.; Mishra, A.K. Improving drought tolerance in Mungbean (Vigna radiata L. Wilczek): Morpho-physiological, biochemical and molecular Perspectives. Agronomy 2021, 11, 1534. [Google Scholar] [CrossRef]
- Gupta, S.; Gupta, D.S.; Anjum, T.K.; Pratap, A.; Kumar, J. Inheritance and molecular tagging of MYMIV resistance gene in blackgram (Vigna mungo L. Hepper). Euphytica 2013, 193, 27–37. [Google Scholar] [CrossRef]
- Sudha, M.; Anusuya, P.; Mahadev, N.G.; Karthikeyan, A.; Nagarajan, P.; Raveendran, M.; Senthil, N.; Pandiyan, M.; Angappan, K.; Balasubramanian, P. Molecular studies on mungbean (Vigna radiata (L.) Wilczek) and ricebean (Vigna umbellata (Thunb.)) interspecific hybridisation for Mungbean yellow mosaic virus resistance and development of species-specific SCAR marker for ricebean. Arch. Phytopathol. Plant Prot. 2013, 46, 503–517. [Google Scholar] [CrossRef]
- Sai, C.B.; Nagarajan, P.; Raveendran, M.; Rabindran, R.; Kannan Bapu, J.R.; Senthil, N. Understanding the inheritance of mungbean yellow mosaic virus (MYMV) resistance in mungbean (Vigna radiata L. Wilczek). Mol. Breed. 2017, 37, 1–15. [Google Scholar]
- Haq, Q.M.I.; Rouhibakhsh, A.; Ali, A.; Malathi, V.G. Infectivity analysis of a blackgram isolate of Mungbean yellow mosaic virus and genetic assortment with MYMIV in selective hosts. Virus Genes 2011, 42, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Patwa, N.; Chatterjee, C.; Basak, J. Differential responses of Phaseolus vulgaris cultivars following mungbean yellow mosaic India virus infection. Physiol. Mol. Biol. Plants 2020, 26, 817–828. [Google Scholar] [CrossRef] [PubMed]
- Singh, C.M.; Pratap, A.; Gupta, S.; Biradar, R.S.; Singh, N.P. Association mapping for mungbean yellow mosaic India virus resistance in mungbean (Vigna radiata L. Wilczek). 3 Biotech 2020, 10, 33. [Google Scholar] [CrossRef] [PubMed]
- Akram, M.; Kamaal, N.; Pratap, A.; Singh, N.P. Resistance status of mungbean (Vigna radiata (L.) Wilczek) advanced breeding materials against mungbean yellow mosaic India virus. Arch. Phytopathol. Plant Prot. 2021, 54, 2533–2546. [Google Scholar] [CrossRef]
- Nair, R.M.; Pandey, A.K.; War, A.R.; Hanumantharao, B.; Shwe, T.; Alam, A.; Pratap, A.; Malik, S.R.; Karimi, R.; Mbeyagala, E.K. Biotic and abiotic constraints in mungbean production—Progress in genetic improvement. Front. Plant Sci. 2019, 10, 1340. [Google Scholar] [CrossRef] [Green Version]
- Kitsanachandee, R.; Somta, P.; Chatchawankanphanich, O.; Akhtar, K.P.; Shah, T.M.; Nair, R.M.; Bains, T.S.; Sirari, A.; Kaur, L.; Srinives, P. Detection of quantitative trait loci for mungbean yellow mosaic India virus (MYMIV) resistance in mungbean (Vigna radiata (L.) Wilczek) in India and Pakistan. Breed. Sci. 2013, 63, 367–373. [Google Scholar] [CrossRef] [Green Version]
- Alam, A.K.M.; Somta, P.; Srinives, P. Identification and confirmation of quantitative trait loci controlling resistance to mungbean yellow mosaic disease in mungbean [Vigna radiata (L.) Wilczek]. Mol. Breed. 2014, 34, 1497–1506. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Sharma, V.; Shukla, A.K. Impact of micronutrients in mitigation of abiotic stresses in soils and plants—A progressive step toward crop security and nutritional quality. Adv. Agron. 2022, 173, 1–78. [Google Scholar]
- Khan, M.G.; Ahmad, W.; Khattak, G.S.S.; Ahmad, H. Mode of inheritance of resistance to mungbean yellow mosaic virus (MYMV) in mungbean (Vigna radiata (L.) Wilczek). Sarhad J. Agric. 2007, 23, 1071. [Google Scholar]
- Khattak, G.S.S.; Saeed, I.; Shah, S.A. Breeding high yielding and disease resistant mungbean (Vigna radiata (L.) Wilczek) genotypes. Pak. J. Bot. 2008, 40, 1411–1417. [Google Scholar]
- Vadivel, K.; Manivannan, N.; Mahalingam, A.; Satya, V.K.; Vanniarajan, C.; Ragul, S. Identification and validation of quantitative trait loci of mungbean yellow mosaic virus disease resistance in blackgram [Vigna mungo (L). Hepper]. Legume Res. Legume Res. Int. J. 2021, 1, 1–7. [Google Scholar] [CrossRef]
- Subramaniyan, R.; Narayana, M.; Krishnamoorthy, I.; Natarajan, G.; Gandhi, K. Novel and stable QTL regions conferring resistance to MYMV disease and its inheritance in blackgram (Vigna mungo (L.) Hepper). J. Genet. 2022, 101, 18. [Google Scholar] [CrossRef] [PubMed]
- Mathivathana, M.K.; Murukarthick, J.; Karthikeyan, A.; Jang, W.; Dhasarathan, M.; Jagadeeshselvam, N.; Sudha, M.; Vanniarajan, C.; Karthikeyan, G.; Yang, T.-J.; et al. Detection of QTLs associated with mungbean yellow mosaic virus (MYMV) resistance using the interspecific cross of Vigna radiata × Vigna umbellata. J. Appl. Genet. 2019, 60, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Sathees, N.; Shoba, D.; Mani, N.; Saravanan, S.; Kumari, M.P.; Pillai, M.A. Tagging of SSR markers associated to yellow mosaic virus resistance in black gram (Vigna mungo (L.) Hepper). Euphytica 2022, 218, 23. [Google Scholar] [CrossRef]
- Chankaew, S.; Somta, P.; Sorajjapinun, W.; Srinives, P. Quantitative trait loci mapping of Cercospora leaf spot resistance in mungbean, Vigna radiata (L.) Wilczek. Mol. Breed. 2011, 28, 255–264. [Google Scholar] [CrossRef]
- Yundaeng, C.; Somta, P.; Chen, J.; Yuan, X.; Chankaew, S.; Chen, X. Fine mapping of QTL conferring Cercospora leaf spot disease resistance in mungbean revealed TAF5 as candidate gene for the resistance. Theor. Appl. Genet. 2021, 134, 701–714. [Google Scholar] [CrossRef]
- Choudhary, S.; Kaurav, H.; Chaudhary, G. Vaibidang (Embelia ribes): A Potential Herbal Drug in Ayurveda with Anthelmintic Property. Int. J. Res. Appl. Sci. Biotechnol. 2021, 8, 237–243. [Google Scholar] [CrossRef]
- Kasettranan, W.; Somta, P.; Srinives, P. Mapping of quantitative trait loci controlling powdery mildew resistance in mungbean (Vigna radiata (L.) Wilczek). J. Crop Sci. Biotechnol. 2010, 13, 155–161. [Google Scholar] [CrossRef]
- Humphry, M.E.; Magner, T.; McIntyre, C.L.; Aitken, E.A.B.; Liu, C.J. Identification of a major locus conferring resistance to powdery mildew (Erysiphe polygoni DC) in mungbean (Vigna radiata L. Wilczek) by QTL analysis. Genome 2003, 46, 738–744. [Google Scholar] [CrossRef]
- Tantasawat, P.A.; Poolsawat, O.; Kativat, C.; Arsakit, K.; Papan, P.; Chueakhunthod, W.; Pookhamsak, P. Inheritance and identification of ISSR-RGA markers associated with powdery mildew resistance in mungbean for marker-assisted breeding. Chil. J. Agric. Res. 2022, 82, 3–9. [Google Scholar] [CrossRef]
- Wu, X.; Wang, B.; Lu, Z.; Wu, X.; Li, G.; Xu, P. Identification and mapping of a powdery mildew resistance geneVu-Pm1in the Chinese asparagus bean landrace ZN016. Legume Res. Int. J. 2014, 37, 32–36. [Google Scholar] [CrossRef]
- Sun, L.; Cheng, X.-Z.; Wang, S.-H.; Wang, L.-X.; Liu, C.-Y.; Mei, L.; Xu, N. Heredity Analysis and Gene Mapping of Bruchid Resistance of a Mungbean Cultivar V2709. Agric. Sci. China 2008, 7, 672–677. [Google Scholar] [CrossRef]
- Chen, T.; Hu, L.; Wang, S.; Wang, L.; Cheng, X.; Chen, H. Construction of High-Density Genetic Map and Identification of a Bruchid Resistance Locus in Mung Bean (Vigna radiata L.). Front. Genet. 2022, 13, 903267. [Google Scholar] [CrossRef]
- Kaewwongwal, A.; Chen, J.; Somta, P.; Kongjaimun, A.; Yimram, T.; Chen, X.; Srinives, P. Novel alleles of two tightly linked genes encoding polygalacturonase-inhibiting proteins (VrPGIP1 and VrPGIP2) associated with the Br locus that confer bruchid (Callosobruchus spp.) resistance to mungbean (Vigna radiata) accession V2709. Front. Plant Sci. 2017, 8, 1692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amkul, K.; Wang, L.; Somta, P.; Wang, S.; Cheng, X. Construction of a high density linkage map and genome dissection of bruchid resistance in zombi pea (Vigna vexillata (L.) A. Rich). Sci. Rep. 2019, 9, 11719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souframanien, J.; Gopalakrishna, T. Source for bruchid resistance and its inheritance in Trombay wild urdbean (Vigna mungo var. silvestris). J. Food Legumes 2007, 20, 19. [Google Scholar]
- Somta, P.; Chen, J.; Yundaeng, C.; Yuan, X.; Yimram, T.; Tomooka, N.; Chen, X. Development of an SNP-based high-density linkage map and QTL analysis for bruchid (Callosobruchus maculatus F.) resistance in black gram (Vigna mungo (L.) Hepper). Sci. Rep. 2019, 9, 3930. [Google Scholar] [CrossRef]
- Bhanu, A.N.; Singh, M.N.; Srivastava, K. Crossability studies of interspecific hybridization among Vigna species. Biomed. J. 2018, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Pratap, A.; Gupta, S.; Malviya, N.; Tomar, R.; Maurya, R.; Joseph John, K.; Madhavan, L.; Singh, N.P. Genome scanning of Asiatic Vigna species for discerning population genetic structure based on microsatellite variation. Mol. Breed. 2015, 35, 178. [Google Scholar] [CrossRef]
- Kumari, G.; Pratap, A.; Lavanya, R.G.; Akram, M.; Rathore, M.; Madhavan, L.; Singh, Y.; Singh, N.P. Potential resistant donors for yellow mosaic disease identified from endemic wild Vigna species. J. Food Legumes 2021, 34, 10–16. [Google Scholar]
- Ragul, S.; Manivannan, N.; Ganapathy, N.; Karthikeyan, G. Screening and biochemical analysis on blackgram genotypes for resistance against storage pest bruchine [Callosobruchus maculatus (F.)]. Legume Res. Int. J. 2022, 45, 371–378. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, K.; Tewari, K.; Sagar, P.; Pandey, J.; Ps, S.; Rathore, M.; Kumar, V.; Akram, M.; Singh, A.; et al. Gene expression and biochemical profiling of contrasting Vigna mungo genotypes against Mungbean Yellow Mosaic India Virus (MYMIV). J. Food. Legumes 2022, 35, 107–116. [Google Scholar]
- Shamim, M.Z.; Pandey, A. Identification of yellow mosaic virus (YMV) resistant black gram (Vigna mungo L.) genotypes for cultivation in Northern India. J. Agroecol. Nat. Resour. Manag. 2014, 1, 48–50. [Google Scholar]
- Rangaiah, S. Evaluation of blackgram (Vigna mungo L. Hepper) genotypes for root traits as a measure of drought tolerance. Int. J. Trop. Agric. 2015, 33, 1463–1468. [Google Scholar]
- Samyuktha, S.M.; Malarvizhi, D.; Mariyammal, I.; Karthikeyan, A.; Seram, D.; Dhasarathan, M.; Juliet Hepziba, S.; Sheela, V.; Thanga Hemavathy, A.; Kavithamani, D. The Hunt for Mungbean (Vigna radiata (L.) Wilczek) Genotypes and Breeding Lines Resistance to South Indian Bruchid Strain. Agriculture 2022, 12, 1050. [Google Scholar] [CrossRef]
- Suman, S.; Rani, B.; Sharma, V.K.; Kumar, H.; Shahi, V.K. SSR marker based profiling and diversity analysis of mungbean [Vigna radiata (L.) Wilczek] genotypes. Legume Res. An. Int. J. 2019, 42, 585–594. [Google Scholar]
- Banni, K.; Moe, K.T.; Park, Y.-J. Assessing genetic diversity, population structure and gene flow in the Korean red bean [Vigna angularis (Willd.) Ohwi & Ohashi] using SSR markers. Plant Genet. Resour. 2012, 10, 74–82. [Google Scholar]
- Kaewwongwal, A.; Kongjaimun, A.; Somta, P.; Chankaew, S.; Yimram, T.; Srinives, P. Genetic diversity of the black gram [Vigna mungo (L.) Hepper] gene pool as revealed by SSR markers. Breed. Sci. 2015, 65, 127–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isemura, T.; Kaga, A.; Tabata, S.; Somta, P.; Srinives, P.; Shimizu, T.; Jo, U.; Vaughan, D.A.; Tomooka, N. Construction of a genetic linkage map and genetic analysis of domestication related traits in mungbean (Vigna radiata). PLoS ONE 2012, 7, e41304. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wang, Y.; Wang, L.; Zhang, D. Molecular identification of mung bean accessions (Vigna radiata L.) from Northeast China using capillary electrophoresis with fluorescence-labeled SSR markers. Food Energy Secur. 2020, 9, e182. [Google Scholar] [CrossRef] [Green Version]
- Noble, T.J.; Tao, Y.; Mace, E.S.; Williams, B.; Jordan, D.R.; Douglas, C.A.; Mundree, S.G. Characterization of linkage disequilibrium and population structure in a mungbean diversity panel. Front. Plant Sci. 2018, 8, 2102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Islam, A.S.M.F.; Limpot, N.; Mackasmiel, L.; Mierzwa, J.; Cortés, A.J.; Blair, M.W. Genome-wide Snp identification and association mapping for seed mineral concentration in mung bean (Vigna Radiata L.). Front. Genet. 2020, 11, 656. [Google Scholar] [CrossRef] [PubMed]
- Pratap, A.; Gupta, S.; Tomar, R.; Malviya, N.; Maurya, R.; Pandey, V.R.; Mehandi, S.; Singh, N.P. Cross-genera amplification of informative microsatellite markers from common bean and scarlet runner bean for assessment of genetic diversity in mungbean (Vigna radiata). Plant Breed. 2016, 135, 499–505. [Google Scholar] [CrossRef]
- He, G.; Woullard, F.E.; Marong, I.; Guo, B.Z. Transferability of soybean SSR markers in peanut (Arachis hypogaea L.). Peanut Sci. 2006, 33, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Kaul, T.; Eswaran, M.; Thangaraj, A.; Meyyazhagan, A.; Nehra, M.; Raman, N.M.; Bharti, J.; Badapanda, C.; Balamurali, B. Rice Bean (Vigna umbellata) draft genome sequence: Unravelling the late flowering and unpalatability related genomic resources for efficient domestication of this underutilized crop. bioRxiv 2019. [Google Scholar] [CrossRef] [Green Version]
- Ambreen, H.; Oraon, P.K.; Wahlang, D.R.; Satyawada, R.R.; Katiyar-Agarwal, S.; Agarwal, M.; Jagannath, A.; Kumar, A.; Budhwar, R.; Shukla, R.N.; et al. Long-read-based draft genome sequence of Indian black gram IPU-94-1 ‘Uttara’: Insights into disease resistance and seed storage protein genes. Plant Genome 2022, 15, e20234. [Google Scholar] [CrossRef]
- Jaiswal, V.; Mir, R.R.; Mohan, A.; Balyan, H.S.; Gupta, P.K. Association mapping for pre-harvest sprouting tolerance in common wheat (Triticum aestivum L.). Euphytica 2012, 188, 89–102. [Google Scholar] [CrossRef]
- Nie, X.; Huang, C.; You, C.; Li, W.; Zhao, W.; Shen, C.; Zhang, B.; Wang, H.; Yan, Z.; Dai, B. Genome-wide SSR-based association mapping for fiber quality in nation-wide upland cotton inbreed cultivars in China. BMC Genom. 2016, 17, 352. [Google Scholar] [CrossRef] [Green Version]
- Rani, A.; Kumar, V.; BS, G.; Rathi, P.; Shukla, S.; RK, S. Linkage mapping of Mungbean yellow mosaic India virus (MYMIV) resistance gene in soybean. Breed. Sci. 2017, 67, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Kumar, J.; Gupta, D.S.; Gupta, S.; Dubey, S.; Gupta, P.; Kumar, S. Quantitative trait loci from identification to exploitation for crop improvement. Plant Cell Rep. 2017, 36, 1187–1213. [Google Scholar]
- Langridge, P.; Lagudah, E.S.; Holton, T.A.; Appels, R.; Sharp, P.J.; Chalmers, K.J. Trends in genetic and genome analyses in wheat: A review. Aust. J. Agric. Res. 2001, 52, 1043–1077. [Google Scholar] [CrossRef]
- Mariyammal, I.; Seram, D.; Samyuktha, S.M.; Karthikeyan, A.; Dhasarathan, M.; Murukarthick, J.; Kennedy, J.S.; Malarvizhi, D.; Yang, T.-J.; Pandiyan, M. QTL mapping in Vigna radiata × Vigna umbellata population uncovers major genomic regions associated with bruchid resistance. Mol. Breed. 2019, 39, 110. [Google Scholar] [CrossRef]
- Venkataramana, P.B.; Gowda, R.; Somta, P.; Ramesh, S.; Mohan Rao, A.; Bhanuprakash, K.; Srinives, P.; Gireesh, C.; Pramila, C.K. Mapping QTL for bruchid resistance in rice bean (Vigna umbellata). Euphytica 2016, 207, 135–147. [Google Scholar] [CrossRef]
- Chotechung, S.; Somta, P.; Chen, J.; Yimram, T.; Chen, X.; Srinives, P. A gene encoding a polygalacturonase-inhibiting protein (PGIP) is a candidate gene for bruchid (Coleoptera: Bruchidae) resistance in mungbean (Vigna radiata). Theor. Appl. Genet. 2016, 129, 1673–1683. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Hu, L.; Wang, L.; Wang, S.; Cheng, X. Identification of a candidate gene for bruchid resistance by combining fine mapping and transcriptome profiling in mung bean (Vigna radiata L.). ResearchSquare 2021. [Google Scholar] [CrossRef]
- Agarwal, P.; Parida, S.K.; Mahto, A.; Das, S.; Mathew, I.E.; Malik, N.; Tyagi, A.K. Expanding frontiers in plant transcriptomics in aid of functional genomics and molecular breeding. Biotechnol. J. 2014, 9, 1480–1492. [Google Scholar] [CrossRef]
- Wang, B.; Kumar, V.; Olson, A.; Ware, D. Reviving the transcriptome studies: An insight into the emergence of single-molecule transcriptome sequencing. Front. Genet. 2019, 10, 384. [Google Scholar] [CrossRef] [Green Version]
- Baruah, I.K.; Panda, D.; M.V., J.; Das, D.J.; Acharjee, S.; Sen, P.; Sarmah, B.K. Bruchid egg induced transcript dynamics in developing seeds of black gram (Vigna mungo). PLoS ONE 2017, 12, e0176337. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.-J.; Ko, C.-Y.; Liu, M.-S.; Kuo, C.-Y.; Wu, D.-C.; Chen, C.-Y.; Schafleitner, R.; Chen, L.-F.O.; Lo, H.-F. Transcriptomic and proteomic research to explore bruchid-resistant genes in mungbean isogenic lines. J. Agric. Food Chem. 2016, 64, 6648–6658. [Google Scholar] [CrossRef]
- Liu, M.-S.; Kuo, T.C.-Y.; Ko, C.-Y.; Wu, D.-C.; Li, K.-Y.; Lin, W.-J.; Lin, C.-P.; Wang, Y.-W.; Schafleitner, R.; Lo, H.-F. Genomic and transcriptomic comparison of nucleotide variations for insights into bruchid resistance of mungbean (Vigna radiata [L.] R. Wilczek). BMC Plant Biol. 2016, 16, 46. [Google Scholar] [CrossRef] [Green Version]
- Das, D.; Baruah, I.K.; Panda, D.; Paswan, R.R.; Acharjee, S.; Sarmah, B.K. Bruchid beetle ovipositioning mediated defense responses in black gram pods. BMC Plant Biol. 2021, 21, 38. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Gupta, D.S.; Kesari, R.; Verma, R.; Murugesan, S.; Basu, P.S.; Soren, K.R.; Gupta, S.; Singh, N.P. Comprehensive RNAseq analysis for identification of genes expressed under heat stress in lentil. Physiol. Plant. 2021, 173, 1785–1807. [Google Scholar] [CrossRef] [PubMed]
- Salgotra, R.K.; Stewart, C.N. Functional markers for precision plant breeding. Int. J. Mol. Sci. 2020, 21, 4792. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Gopalakrishna, T. Development of unigene-derived SSR markers in cowpea (Vigna unguiculata) and their transferability to other Vigna species. Genome 2010, 53, 508–523. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Bansal, R.; Gopalakrishna, T. Development and characterization of genic SSR markers for mungbean (Vigna radiata (L.) Wilczek). Euphytica 2014, 195, 245–258. [Google Scholar] [CrossRef]
- Souframanien, J.; Gopalakrishna, T. ISSR and SCAR markers linked to the mungbean yellow mosaic virus (MYMV) resistance gene in blackgram [Vigna mungo (L.) Hepper]. Plant Breed. 2006, 125, 619–622. [Google Scholar] [CrossRef]
- Dhole, V.J.; Reddy, K.S. Genetic analysis of resistance to mungbean yellow mosaic virus in mungbean (Vigna radiata). Plant Breed. 2012, 131, 414–417. [Google Scholar] [CrossRef]
- Zhang, J.; Panthee, D.R. Next-generation sequencing-based bulked segregant analysis without sequencing the parental genomes. G3 2022, 12, jkab400. [Google Scholar] [CrossRef]
- Feng, S.; Zhu, Y.; Yu, C.; Jiao, K.; Jiang, M.; Lu, J.; Shen, C.; Ying, Q.; Wang, H. Development of species-specific SCAR markers, based on a SCoT analysis, to authenticate Physalis (Solanaceae) species. Front. Genet. 2018, 9, 192. [Google Scholar] [CrossRef] [Green Version]
- Gore, P.G.; Tripathi, K.; Pratap, A.; Bhat, K.V.; Umdale, S.D.; Gupta, V.; Pandey, A. Delineating taxonomic identity of two closely related Vigna species of section Aconitifoliae: V. trilobata (L.) Verdc. and V. stipulacea (Lam.) Kuntz in India. Genet. Resour. Crop Evol. 2019, 66, 1155–1165. [Google Scholar] [CrossRef]
- Zheng, K.; Cai, Y.; Chen, W.; Gao, Y.; Jin, J.; Wang, H.; Feng, S.; Lu, J. Development, identification, and application of a germplasm specific SCAR Marker for Dendrobium officinale Kimura et Migo. Front. Plant Sci. 2021, 12, 879. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Zhang, Q.; Lin, Y.; Chen, J.; Somta, P.; Yan, Q.; Xue, C.; Liu, J.; Chen, X.; Yuan, X. Marker-Assisted Backcross Breeding for Improving Bruchid (Callosobruchus spp.) Resistance in Mung Bean (Vigna radiata L.). Agronomy 2022, 12, 1271. [Google Scholar] [CrossRef]
Stress | Crop | Population | Approach | Genetics | Marker Used | Reference |
---|---|---|---|---|---|---|
MYMIV | Mungbean | RILs of KPS 2 × NM 10-12-1 | Linkage mapping | QTL | SSR | [76] |
BM6 × BM1 | Linkage mapping | QTL | SSR | [77] | ||
A panel of 130 genotypes | Association mapping | QTL | SSR | [73] | ||
Black gram | AKU 9904 × DPU 88-31 | BSA | Single dominant gene | SSR | [68] | |
Black gram × ricebean | KUG253 × Mash114 | QTL-seq | Major QTL | SNP | [78] | |
MYMV | Mungbean | KMG 189 × VBN (Gg) 2 | Segregation analysis | Single recessive gene | -- | [69] |
KMG 189 × VBN (Gg) 2 | Segregation analysis | Single recessive gene/linkage mapping | SCAR | [70] | ||
NM92 × VC2272, 6601 × VC2272, 6601 × Pusa Baisakhi, VC3902A × NM92, VC3902A × ML-5, NM92 × Pusa Baisaki, VC 1560D × 6601, VC 1560D × NM92 | F2 segregation analysis | -- | -- | [79] | ||
NM 92 × NM 98 | F2 segregation analysis | -- | -- | [80] | ||
VBN(Gg)2 × KMG189 | F2 segregation analysis | Single recessive gene | -- | [70] | ||
Black gram | MDU1 × Mash 1008 | Linkage mapping | QTLs | SSR | [81] | |
MDU 1 × TU 68 | Linkage mapping | Major QTL | SSR | [82] | ||
Ricebean × mungbean | TNAU Red × VRM (Gg) 1 | Segregation analysis | Single recessive gene | -- | [69] | |
Mungbean × ricebean | VRM (Gg) 1 × TNAU RED | GBS approach | One major QTL and three minor QTLs | SNP | [83] | |
YMV (causal virus not identified) | Black gram | IC436656 × KKB14045 | Segregation analysis and linkage mapping | Single recessive gene | SSR | [84] |
Cercospora leaf spot | Mungbean | KPS1×V4718 | Linkage mapping | QTL | SSR | [85] |
Kamphaeng Saen 1 × V4718 | Fine mapping | QTL | SNP | [86] | ||
Kopergaon × HUM12; Kopergaon × ML 1720 | GMA | Quantitative inheritance | -- | [87] | ||
KPS1 × V4718 | GBS | QTL | SNP | [86] | ||
Powdery mildew | Mungbean | Kamphaeng Saen 1 × VC6468-11-1A (RILs) | Linkage mapping | Two QTLs | SSR | [88] |
Berken × ATF 3640 | Linkage mapping | Major QTL | RFLP | [89] | ||
Chai Nat 72 × V4758 | Segregation analysis and BSA | QTL | ISSR-RGA | [90] | ||
Cowpea | ZN 016 × Zhijiang282 | Linkage mapping | Major QTL | SSR and SNP | [91] | |
Bruchid (C. chinansis) | Mungbean | V2709 | -- | Single dominant gene | RAPD/SSR/STS | [92] |
Callosobruchus spp. | Mungbean × V. sublobata | VC2778A × TC 1966 | Comparative genomics | Major QTL | SNP | [93] |
C. Chinansis; C. maculatus | KPS1 × V2709 | Segregation analysis and linkage mapping | Major QTL | SNP | [94] | |
V. vexillata | TVNu 240 × TVNu 1623 | SLAF sequencing | QTL | SNP | [95] | |
Bruchid (C. maculatus) | Urdbean × Vigna mungo var. sylvestris | TU 94-2 × Vigna mungo var. sylvestris | Segregation analysis | QTLs | RAPD, ISSR, SSR | [96] |
Urdbean × Vigna mungo var. sylvestris | BC48 × TC2210 | Linkage mapping | Two QTLs | SNP | [97] | |
Urdbean | MDU1 × TU 68 | Linkage mapping | QTL | SSR | [82] |
Disease/Pest | Donor Genotypes | Species | Method | References |
---|---|---|---|---|
MYMIV | IC277021 | V. sylvestris | Field screening | [100] |
IC248326, IC248326, IC248343 | V. vexillata | Field screening | ||
LRM/13-43, LRM/13-32, LRM/13-34, IC276983, IC331436, IC331454, IC331456, Trichy local, Kumur local, IIPRW17-3 | V. trilobata | Field screening | ||
RBL-50, IC251445, PRR 2007-2, PRR 2008-2, RB-5-1, IC251439, IC251442, IC251446, IC251447, IC528878, IC197812, IIPRW 17-1, | V. umbellata | Field screening | ||
PRR 2008-2 | V. umbellata | Field screening | ||
LRM/13-11, LRM/13-33, TMV-1, LRM/13-26, LRM/13-37, LRM/13-38, LRM/13-36, | V. aconitifolia | Field screening | ||
IC331450 | V. hainiana | Field screening | ||
Trichy Local-1, Trichy Local-2 | V. stipulaceae | Field screening | ||
TCR-20 | V. glaberesense | Field screening | ||
TCR-7 | V. umbellata | Field screening | ||
TU-68 | V. mungo | Bioassay and GC–MS analysis | [101] | |
TCR-79,TCR-82, TCR-239, | V. radiata | Field screening | [66] | |
TCR-7, TCR-238,JAP/10-36,TCR-110,JAP/10-47,TCR-160, TCR-88,JAP/10-51, NSB 007, | V. sublobata | Field screening | ||
TCR-64,LRM/13-43, LRM/13-34, LRM/13-32, LRM/13-24, LRM/13-30, ZAP/10-5, ZAP/10-7, ZAP/10-9,TCR-192, TCR-305, TCR-319, TCR-320, TCR-513,LRM/13-44, LRM/13-33, LRM/13-26, LRM/13-38, LRM/13-36, LRM/13-37, | V. trilobata | Field screening | ||
TCR-254,TCR-390, | V. sylvestris | Field screening | ||
TCR-314,TCR-315,TCR-24, TCR-29 | V. haniana | Field screening | ||
TCR-20 | V. glabrascens | Field screening | ||
TLC1, TLC2 | V. stipulaceae | Field screening | ||
RBL-1, TCR-93, PRR-2007-2, PRR-2008-2, RB-5-1, TCR-91, TCR-87, TCR-90, TCR-94, TCR-95, TCR-279, | V. umbellata | Field screening | ||
MYMIV | IC-546453, IPU 11-02, IC-548278, IC-43647, COBG-653, Pant-Urd-19, UR-218, Shekhar-2, STY-2289, VBG-04-008, IPU 31-1, PDU-19, PDU-3, IPU 99-211, PLU-110, DPU88-31 | V. mungo | Field screening | [102] |
UPU 8335, IPU 99-205, PGRU 95004, SPS 43 | Field screening | [103] | ||
Powdery mildew | LBG 645, LBG 17, IC-281977 | V. mungo | Field and artificial screening | [104] |
Callosobruchus maculatus | V2802BG, V2709, BSR-GG-1-49-3-1, BSRGG-1-56-2-2, BSR-GG-1-160-5-3, BSR-GG-1-170-2-4, BSR-GG-1-198-1-4 | V. radiata | Bioassay | [105] |
Bruchid (C. analis) | IC251439, IC251442, PRR 2007-2, IC251440, TCR 279 | V. Umbellata | Bioassay | [48] |
JAP/10-51 | V. trinervia | |||
IC251435, IC553527, IC553526, JAP/10-7,IC349701 | V. trilobata | |||
TMV 1, LRM 13-44 | V. aconitifolia | |||
Trichy Local 1 | V. stipulacea | |||
Kumur Local | V. khandalensis | |||
Mung seed 1, IC571775, IC251434 | V. radiata | |||
IC251390IC251387 | V. mungo | |||
IC210580 | V. pilosa | |||
Bruchid (C. maculatus) | Mung Seed-1, IC251426A, IC251426B | V. radiata | Bioassay | [48] |
IC247408 | V. dalzelliana | |||
IC248326, IC248343 | V. vexillata | |||
Kumur Local | V. khandalensis | |||
JAP/10-51 | V. trinervia | |||
IC210575 | V. pilosa | |||
IC251394, IC251390, IC251385, IC251387 | V. mungo | |||
JAP/10-5, IC251435, IC553527 | V. trilobata | |||
IC251439, IC251442, PRR 2007-2, IC251440 | V. umbellata | |||
Bruchid (C. chinesis) | Kumur Local | V. khandalensis | Bioassay | [48] |
IC251397, IC251390, IC251385, IC251387 | V. mungo | |||
IC247408 | V. dalzelliana | |||
IC248326, IC248343 | V. vexillata | |||
IC251439, IC251442, PRR 2007-2, IC251440 | V. umbellata | |||
JAP/10-51 | V. trinervia | |||
IC247407 | V. trinervia var. bournei | |||
IC210575 | V. pilosa | |||
Mung seed-1 | V. radiata |
Gene Name | LG | Stress | Crop | Functional Characterization | Reference |
---|---|---|---|---|---|
Vradi04g06770 | 04 | MYMV | Mungbean × ricebean | Protein kinase superfamily protein (serine/threonine kinase activity) | [83] |
Vradi04g06840 | 04 | Small GTP-binding protein (disease resistance protein)/ leucine-rich repeat/P-loop containing nucleoside triphosphate hydrolase | |||
Vradi04g06900 | 04 | Zinc finger, RING/FYVE/PHD-type (RING finger protein 165-like | |||
Vradi04g06950 | 04 | Receptor-like kinase/leucine-rich repeats | |||
Vradi04g06960 | 04 | Zinc finger, RING/FYVE/PHD-type (U-box domain-containing protein 15-like) | |||
Vradi04g07000 | 04 | Protein kinase superfamily protein (serine/threonine kinase activity) | |||
Vradi04g07100 | 04 | WRKY family transcription factor | |||
Vradi04g07130 | 04 | WRKY family transcription factor | |||
Vradi04g07220 | 04 | MYB transcription factor MYB64 | |||
Vradi04g07240 | 04 | Transcription factor bHLH79-like (basic helix–loop–helix (bHLH) domain) | |||
Vradi04g0727 | 04 | MYB transcription factor MYB183 | |||
Vradi04g07290 | 04 | DNA/RNA helicase, DEAD/DEAH box type, N-terminal/P-loop containing nucleoside triphosphate hydrolase | |||
Vradi04g07440 | 04 | Zinc finger, RING/FYVE/PHD-type (U-box domain-containing protein 38-like) | |||
Vradi04g07450 | 04 | Jasmonic acid carboxyl methyltransferase (SAM-dependent carboxyl methyltransferase)/ methyltransferase activity | |||
Vradi04g07490 | 04 | Zinc finger, RING/FYVE/PHD-type (RING-H2 finger protein 2B) | |||
Vradi04g07540 | 04 | Cytochrome P450 (oxidation-reduction process) | |||
Vradi05g09450 | 05 | Bruchid | WRKY family transcription factor | [122] | |
Vradi05g09480 | 05 | Kelch repeat F-box protein | |||
Vradi05g09650 | 05 | Aminoacyl-tRNA synthetase | |||
Vradi05g09830 | 05 | Flavin-binding monooxygenase family protein | |||
Vradi05g09990 | 05 | Cellulose synthase family protein | |||
Vradi05g10080 | 05 | Ethylene-responsive transcription factor (ERF) | |||
Vradi05g10110 | 05 | F-box family protein (leucine-rich repeat) | |||
Vradi05g10130 | 05 | Ascorbate peroxidase (Peroxidase activity) | |||
Vradi05g10140 | 05 | Receptor-like serine/threonine-protein kinase | |||
Vradi05g10200 | 05 | Chloroplastic ATP synthase | |||
Vradi05g10210 | 05 | Protein kinase superfamily protein/protein kinase activity/ATP binding/protein phosphorylation | |||
Vradi05g10410 | 05 | Cellulose synthase family protein | |||
Vradi05g10460 | 05 | Protein kinase superfamily protein/concanavalin A-like lectin/glucanase/protein phosphorylation | |||
Vradi05g10480 | 05 | Ethylene-responsive transcription factor (ERF) | |||
Vradi05g10500 | 05 | Zinc finger protein 1-like (zinc finger, C2H2) | |||
Vradi05g10560 | 05 | Calmodulin-binding transcription activator 4-like isoform X5 | |||
Vradi05g10580 | 05 | Calmodulin-binding transcription activator 4 isoform X3 protein | |||
Vigan.05G027700 | 05 | C. maculatus | Black gram | Zinc finger RING/FYVE/PHD-type, CTLH/CRA C-terminal to LisH motif | [82] |
Vigan.05G028300 | 05 | Leucine-rich repeat—N-terminal, protein kinase family | |||
Vigan.05G029200 | 05 | Pathogenesis-related protein 1- like/cysteine-rich secretory protein allergen V5/Tpx-1 family | |||
Vigan.05G030000 | 05 | Myc-type basic helix–loop–helix (bHLH) typ | |||
Vigan.05G030500 | 05 | Zinc finger proteins (C2H2 type) | |||
Vigan.05G031900 | 05 | Protein kinase family (serine–threonine/tyrosine-protein kinase catalytic), Concanavalin A-like lectin/glucanase subgroup | |||
Vigan.05G035600 | 05 | F-box family protein | |||
Vigan.05G036000 | 05 | Diacylglycerol kinase catalytic protein, ATP-NAD kinase-lik | |||
Vigan.05G036200 | 05 | Target SNARE site (coiled-coil structure), syntaxin N-terminal | |||
Vigan.05G038400 | 05 | Toll/interleukin-1 receptor homology (TIR) | |||
Vigan.05G042200 | 05 | Ubiquitin-conjugating enzyme E2/RWD-like | |||
Vigan.05G044400 | 05 | Leucine-rich repeat (malectin-like carbohydrate binding) | |||
Vigan.05G046400 | 05 | Glutaredoxin-like protein/Thioredoxin-like fold | |||
Vigan.05G046700 | 05 | NB-LRR family proteins | |||
Vigan.05G048300 | 05 | Pathogenesis-related genes transcriptional activator (PTI5) | |||
Vigan.05G049800 | 05 | Chloramphenicol acetyltransferase-like | |||
Vigan.05G056900 | 05 | Ankyrin repeat-containing protein | |||
Vigan.05G066300 | 05 | F-box proteins/Kelch repeat type 1 | |||
Vigan.05G075700 | 05 | F-box/kelch-repeat protein At3g23880-like isoform X1 | |||
Vigan.08G002100 | 08 | Bi-functional inhibitor/seed storage helical protein | |||
Vigan.08G002200 | 08 | Lipid-transfer protein DIR1 family | |||
Vigan.08G002600 | 08 | Myc-type basic helix–loop–helix (bHLH) type | |||
Vigan.08G003600 | 08 | Zinc finger CCCH-type K homology protein | |||
Vigan.08G003900 | 08 | Cytochrome P450 conserved protein | |||
Vigan.08G004400 | 08 | Protein kinase super family (serine–threonine-dual specificity protein)/Concanavalin A-like lectin/glucanase subgroup | |||
Vigan.08G004700 | 08 | Basic-leucine zipper protein/transcription factor TGA-like | |||
VrPGIP1, VrPGIP 2 | 05 | Callosobruchus chinensis and Callosobruchus maculatus | Green gram | Polygalacturonase-inhibiting protein | [94,124] |
Vradi04g00919 | 04 | C. chinensis | polygalacturonase inhibitor | [125] | |
Vradi05g03810 | 05 | Callosobruchus spp. | V. radiata >× V. sublobata | Resistant-specific protein-1 | [93] |
Vradi05g03830 | 05 | Resistant-specific protein-2 | |||
Vradi05g03840 | 05 | Resistant-specific protein-2 | |||
Vradi05g03860 | 05 | Resistant-specific protein-2 | |||
Vradi05g03870 | 05 | Resistant-specific protein-1 | |||
Vradi05g03880 | 05 | Resistant-specific protein-1 | |||
Vradi05g03930 | 05 | Resistant-specific protein-2 | |||
Vradi05g03940 | 05 | Polygalacturonase inhibitor | |||
Vradi05g03950 | 05 | Polygalacturonase inhibitor |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, P.; Pandey, B.; Pratap, A.; Gyaneshwari, U.; Nair, R.M.; Mishra, A.K.; Singh, C.M. Genetic and Genomics Resources of Cross-Species Vigna Gene Pools for Improving Biotic Stress Resistance in Mungbean (Vigna radiata L. Wilczek). Agronomy 2022, 12, 3000. https://doi.org/10.3390/agronomy12123000
Singh P, Pandey B, Pratap A, Gyaneshwari U, Nair RM, Mishra AK, Singh CM. Genetic and Genomics Resources of Cross-Species Vigna Gene Pools for Improving Biotic Stress Resistance in Mungbean (Vigna radiata L. Wilczek). Agronomy. 2022; 12(12):3000. https://doi.org/10.3390/agronomy12123000
Chicago/Turabian StyleSingh, Poornima, Brijesh Pandey, Aditya Pratap, Upagya Gyaneshwari, Ramakrishnan M. Nair, Awdhesh Kumar Mishra, and Chandra Mohan Singh. 2022. "Genetic and Genomics Resources of Cross-Species Vigna Gene Pools for Improving Biotic Stress Resistance in Mungbean (Vigna radiata L. Wilczek)" Agronomy 12, no. 12: 3000. https://doi.org/10.3390/agronomy12123000
APA StyleSingh, P., Pandey, B., Pratap, A., Gyaneshwari, U., Nair, R. M., Mishra, A. K., & Singh, C. M. (2022). Genetic and Genomics Resources of Cross-Species Vigna Gene Pools for Improving Biotic Stress Resistance in Mungbean (Vigna radiata L. Wilczek). Agronomy, 12(12), 3000. https://doi.org/10.3390/agronomy12123000