The Role of Plant Growth Regulators in Miscanthus × giganteus Growth on Trace Elements-Contaminated Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Collection
2.2. Experimental Design
2.3. Samples Collection at Harvest
2.4. Analysis of TEs’ Content in the Soil and Biomass
2.5. Calculation of Phytoremediation Parameters
2.6. Statistical Evaluation
3. Results and Discussion
3.1. Influence of PGRs and Soil Contamination on M×g Parameters
3.2. Impact of PGRs on Phytoremediation Parameters
3.3. Comparative Analysis of PGRs Impact on M×g Biomass Productivity
3.4. Comparative Impact of PGR Charkor on M×g Development in the Different Soils
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, Z.; Shentu, J.; Yang, X.; Baligar, V.C.; Zhang, T.; Stoffella, P.J. Heavy Metal Contamination of Soils: Sources, Indicators and Assessment. J. Environ. Indic. 2015, 9, 17–18. [Google Scholar]
- He, Z.L.; Yang, X.E.; Stoffella, P.J. Trace Elements in Agroecosystems and Impacts on the Environment. J. Trace Elem. Med. Biol. 2005, 19, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Lobell, D.B.; Gourdji, S.M. The Influence of Climate Change on Global Crop Productivity. Plant Physiol. 2012, 160, 1686–1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voytsehovska, O.; Kapustyan, A.; Kosik, O.; Musienko, M.; Olkhovich, O.; Panyuta, O. Plant Physiology: Praktikum; Parshikova, T., Ed.; Teren: Lutsk, Ukraine, 2010. [Google Scholar]
- Sadiqi, S.; Hamza, M.; Ali, F.; Alam, S.; Shakeela, Q.; Ahmed, S.; Ayaz, A.; Ali, S.; Saqib, S.; Ullah, F.; et al. Molecular Characterization of Bacterial Isolates from Soil Samples and Evaluation of Their Antibacterial Potential against MDRS. Molecules 2022, 27, 6281. [Google Scholar] [CrossRef]
- Liaquat, F.; Munis, M.F.H.; Arif, S.; Haroon, U.; Shi, J.; Saqib, S.; Zaman, W.; Che, S.; Liu, Q. PacBio Single-Molecule Long-Read Sequencing Reveals Genes Tolerating Manganese Stress in Schima superba Saplings. Front. Genet. 2021, 12, 635043. [Google Scholar] [CrossRef] [PubMed]
- Ponomarenko, S.P.; Terek, O.I.; Grytsaenko, Z.M.; Babayants, O.V.; Moiseeva, T.V.; Wenxiu, H. Bioregulation of growth and development of plants: Plant growth regulators in crop science. In Bioregulation of Microbial-Plant Systems; Ponomarenko, S.P., Lutynska, H.O., Eds.; Nichlava: Kiev, Ukraine, 2010; pp. 251–291. [Google Scholar]
- Ponomarenko, S.P.; Hrytsaenko, Z.M.; Tsygankova, V.A. Increase of Plant Resistance to Diseases, Pests and Stresses with New Biostimulants. Acta Hortic. 2013, 1009, 225–233. [Google Scholar] [CrossRef]
- Sunera, A.; Saqib, S.; Uddin, S.; Zaman, W.; Ullah, F.; Ayaz, A.; Asghar, M.; Rehman, S.U.; Munis, M.F.H.; Chaudhary, H.J. Characterization and Phytostimulatory Activity of Bacteria Isolated from Tomato (Lycopersicon esculentum Mill.) Rhizosphere. Microb. Pathog. 2020, 140, 103966. [Google Scholar] [CrossRef] [PubMed]
- Rademacher, W. Plant Growth Regulators: Backgrounds and Uses in Plant Production. J. Plant Growth Regul. 2015, 34, 845–872. [Google Scholar] [CrossRef]
- Minn, K.; Dietrich, H.; Dittgen, J.; Feucht, D.; Häuser-Hahn, I.; Rosinger, C.H. Pyrimidine Derivatives and Their Use for Controlling Undesired Plant Growth. Patent WO 2010/0760009 A8 08.07.2010, 23 June 2011. Available online: https://patents.google.com/patent/WO2010076009A8/en (accessed on 4 November 2022).
- Cansev, A.; Gülen, H.; Zengin, M.K.; Ergin, S.; Cansev, M. Use of Pyrimidines in Stimulation of Plant Growth and Development and Enhancement of Stress Tolerance. WIPO Patent WO 2014/129996A1, 28 August 2014. [Google Scholar]
- Tsygankova, V.; Ya, A.; Shtompel, O.; Romaniuk, O.; Yaikova, M.; Hurenko, A.; Solomyanny, R.; Abdurakhmanova, E.; Klyuchko, S.; Holovchenko, O. Application of Synthetic Low Molecular Weight Heterocyclic Compounds Derivatives of Pyrimidine, Pyrazole and Oxazole in Agricultural Biotechnology as a New Plant Growth Regulating Substances. J. Med. Biotechnol. Genet. S 2017, 2, 10–32. [Google Scholar] [CrossRef]
- Hąc-Wydro, K.; Flasiński, M. The Studies on the Toxicity Mechanism of Environmentally Hazardous Natural (IAA) and Synthetic (NAA) Auxin—The Experiments on Model Arabidopsis thaliana and Rat Liver Plasma Membranes. Colloids Surf. B Biointerfaces 2015, 130, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Celik, I.; Tuluce, Y. Determination of Toxicity of Subacute Treatment of Some Plant Growth Regulators on Rats. Environ. Toxicol. 2007, 22, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.-H.; Liu, Y.-B.; Zhang, X.-S. Auxin–Cytokinin Interaction Regulates Meristem Development. Mol. Plant 2011, 4, 616–625. [Google Scholar] [CrossRef]
- Schaller, G.E.; Bishopp, A.; Kieber, J.J. The Yin-Yang of Hormones: Cytokinin and Auxin Interactions in Plant Development. Plant Cell 2015, 27, 44–63. [Google Scholar] [CrossRef] [Green Version]
- Tsygankova, V.; Ponomarenko, S.; Blume, Y.B. The Molecular Genetic Mechanisms of Plant Growth Regulators’ Action with Bioprotective Properties. Bull. Vavilov. Soc. Genet. Breed Ukr. 2012, 10, 86–94. [Google Scholar]
- Rigal, A.; Ma, Q.; Robert, S. Unraveling Plant Hormone Signaling through the Use of Small Molecules. Front. Plant Sci. 2014, 5, 373. [Google Scholar] [CrossRef] [Green Version]
- Serrano, M.; Kombrink, E.; Meesters, C. Considerations for Designing Chemical Screening Strategies in Plant Biology. Front. Plant Sci. 2015, 6, 131. [Google Scholar] [CrossRef] [Green Version]
- Pařízková, B.; Pernisová, M.; Novák, O. What Has Been Seen Cannot Be Unseen—Detecting Auxin In Vivo. Int. J. Mol. Sci. 2017, 18, 2736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsygankova, V.A.; Andrysevich, Y.V.; Shtompel, O.I.; Kopich, V.M.; Kluchko, S.V.; Brovaretz, V.S. Using Pyrimidine Derivatives—Sodium Salt of Metiur and Potassium Salt of Metiur, to Intensify the Growth of Corn. Patent of Ukraine 130921, 12 December 2018. [Google Scholar]
- Tsygankova, V.A.; Voloshchuk, I.V.; Andrusevich, Y.V.; Shtompel, O.I.; Kopich, V.M.; Klyuchko, S.V.; Brovarets, V.S. Using Pyrimidine and Pyridine Derivatives for Regulation of Growth and Development of Barley Plants. In Proceedings of the Innovative Development of Science and Education; ISGT Publishing House: Athens, Greece, 2020; pp. 52–68. [Google Scholar]
- Tsygankova, V.; Voloshchuk, I.; Klyuchko, S.; Pilyo, S.; Brovarets, V.; Kovalenko, O. The Effect of Pyrimidine and Pyridine Derivatives on the Growth and Productivity of Sorghum. Int. J. Bot. Stud. 2022, 7, 19–31. [Google Scholar]
- Rudnytska, M.; Palladina, T. Effect of Preparations Methyure and Ivine on Ca2+-ATPases Activity in Plasma and Vacuolar Membrane of Corn Seedling Roots under Salt Stress Conditions. Ukr. Biochem. J. 2017, 89, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Tsygankova, V.; Oliynyk, O.; Kvasko, O.Y.; Pilyo, S.; Klyuchko, S. Brovarets VS Effect of Plant Growth Regulators Ivin, Methyur and Kamethur on the Organo-Genesis of Miniature Rose (Rosa mini L.) In Vitro. Int. J. Med. Biotechnol. Genet. S 2022, S1, 1–8. [Google Scholar]
- Lewandowski, I.; Scurlock, J.M.O.; Lindvall, E.; Christou, M. The Development and Current Status of Perennial Rhizomatous Grasses as Energy Crops in the US and Europe. Biomass Bioenergy 2003, 25, 335–361. [Google Scholar] [CrossRef]
- Lewandowski, I.; Clifton-Brown, J.; Trindade, L.M.; van der Linden, G.C.; Schwarz, K.-U.; Müller-Sämann, K.; Anisimov, A.; Chen, C.-L.; Dolstra, O.; Donnison, I.S.; et al. Progress on Optimizing Miscanthus Biomass Production for the European Bioeconomy: Results of the EU FP7 Project OPTIMISC. Front. Plant Sci. 2016, 7, 1620. [Google Scholar] [CrossRef] [Green Version]
- Kvak, V.; Stefanovska, T.; Pidlisnyuk, V.; Alasmary, Z.; Kharytonov, M. The Long-Term Assessment of Miscanthus × giganteus Cultivation in the Forest-Steppe Zone of Ukraine. INMATEH-Agric. Eng. 2018, 54, 113–120. [Google Scholar]
- Pidlisnyuk, V.; Stefanovska, T. Methods for Growing M. × giganteus at the Abandoned Land. Patent of Ukraine 127487, 10 August 2018. [Google Scholar]
- Lask, J.; Rukavina, S.; Zorić, I.; Kam, J.; Kiesel, A.; Lewandowski, I.; Wagner, M. Lignocellulosic Ethanol Production Combined with CCS—A Study of GHG Reductions and Potential Environmental Trade-Offs. GCB Bioenergy 2021, 13, 336–347. [Google Scholar] [CrossRef]
- Roik, M.; Sinchenko, V.; Purkin, V.; Kvak, V.; Humentik, M. (Eds.) Miscanthus in Ukraine; FOP Yamchinskiy Press: Kyiv, Ukraine, 2019; ISBN 978-617-7804-11-5. [Google Scholar]
- Hansen, E.M.; Christensen, B.T.; Jensen, L.S.; Kristensen, K. Carbon Sequestration in Soil beneath Long-Term Miscanthus Plantations as Determined by 13C Abundance. Biomass Bioenergy 2004, 26, 97–105. [Google Scholar] [CrossRef]
- Clifton-Brown, J.C.; Breuer, J.; Jones, M.B. Carbon Mitigation by the Energy Crop, Miscanthus. Glob. Chang. Biol. 2007, 13, 2296–2307. [Google Scholar] [CrossRef]
- Voća, N.; Leto, J.; Karažija, T.; Bilandžija, N.; Peter, A.; Kutnjak, H.; Šurić, J.; Poljak, M. Energy Properties and Biomass Yield of Miscanthus × giganteus Fertilized by Municipal Sewage Sludge. Molecules 2021, 26, 4371. [Google Scholar] [CrossRef] [PubMed]
- Bilandžija, N.; Zgorelec, Ž.; Pezo, L.; Grubor, M.; Velaga, A.G.; Krička, T. Solid Biofuels Properites of Miscanthus × giganteus Cultivated on Contaminated Soil after Phytoremediation Process. J. Energy Inst. 2022, 101, 131–139. [Google Scholar] [CrossRef]
- Grzegórska, A.; Czaplicka, N.; Antonkiewicz, J.; Rybarczyk, P.; Baran, A.; Dobrzyński, K.; Zabrocki, D.; Rogala, A. Remediation of Soils on Municipal Rendering Plant Territories Using Miscanthus × giganteus. Environ. Sci. Pollut. Res. 2022, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Pidlisnyuk, V.; Herts, A.; Khomenchuk, V.; Mamirova, A.; Kononchuk, O.; Ust’ak, S. Dynamic of Morphological and Physiological Parameters and Variation of Soil Characteristics during Miscanthus × giganteus Cultivation in the Diesel-Contaminated Land. Agronomy 2021, 11, 798. [Google Scholar] [CrossRef]
- Nurzhanova, A.; Pidlisnyuk, V.; Sailaukhanuly, Y.; Kenessov, B.; Trogl, J.; Aligulova, R.; Kalugin, S.; Nurmagambetova, A.; Abit, K.; Stefanovska, T. Phytoremediation of Military Soil Contaminated by Metals and Organochlorine Pesticides Using Miscanthus. Commun. Agric. Appl. Biol. Sci. 2017, 82, 61–68. [Google Scholar]
- Wanat, N.; Austruy, A.; Joussein, E.; Soubrand, M.; Hitmi, A.; Gauthier-Moussard, C.; Lenain, J.-F.; Vernay, P.; Munch, J.C.; Pichon, M. Potentials of Miscanthus × giganteus Grown on Highly Contaminated Technosols. J. Geochem. Explor. 2013, 126–127, 78–84. [Google Scholar] [CrossRef]
- Kharytonov, M.; Pidlisnyuk, V.; Stefanovska, T.; Babenko, M.; Martynova, N.; Rula, I. The Estimation of Miscanthus × giganteus Adaptive Potential for Cultivation on the Mining and Post-Mining Lands in Ukraine. Environ. Sci. Pollut. Res. 2019, 26, 2974–2986. [Google Scholar] [CrossRef] [PubMed]
- Pranaw, K.; Pidlisnyuk, V.; Trögl, J.; Malinská, H. Bioprospecting of a Novel Plant Growth-Promoting Bacterium Bacillus altitudinis KP-14 for Enhancing Miscanthus × giganteus Growth in Metals Contaminated Soil. Biology 2020, 9, 305. [Google Scholar] [CrossRef] [PubMed]
- Rakić, T.; Pešić, M.; Kostić, N.; Andrejić, G.; Fira, D.; Dželetović, Ž.; Stanković, S.; Lozo, J. Rhizobacteria Associated with Miscanthus × giganteus Improve Metal Accumulation and Plant Growth in the Flotation Tailings. Plant Soil 2021, 462, 349–363. [Google Scholar] [CrossRef]
- Malinská, H.A.; Vaněk, M.; Nebeská, D.; Šubrt, D.; Brestič, M.; Trögl, J. Plant Priming Changes Physiological Properties and Lignin Content in Miscanthus × giganteus. Ind. Crops Prod. 2021, 174, 114185. [Google Scholar] [CrossRef]
- Evangelou, M.W.H.; Papazoglou, E.G.; Robinson, B.H.; Schulin, R. Phytomanagement: Phytoremediation and the Production of Biomass for Economic Revenue on Contaminated Land. In Phytoremediation: Management of Environmental Contaminants; Ansari, A.A., Gill, S.S., Gill, R., Lanza, G.R., Newman, L., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 115–132. Volume 1, ISBN 978-3-319-10395-2. [Google Scholar]
- Al Souki, K.S.; Burdová, H.; Trubač, J.; Štojdl, J.; Kuráň, P.; Kříženecká, S.; Machová, I.; Kubát, K.; Popelka, J.; Malinská, H.A.; et al. Enhanced Carbon Sequestration in Marginal Land Upon Shift towards Perennial C4 Miscanthus × giganteus: A Case Study in North-Western Czechia. Agronomy 2021, 11, 293. [Google Scholar] [CrossRef]
- Roozeboom, K.L.; Wang, D.; McGowan, A.R.; Propheter, J.L.; Staggenborg, S.A.; Rice, C.W. Long-Term Biomass and Potential Ethanol Yields of Annual and Perennial Biofuel Crops. Agron. J. 2019, 111, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Alasmary, Z.; Hettiarachchi, G.M.; Roozeboom, K.L.; Davis, L.C.; Erickson, L.E.; Pidlisnyuk, V.; Stefanovska, T.; Trögl, J. Phytostabilization of a Contaminated Military Site Using Miscanthus and Soil Amendments. J. Environ. Qual. 2021, 50, 1220–1232. [Google Scholar] [CrossRef] [PubMed]
- Davis, L.C.; Pidlisnyuk, V.V.; Mamirova, A.; Shapoval, P.Y.; Stefanovska, T.R. Establishing Miscanthus, Production of Biomass, and Application to Contaminated Sites. In Phytotechnology with Biomass Production: Sustainable Management of Contaminated Sites; Erickson, L.E., Pidlisnyuk, V.V., Eds.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2021; pp. 77–114. ISBN 978-1-00-038728-5. [Google Scholar] [CrossRef]
- Meers, E.; Van Slycken, S.; Adriaensen, K.; Ruttens, A.; Vangronsveld, J.; Du Laing, G.; Witters, N.; Thewys, T.; Tack, F.M.G. The Use of Bio-Energy Crops (Zea mays) for ‘Phytoattenuation’ of Heavy Metals on Moderately Contaminated Soils: A Field Experiment. Chemosphere 2010, 78, 35–41. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, D.; Pidlisnyuk, V.V.; Erickson, L.E. Miscanthus Biomass for Alternative Energy Production. In Phytotechnology with Biomass Production: Sustainable Management of Contaminated Sites; Erickson, L.E., Pidlisnyuk, V.V., Eds.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2021; p. 242. ISBN 978-1-00-038728-5. [Google Scholar] [CrossRef]
- Grzegórska, A.; Rybarczyk, P.; Rogala, A.; Zabrocki, D. Phytoremediation—From Environment Cleaning to Energy Generation—Current Status and Future Perspectives. Energies 2020, 13, 2905. [Google Scholar] [CrossRef]
- Cappelletto, P.; Mongardini, F.; Barberi, B.; Sannibale, M.; Brizzi, M.; Pignatelli, V. Papermaking Pulps from the Fibrous Fraction of Miscanthus × giganteus. Ind. Crops Prod. 2000, 11, 205–210. [Google Scholar] [CrossRef]
- Danielewicz, D.; Dybka-Stępień, K.; Surma-Ślusarska, B. Processing of Miscanthus × giganteus Stalks into Various Soda and Kraft Pulps. Part I: Chemical Composition, Types of Cells and Pulping Effects. Cellulose 2018, 25, 6731–6744. [Google Scholar] [CrossRef] [Green Version]
- Schulte, M.; Lewandowski, I.; Pude, R.; Wagner, M. Comparative Life Cycle Assessment of Bio-Based Insulation Materials: Environmental and Economic Performances. GCB Bioenergy 2021, 13, 979–998. [Google Scholar] [CrossRef]
- Pidlisnyuk, V.; Stefanovska, T.; Barbash, V.; Zelenchuk, T. Characteristics of Pulp Obtained from Miscanthus × giganteus Biomass Produced in Lead-Contaminated Soil. Cellul. Chem. Technol. 2021, 55, 271–280. [Google Scholar] [CrossRef]
- Dubis, B.; Jankowski, K.J.; Załuski, D.; Bórawski, P.; Szempliński, W. Biomass Production and Energy Balance of Miscanthus over a Period of 11 Years: A Case Study in a Large-Scale Farm in Poland. GCB Bioenergy 2019, 11, 1187–1201. [Google Scholar] [CrossRef] [Green Version]
- Geletukha, G.; Zheliezna, T.; Tryboi, O.; Bashtovyi, A. Analysis of Criteria for the Sustainable Development of Bioenergy. UABio Position PAP 2016, 17, 1–30. [Google Scholar]
- Nebeská, D.; Pidlisnyuk, V.; Stefanovska, T.; Trögl, J.; Shapoval, P.; Popelka, J.; Cerný, J.; Medkow, A.; Kvak, V.; Malinská, H. Impact of Plant Growth Regulators and Soil Properties on Miscanthus × giganteus Biomass Parameters and Uptake of Metals in Military Soils. Rev. Environ. Health 2019, 34, 283–291. [Google Scholar] [CrossRef]
- Malinská, H.; Pidlisnyuk, V.; Nebeská, D.; Erol, A.; Medžová, A.; Trögl, J. Physiological Response of Miscanthus × giganteus to Plant Growth Regulators in Nutritionally Poor Soil. Plants 2020, 9, 194. [Google Scholar] [CrossRef] [Green Version]
- Pidlisnyuk, V.; Mamirova, A.; Pranaw, K.; Stadnik, V.; Kuráň, P.; Trögl, J.; Shapoval, P. Miscanthus × giganteus Phytoremediation of Soil Contaminated with Trace Elements as Influenced by the Presence of Plant Growth-Promoting Bacteria. Agronomy 2022, 12, 771. [Google Scholar] [CrossRef]
- ISO 11464:2006; Soil Quality. Pre-Treatment of Samples for Physico-Chemical Analyses. ISO: Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/37718.html (accessed on 18 November 2022).
- DSTU 4287:2004; Soil Quality. Sampling. DP “UkrNDNC”: Kyiv, Ukraine, 2005; p. 9.
- GOST 26483-85; Soils. Preparation of Salt Extract and Determination of Its PH by CINAO Method. CINAO: Minsk, Belarus, 1986.
- DSTU 8346:2015; Soil Quality. Methods for the Determination of Conductivity, pH and Dense Residue of the Aqueous Extract. DP “UkrNDNC”: Kyiv, Ukraine, 2015.
- DSTU 7632:2014; Greenhouse Soils. Method for the Determination of Organic Matter. DP “UkrNDNC”: Kyiv, Ukraine, 2014; p. 18.
- Al Souki, K.S.; Burdová, H.; Mamirova, A.; Kuráň, P.; Kříženecká, S.; Oravová, L.; Tolaszová, J.; Nebeská, D.; Popelka, J.; Ust’ak, S.; et al. Evaluation of the Miscanthus × giganteus Short Term Impacts on Enhancing the Quality of Agricultural Soils Affected by Single and/or Multiple Contaminants. Environ. Technol. Innov. 2021, 24, 101890. [Google Scholar] [CrossRef]
- Pidlisnyuk, V.; Mamirova, A.; Pranaw, K.; Shapoval, P.Y.; Trögl, J.; Nurzhanova, A. Potential Role of Plant Growth-Promoting Bacteria in Miscanthus × giganteus Phytotechnology Applied to the Trace Elements Contaminated Soils. Int. Biodeterior. Biodegrad. 2020, 155, 105103. [Google Scholar] [CrossRef]
- DSTU 7863:2015; Soil Quality. Determination of Light Hydrolyzed Nitrogen by the Kornfield Method. DP “UkrNDNC”: Kyiv, Ukraine, 2015.
- DSTU 4115-2002; Determination of Mobile Compounds of Phosphorus and Potassium According to the Modified Chirikov Method. DP “UkrNDNC”: Kyiv, Ukraine, 2003; p. 9.
- GOST 26487-85; Soils. Determination of Exchangeable Calcium and Exchangeable (Mobile) Magnesium by CINAO Methods. CINAO: Minsk, Belarus, 1986.
- DSTU 8347:2015; Soil Quality Determination of Mobile Sulfur in the Modification NRC Sokolovsky ISSA. DP “UkrNDNC”: Kyiv, Ukraine, 2017.
- MECR. Ministry of the Environment of the Czech Republic. Decree Laying down Detailed Rules for the Protection of Quality of Agricultural Land and Amending. Decree Specifying Some Details of Agricultural Land Resources Protection; Ministry of the Environment of the Czech Republic (MECR): Prague, Czech Republic, 2016.
- Sudhakaran, M.; Ramamoorthy, D.; Savitha, V.; Balamurugan, S. Assessment of Trace Elements and Its Influence on Physico-Chemical and Biological Properties in Coastal Agroecosystem Soil, Puducherry Region. Geol. Ecol. Landsc. 2018, 2, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Pidlisnyuk, V.; Stefanovska, T.; Zhukov, O.; Medkow, A.; Shapoval, P.; Stadnik, V.; Sozanskyi, M. Impact of Plant Growth Regulators to Development of the Second Generation Energy Crop Miscanthus × giganteus Produced Two Years in Marginal Post-Military Soil. Appl. Sci. 2022, 12, 881. [Google Scholar] [CrossRef]
- DSTU ISO 11465-2001; Soil Quality. Determination of Dry Matter and Moisture Content by Mass Gravimetric Method. Sokolovsky Institute of Soil Science and Agrochemistry Ukrainian Academy of Agrarian Sciences: Kyiv, Ukraine, 2003.
- USEPA. Field Portable X-ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment; EPA Method 6200; U.S. Environmental Protection Agency: Washington, DC, USA, 2007; p. 32. [Google Scholar]
- Zayed, A.; Gowthaman, S.; Terry, N. Phytoaccumulation of Trace Elements by Wetland Plants: I. Duckweed. J. Environ. Qual. 1998, 27, 715–721. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, J.; Xia, X.; Chu, J.; Wei, Y.; Shi, S.; Chang, E.; Yin, W.; Jiang, Z. The Evaluation of Heavy Metal Accumulation and Application of a Comprehensive Bio-Concentration Index for Woody Species on Contaminated Sites in Hunan, China. Environ. Sci. Pollut. Res. 2014, 21, 5076–5085. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.H.; Zhao, F.-J.; Dobermann, A. What Is a Plant Nutrient? Changing Definitions to Advance Science and Innovation in Plant Nutrition. Plant Soil 2022, 476, 11–23. [Google Scholar] [CrossRef]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: Cambridge, MA, USA; Amsterdam, The Netherlands, 2012; ISBN 978-0-12-384906-9. [Google Scholar]
- Mozharìvska, I. The technology of growing of energy crops for the production of different types of biofuel. Sci. Pap. Inst. Energy Crops Suger Beets 2013, 19, 85–89. [Google Scholar]
- Tsygankova, V.A.; Stefanovska, T.R.; Galkin, A.P.; Ponomarenko, S.P.; Blume, Y.B. Inducing Effect of PGRs on Small Regulatory Si/MiRNA in Resistance to Sugar Beet Cyst Nematode. Commun. Agric. Appl. Biol. Sci. 2012, 77, 779–787. [Google Scholar]
- Cadoux, S.; Riche, A.B.; Yates, N.E.; Machet, J.-M. Nutrient Requirements of Miscanthus × giganteus: Conclusions from a Review of Published Studies. Biomass Bioenergy 2012, 38, 14–22. [Google Scholar] [CrossRef]
- Anderson, E.; Arundale, R.; Maughan, M.; Oladeinde, A.; Wycislo, A.; Voigt, T. Growth and Agronomy of Miscanthus × giganteus for Biomass Production. Biofuels 2011, 2, 71–87. [Google Scholar] [CrossRef]
Parameters | Unit | Chomutov | Všebořice | Measuring Standard | ||||
---|---|---|---|---|---|---|---|---|
Control | Charkor | Kamethur | Control | Charkor | Kamethur | |||
pH (KCl) | - | 5.24 ± 0.17 | 5.22 ± 0.07 | 5.11 ± 0.08 | 3.48 ± 0.09 | 3.47 ± 0.03 | 3.48 ± 0.06 | [64] |
pH (H2O) | - | 5.98 ± 0.07 | 5.96 ± 0.03 | 5.96 ± 0.06 | 4.27 ± 0.13 | 4.18 ± 0.02 | 4.29 ± 0.05 | [65] |
Organic matter | % | 2.86 ± 0.22 | 2.70 ± 0.32 | 2.70 ± 0.38 | 28.4 ± 1.41 | 30.6 ± 0.22 | 31.1 ± 2.77 | [66] |
Alkaline hydrolysed N | mg kg−1 | 3.93 × 103 [67] | 108 [68] | [69] | ||||
Available P | mg kg−1 | 28.8 ± 2.12 | 29.4 ± 0.71 | 28.8 ± 0.70 | 14.2 ± 1.49 | 13.5 ± 1.26 | 14.6 ± 0.03 | [70] |
Available K | mg kg−1 | 125 ± 16.2 c | 126 ± 8.61 – | 131 ± 3.97 c | 838 ± 56.2 ab | 871 ± 68.5 a | 741 ± 42.9 b | [70] |
Available Ca | meq/100 g | 1 925 ± 201 | 1 831 ± 118 | 1 901 ± 113 | 2 710 ± 73.7 | 2806 ± 41.7 | 2738 ± 55.9 | [71] |
Available Mg | meq/100 g | 200 ± 13.5 | 189 ± 14.6 | 198 ± 11.2 | 887 ± 49.7 | 916 ± 21.3 | 890 ± 16.8 | [71] |
Available S | mg kg−1 | 66.9 ± 1.93 | 66.7 ± 4.16 | 68.6 ± 4.85 | 92.1 ± 4.41 | 98.5 ± 4.86 | 93.0 ± 3.54 | [72] |
TEs | MPC EU [73] | Chomutov | Všebořice | p-Value |
---|---|---|---|---|
Mg | 13,374 ± 160 a | 10,279 ± 1317 b | <0.05 | |
Al | 96,302 ± 1 018 b | 122,530 ± 790 a | <0.001 | |
Si | 307,255 ± 1 923 a | 275,918 ± 783 b | <0.001 | |
P | 1782 ± 152 | 1936 ± 403 | 0.568 | |
S | 298 ± 15.0 b | 1387 ± 42.0 a | <0.001 | |
K | 30,329 ± 688 a | 14,828 ± 1947 b | <0.001 | |
Ca | 7 081 ± 318 | 8536 ± 1000 | 0.074 | |
Ti | 7361 ± 119 b | 20,489 ± 425 a | <0.001 | |
Mn | 1500 | 1478 ± 173 a | 546 ± 60.5 b | <0.001 |
Fe | 50,482 ± 864 b | 62,150 ± 267 a | <0.001 | |
Cu | 60 | 44.6 ± 1.90 b | 69.9 ± 13.8 a | <0.05 |
Zn | 120 | 200 ± 8.35 | 202 ± 11.4 | 0.823 |
Rb | 218 ± 9.14 a | 122 ± 3.38 b | <0.001 | |
Sr | 200 [74] | 184 ± 11.1 b | 410 ± 5.12 a | <0.001 |
Zr | 343 ± 37.3 b | 563 ± 6.31 a | <0.001 | |
Pb | 60 | 121 ± 1.45 a | 62.2 ± 6.71 b | <0.001 |
TE | MPC EU [58] | Chomutov | Všebořice | Dolyna [75] | p-Value |
---|---|---|---|---|---|
Cr | 90 | - | - | 141 ± 4.50 | - |
Mn | 1500 | 1 478 ± 173 a | 546 ± 60.5 c | 933 ± 22.5 b | <0.001 |
Ni | 50 | - | - | 66.0 ± 2.00 | - |
Cu | 60 | 44.6 ± 1.90 b | 69.9 ± 13.8 a | 43.5 ± 0.50 b | <0.05 |
Zn | 120 | 200 ± 8.35 a | 202 ± 11.4 a | 116 ± 1.00 b | <0.001 |
Sr | 200 [59] | 184 ± 11.1 c | 410 ± 5.12 a | 223 ± 1.50 b | <0.001 |
Pb | 60 | 121 ± 1.45 a | 62.2 ± 6.71 b | 15.5 ± 0.50 c | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pidlisnyuk, V.; Mamirova, A.; Newton, R.A.; Stefanovska, T.; Zhukov, O.; Tsygankova, V.; Shapoval, P. The Role of Plant Growth Regulators in Miscanthus × giganteus Growth on Trace Elements-Contaminated Soils. Agronomy 2022, 12, 2999. https://doi.org/10.3390/agronomy12122999
Pidlisnyuk V, Mamirova A, Newton RA, Stefanovska T, Zhukov O, Tsygankova V, Shapoval P. The Role of Plant Growth Regulators in Miscanthus × giganteus Growth on Trace Elements-Contaminated Soils. Agronomy. 2022; 12(12):2999. https://doi.org/10.3390/agronomy12122999
Chicago/Turabian StylePidlisnyuk, Valentina, Aigerim Mamirova, Robert Ato Newton, Tatyana Stefanovska, Oleksandr Zhukov, Viktoria Tsygankova, and Pavlo Shapoval. 2022. "The Role of Plant Growth Regulators in Miscanthus × giganteus Growth on Trace Elements-Contaminated Soils" Agronomy 12, no. 12: 2999. https://doi.org/10.3390/agronomy12122999
APA StylePidlisnyuk, V., Mamirova, A., Newton, R. A., Stefanovska, T., Zhukov, O., Tsygankova, V., & Shapoval, P. (2022). The Role of Plant Growth Regulators in Miscanthus × giganteus Growth on Trace Elements-Contaminated Soils. Agronomy, 12(12), 2999. https://doi.org/10.3390/agronomy12122999