Replacing Agricultural Diesel Fuel with Biomethane from Agricultural Waste: Assessment of Biomass Availability and Potential Energy Supply in Piedmont (North-West Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Fuel Consumption by Agricultural Machinery and Related Carbon Dioxide Emissions in the Piedmont Region
2.3. Crop Residue Yield and Available Crop Residue Yield
2.4. Number and Type of Animals Reared in Piedmont and Relative Effluent Production
2.5. Assessment of Potential Biomethane Production in the Piedmont Region from Agricultural Wastes
2.6. Potential Energy Value of Biomethane from Available Agricultural Wastes and Comparison with the Piedmont Tractor Fleet Energy Requirements
2.7. Emissions Comparison between Biomethane and Diesel as Fuel in the Piedmont Tractor Fleet
3. Results
3.1. Carbon Dioxide Emission from Tractors in the Piedmont Region
3.2. Available Crop Residues for Biomethane Production
3.3. Number and Type of Animals Reared in Piedmont and Relative Effluent Production
3.4. Biomethane Potential Production in the Piedmont Region
3.5. Energy Value of Biomethane from Available Agricultural Wastes and Contribution to the Piedmont Tractor Fleet Energy Requirements
3.6. Carbon Dioxide Emissions Comparison between Biomethane and Diesel as Fuel in the Piedmont Tractor Fleet
4. Discussion
4.1. Study Limitations
4.2. Suggestions for Further Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNFCCC. Report of the Conference of the Parties on Its Twenty-First Session, Held in Paris from 30 November to 13 December 2015 (COP 21); United Nations: New York, NY, USA, 2016; Volume 1, p. 42. [Google Scholar]
- Delbeke, J.; Runge-Metzger, A.; Slingenberg, Y.; Werksman, J. The Paris Agreement. In Towards a Climate-Neutral Europe; Routledge: London, UK, 2019; pp. 24–45. ISBN 9781000750713. [Google Scholar]
- European Parliament and Council. Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 Establishing the Framework for Achieving Climate Neutrality and Amending Regulations (EC) N. 401/2009 and (EU) 2018/1999 (European Climate Law’). Off. J. Eur. Union 2021, 243, 1–17. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A Policy Framework for Climate and Energy in the Period from 2020 to 2030; European Commission: Brussels, Belgium, 2014; pp. 1–18. [Google Scholar]
- Abbasi, M.; Pishvaee, M.S.; Mohseni, S. Third-Generation Biofuel Supply Chain: A Comprehensive Review and Future Research Directions. J. Clean. Prod. 2021, 323, 129100. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallemand, J.F.; Fahl, F. Biogas: Developments and Perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Jingura, R.M.; Kamusoko, R. Methods for determination of biomethane potential of feedstocks: A review. Biofuel Res. J. 2017, 4, 573–586. [Google Scholar] [CrossRef]
- Dutta, S.; He, M.; Xiong, X.; Tsang, D.C.W. Sustainable Management and Recycling of Food Waste Anaerobic Digestate: A Review. Bioresour. Technol. 2021, 341, 125915. [Google Scholar] [CrossRef] [PubMed]
- Uusitalo, V.; Havukainen, J.; Kapustina, V.; Soukka, R.; Horttanainen, M. Greenhouse Gas Emissions of Biomethane for Transport: Uncertainties and Allocation Methods. Energy Fuels 2014, 28, 1901–1910. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Vaccari, M.; Bonilla-Petriciolet, A.; Prasad, S.; van Hullebusch, E.D.; Rtimi, S. Emerging Technologies for Biofuel Production: A Critical Review on Recent Progress, Challenges and Perspectives. J. Environ. Manag. 2021, 290, 112627. [Google Scholar] [CrossRef]
- Zhu, T.; Curtis, J.; Clancy, M. Promoting Agricultural Biogas and Biomethane Production: Lessons from Cross-Country Studies. Renew. Sustain. Energy Rev. 2019, 114, 109332. [Google Scholar] [CrossRef]
- Pääkkönen, A.; Aro, K.; Aalto, P.; Konttinen, J.; Kojo, M. The Potential of Biomethane in Replacing Fossil Fuels in Heavy Transport—A Case Study on Finland. Sustainability 2019, 11, 4750. [Google Scholar] [CrossRef] [Green Version]
- Prussi, M.; Julea, A.; Lonza, L.; Thiel, C. Biomethane as Alternative Fuel for the EU Road Sector: Analysis of Existing and Planned Infrastructure. Energy Strateg. Rev. 2021, 33, 100612. [Google Scholar] [CrossRef]
- Herbes, C.; Chouvellon, S.; Lacombe, J. Towards Marketing Biomethane in France—French Consumers’ Perception of Biomethane. Energy. Sustain. Soc. 2018, 8, 37. [Google Scholar] [CrossRef]
- Makaruk, A.; Miltner, M.; Harasek, M. Membrane Biogas Upgrading Processes for the Production of Natural Gas Substitute. Sep. Purif. Technol. 2010, 74, 83–92. [Google Scholar] [CrossRef]
- Bisaglia, C.; Brambilla, M.; Cutini, M.; Fiorati, S.; Howell, M. Methane/Gasoline Bi-Fuel Engines as a Power Source for Standard Agriculture Tractors: Development and Testing Activities. Appl. Eng. Agric. 2018, 34, 365–375. [Google Scholar] [CrossRef]
- Sun, H.; Wang, E.; Li, X.; Cui, X.; Guo, J.; Dong, R. Potential Biomethane Production from Crop Residues in China: Contributions to Carbon Neutrality. Renew. Sustain. Energy Rev. 2021, 148, 111360. [Google Scholar] [CrossRef]
- Ilari, A.; Pedretti, E.F.; De Francesco, C.; Duca, D. Pellet Production from Residual Biomass of Greenery Maintenance in a Small-Scale Company to Improve Sustainability. Resources 2021, 10, 122. [Google Scholar] [CrossRef]
- Simikic, M.; Tomic, M.; Savin, L.; Micic, R.; Ivanisevic, I.; Ivanisevic, M. Influence of Biodiesel on the Performances of Farm Tractors: Experimental Testing in Stationary and Non-Stationary Conditions. Renew. Energy 2018, 121, 677–687. [Google Scholar] [CrossRef]
- Chinnici, G.; Selvaggi, R.; D’Amico, M.; Pecorino, B. Assessment of the Potential Energy Supply and Biomethane from the Anaerobic Digestion of Agro-Food Feedstocks in Sicily. Renew. Sustain. Energy Rev. 2018, 82, 6–13. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J.; Ji, X.; Qian, H.; Huang, L.; Lu, X. The Biomethane Producing Potential in China: A Theoretical and Practical Estimation. Chin. J. Chem. Eng. 2016, 24, 920–928. [Google Scholar] [CrossRef]
- Wąs, A.; Sulewski, P.; Krupin, V.; Popadynets, N.; Malak-Rawlikowska, A.; Szymańska, M.; Skorokhod, I.; Wysokiński, M. The Potential of Agricultural Biogas Production in Ukraine—Impact on GHG Emissions and Energy Production. Energies 2020, 13, 5755. [Google Scholar] [CrossRef]
- Schmid, C.; Horschig, T.; Pfei, A.; Szarka, N.; Thrän, D. Biogas Upgrading: A Review of National Biomethane Strategies and Support Policies in Selected Countries. Energies 2019, 12, 3803. [Google Scholar] [CrossRef] [Green Version]
- European Parliament and Council. Directive (UE) 2018/2001 of the European Parliament and of the Council of 11 Dicember 2018 on the Promotion of the Use of Energy from Renewable Sources. Off. J. Eur. Union 2018, 2018, 128. [Google Scholar]
- Decree 2nd March 2018. Inter-Ministerial Decree in the Gazzetta Ufficiale (Official Gazette) No.65 (19th March 2018) on Promoting the Use of Biomethane and Other Advanced Biofuels for Transportation; Italy. Available online: https://www.mise.gov.it/images/stories/normativa/DM-biometano-2-marzo_2018_FINALE.pdf (accessed on 30 October 2021).
- Dyer, J.A.; Desjardins, R.L.; McConkey, B.G. Sustainable Energy Solutions in Agriculture; Bundschuh, J., Chen, G., Eds.; CRC Press: Boca Raton, FL, USA, 2014; ISBN 9780429227493. [Google Scholar]
- Janulevičius, A.; Čiplienė, A. Estimation of Engine CO2 and NOx Emissions and Their Correlation with the Not-to-Exceed Zone for a Tractor Ploughing Fields of Various Sizes. J. Clean. Prod. 2018, 198, 1583–1592. [Google Scholar] [CrossRef]
- Piedmont Region Anagrafe Agricola (Agricultural Register)—Data Warehouse. Available online: http://www.sistemapiemonte.it/fedwanau/elenco.jsp (accessed on 22 October 2021).
- Schievano, A.; D’Imporzano, G.; Orzi, V.; Colombo, G.; Maggiore, T.; Adani, F. Biogas from Dedicated Energy Crops in Northern Italy: Electric Energy Generation Costs. GCB Bioenergy 2015, 7, 899–908. [Google Scholar] [CrossRef] [Green Version]
- Gestore Servizi Energetici (GSE). Fonti Rinnovabili in Italia e Nelle Regioni. 2012–2019—Renewable Sources in Italy and in the Regions. 2012–2019. 2021. Available online: https://www.sistan.it/index.php?id=319&no_cache=1&tx_ttnews%5Btt_news%5D=9782&cHash=920e64f61559f0cd1132824fa833acee (accessed on 22 October 2021).
- GSE. Database. Available online: https://atla.gse.it/atlaimpianti/project/Atlaimpianti_Internet.html (accessed on 22 October 2021).
- Piedmont Region Utenti Motori Agricoli (Agricultural Machinery Users)—Data Warehouse. Available online: https://servizi.regione.piemonte.it/catalogo/uma-data-warehouse (accessed on 22 October 2021).
- Shin, C.S.; Kim, K.U. CO2 Emissions by Agricultural Machines in South Korea. Appl. Eng. Agric. 2018, 34, 311–315. [Google Scholar] [CrossRef]
- Chinnici, G.; D’Amico, M.; Rizzo, M.; Pecorino, B. Analysis of Biomass Availability for Energy Use in Sicily. Renew. Sustain. Energy Rev. 2015, 52, 1025–1030. [Google Scholar] [CrossRef]
- Jensen, S.M.; Svensgaard, J.; Ritz, C. Estimation of the Harvest Index and the Relative Water Content—Two Examples of Composite Variables in Agronomy. Eur. J. Agron. 2020, 112, 125962. [Google Scholar] [CrossRef]
- Grignani, C.; Zavattaro, L.; Assandri, D. Bilancio Della Sostanza Organica Nel Suolo. In Fertilizzazione Sostenibile. Principi, Tecnologie Ed Esempi Operativi, 1st ed.; Edagricole—Edizioni Agricole di New Business Media srl: Milano, Italy, 2016; Volume 1. [Google Scholar]
- World Biogas. Association Global Potential of Biogas. Available online: https://www.worldbiogasassociation.org/global-potential-of-biogas/ (accessed on 30 October 2021).
- Regional Council of Piedmont. Regional Regulation 29 October 2007, n. 10/R. Coordinated Text Effective from 01/01/2020. 2020, p. 50. Available online: https://www.regione.piemonte.it/web/sites/default/files/media/documenti/2020-01/zzz_reg_10r_2007_testo_coordinato_vigente_al_01012020.pdf (accessed on 30 October 2021).
- Biernat, K.; Samson-Bręk, I.; Chłopek, Z.; Owczuk, M.; Matuszewska, A. Assessment of the Environmental Impact of Using Methane Fuels to Supply Internal Combustion Engines. Energies 2021, 14, 3356. [Google Scholar] [CrossRef]
- Cucui, G.; Ionescu, C.; Goldbach, I.; Coman, M.; Marin, E. Quantifying the Economic Effects of Biogas Installations for Organic Waste from Agro-Industrial Sector. Sustainability 2018, 10, 2582. [Google Scholar] [CrossRef] [Green Version]
- Schievano, A.; Pognani, M.; D’Imporzano, G.; Adani, F. Predicting Anaerobic Biogasification Potential of Ingestates and Digestates of a Full-Scale Biogas Plant Using Chemical and Biological Parameters. Bioresour. Technol. 2008, 99, 8112–8117. [Google Scholar] [CrossRef]
- Phyllis2 Database for the Physico-Chemical Composition of (Treated) Lignocellulosic Biomass, Micro- and Macroalgae, Various Feedstocks for Biogas Production and Biochar. Available online: https://phyllis.nl/ (accessed on 22 October 2021).
- Li, Y.; Zhang, R.; Liu, G.; Chen, C.; He, Y.; Liu, X. Comparison of Methane Production Potential, Biodegradability, and Kinetics of Different Organic Substrates. Bioresour. Technol. 2013, 149, 565–569. [Google Scholar] [CrossRef]
- Cignini, F.; Genovese, A.; Ortenzi, F.; Valentini, S.; Caprioli, A. Performance and Emissions Comparison between Biomethane and Natural Gas Fuel in Passenger Vehicles. E3S Web Conf. 2020, 197, 08019. [Google Scholar] [CrossRef]
- Boundy, R.G.; Diegel, S.W.; Wright, L.L.; Davis, S.C. Lower and Higher Heating Values of Gas Liquid and Solid Fuels. In Biomass Energy Data Book, 4th ed.; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 2011; p. 188. ISBN 1800553684. [Google Scholar]
- Pampuro, N.; Dinuccio, E.; Balsari, P.; Cavallo, E. Evaluation of Two Composting Strategies for Making Pig Slurry Solid Fraction Suitable for Pelletizing. Atmos. Pollut. Res. 2016, 7, 288–293. [Google Scholar] [CrossRef]
- Giuliano, A.; Bolzonella, D.; Pavan, P.; Cavinato, C.; Cecchi, F. Co-Digestion of Livestock Effluents, Energy Crops and Agro-Waste: Feeding and Process Optimization in Mesophilic and Thermophilic Conditions. Bioresour. Technol. 2013, 128, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Dale, B.E.; Bozzetto, S.; Couturier, C.; Fabbri, C.; Hilbert, J.A.; Ong, R.; Richard, T.; Rossi, L.; Thelen, K.D.; Woods, J. The Potential for Expanding Sustainable Biogas Production and Some Possible Impacts in Specific Countries. Biofuels Bioprod. Biorefining 2020, 14, 1335–1347. [Google Scholar] [CrossRef]
- Valli, L.; Rossi, L.; Fabbri, C.; Sibilla, F.; Gattoni, P.; Dale, B.E.; Kim, S.; Ong, R.G.; Bozzetto, S. Greenhouse Gas Emissions of Electricity and Biomethane Produced Using the BiogasdonerightTM System: Four Case Studies from Italy. Biofuels Bioprod. Biorefining 2017, 11, 847–860. [Google Scholar] [CrossRef]
- Al Seadi Biosantech, T.; Rutz, D.; Janssen, R.; Drosg, B. Biomass Resources for Biogas Production. In The Biogas Handbook; Wellinger, A., Murphy, J., Baxter, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 19–51. ISBN 978-0-85709-498-8. [Google Scholar]
- Peiretti, P.; Tassone, S.; Gai, F.; Gasco, L.; Masoero, G. Rabbit Feces as Feed for Ruminants and as an Energy Source. Animals 2014, 4, 755–766. [Google Scholar] [CrossRef] [Green Version]
- Harikishan, S.; Sung, S. Cattle Waste Treatment and Class A Biosolid Production Using Temperature-Phased Anaerobic Digester. Adv. Environ. Res. 2003, 7, 701–706. [Google Scholar] [CrossRef]
- Chae, K.J.; Yim, S.K.; Choi, K.H.; Park, W.K.; Lim, D.K. Anaerobic Digestion of Swine Manure: Sung-Hwan Farm-Scale Biogas Plant in Korea; Division of Agriculture Environment and Ecology, National Institute of Agricultural Science and Technology: Kyungki, Korea, 2002. [Google Scholar]
- González-Castaño, M.; Kour, M.H.; González-Arias, J.; Baena-Moreno, F.M.; Arellano-Garcia, H. Promoting Bioeconomy Routes: From Food Waste to Green Biomethane. A Profitability Analysis Based on a Real Case Study in Eastern Germany. J. Environ. Manag. 2021, 300, 113788. [Google Scholar] [CrossRef]
- Pasini, G.; Baccioli, A.; Ferrari, L.; Antonelli, M.; Frigo, S.; Desideri, U. Biomethane Grid Injection or Biomethane Liquefaction: A Technical-Economic Analysis. Biomass Bioenergy 2019, 127, 105264. [Google Scholar] [CrossRef]
- Selvaggi, R.; Valenti, F.; Pappalardo, G.; Rossi, L.; Bozzetto, S.; Pecorino, B.; Dale, B.E. Sequential Crops for Food, Energy, and Economic Development in Rural Areas: The Case of Sicily. Biofuels Bioprod. Biorefining 2018, 12, 22–28. [Google Scholar] [CrossRef]
- Council of the European Communities. COUNCIL DIRECTIVE of 12 December 1991 Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources (91/676 /EEC); European Communities: Brussels, Belgium, 1991; pp. 1–8. [Google Scholar]
- Möller, K.; Müller, T. Effects of Anaerobic Digestion on Digestate Nutrient Availability and Crop Growth: A Review. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar] [CrossRef]
- Meiramkulova, K.; Bayanov, A.; Ivanova, T.; Havrland, B.; Kára, J.; Hanzlíková, I. Effect of Different Compositions on Anaerobic Co-Digestion of Cattle Manure and Agro-Industrial by-Products. Agron. Res. 2018, 16, 176–187. [Google Scholar] [CrossRef]
- Sosnowski, P.; Klepacz-Smolka, A.; Kaczorek, K.; Ledakowicz, S. Kinetic Investigations of Methane Co-Fermentation of Sewage Sludge and Organic Fraction of Municipal Solid Wastes. Bioresour. Technol. 2008, 99, 5731–5737. [Google Scholar] [CrossRef] [PubMed]
- Fraccascia, L.; Spagnoli, M.; Riccini, L.; Nastasi, A. Designing the Biomethane Production Chain from Urban Wastes at the Regional Level: An Application to the Rome Metropolitan Area. J. Environ. Manag. 2021, 297, 113328. [Google Scholar] [CrossRef] [PubMed]
- Patrizio, P.; Leduc, S.; Chinese, D.; Dotzauer, E.; Kraxner, F. Biomethane as Transport Fuel—A Comparison with Other Biogas Utilization Pathways in Northern Italy. Appl. Energy 2015, 157, 25–34. [Google Scholar] [CrossRef]
- Grisso, R.D.; Kocher, M.F.; Vaughan, D.H. Predicting Tractor Fuel Consumption. Appl. Eng. Agric. 2004, 20, 553–561. [Google Scholar] [CrossRef]
- Flammini, A.; Pan, X.; Tubiello, F.N.; Qiu, S.Y.; Rocha Souza, L.; Quadrelli, R.; Bracco, S.; Benoit, P.; Sims, R. Emissions of Greenhouse Gases from Energy Use in Agriculture, Forestry and Fisheries: 1970–2019. Earth Syst. Sci. Data Discuss. 2021, 1–26. [Google Scholar] [CrossRef]
- Herrmann, C.; Idler, C.; Heiermann, M. Biogas Crops Grown in Energy Crop Rotations: Linking Chemical Composition and Methane Production Characteristics. Bioresour. Technol. 2016, 206, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Noori, N.A.; Ismail, Z.Z. Process Optimization of Biogas Recovery from Giant Reed (Arundo Donax) Alternatively Pretreated with Acid and Oxidant Agent: Experimental and Kinetic Study. Biomass Convers. Biorefinery 2020, 10, 1121–1135. [Google Scholar] [CrossRef]
- Selvaggi, R.; Pappalardo, G.; Chinnici, G.; Fabbri, C.I. Assessing Land Efficiency of Biomethane Industry: A Case Study of Sicily. Energy Policy 2018, 119, 689–695. [Google Scholar] [CrossRef]
Crop Type | Harvested Biomass (t × 103) | Harvest Index (%) | Crop Residue (t × 103) | Collection Factor (%) | Available Crop Residue (t × 103) |
---|---|---|---|---|---|
Maize | 1369.3 | 53.0 | 1214.3 | 80.0 | 971.5 |
Rice | 786.9 | 56.0 | 618.3 | 80.0 | 494.6 |
Soft wheat | 437.5 | 50.0 | 437.5 | 80.0 | 350.0 |
Barley | 102.5 | 50.0 | 102.5 | 80.0 | 82.0 |
Soy | 50.2 | 40.0 | 75.4 | 80.0 | 60.3 |
Sunflower | 11.9 | 40.0 | 17.9 | 80.0 | 14.3 |
Canola | 5.9 | 28.0 | 15.2 | 80.0 | 12.2 |
Horticultural crops | 298.1 | 82.0 | 65.4 | 80.0 | 52.3 |
Category of Animal | Number of Heads (n.) | Quantity of Produced Livestock Waste (t × 103) | Quantity of Collectable Livestock Waste (t × 103) | ||
---|---|---|---|---|---|
Slurry | Manure | Slurry | Manure | ||
Cattle | 842,550 | 6504.4 | 5178.8 | 5853.9 | 4660.9 |
Pigs | 1,229,939 | 3455.8 | 3.1 | 3110.2 | 2.8 |
Sheep and goats | 174,103 | 67.0 | 143.6 | 60.3 | 129.2 |
Poultry | 43,285,724 | 27.1 | 265.0 | 24.4 | 238.5 |
Equines | 13,517 | 0.0 | 129.0 | 0.0 | 116.1 |
Rabbits | 606,998 | 20.6 | 0.0 | 18.6 | 0.0 |
Biomass Type | Available Biomass | TS 1 | OC 2 | CH4 | Degradation Rate Coefficient | Expected Specific BioCH4 Yield | Total Potential BioCH4 Yield |
---|---|---|---|---|---|---|---|
(t × 103) | (%) | (% TS) | (%) | (%) | (m3 t−1 TS) | (m3 × 106) | |
Maize stalk | 971.4 | 92.0 | 44.8 | 60.0 | 50.0 | 250.6 | 224.0 |
Rice straw | 494.6 | 39.8 | 39.8 | 60.0 | 50.0 | 222.5 | 43.7 |
Wheat straw | 350.0 | 92.7 | 45.1 | 60.0 | 50.0 | 252.2 | 81.8 |
Barley straw | 82.08 | 93.1 | 37.1 | 60.0 | 50.0 | 207.4 | 15.8 |
Soya stalk | 60.3 | 91.3 | 32.3 | 60.0 | 50.0 | 180.6 | 9.9 |
Sunflower stalk | 14.3 | 90.8 | 42.7 | 60.0 | 50.0 | 239.2 | 3.1 |
Canola stalk | 12.2 | 94.1 | 42.8 | 60.0 | 50.0 | 239.4 | 2.7 |
Horticultural residue | 52.3 | 90.3 | 42.3 | 60.0 | 50.0 | 236.9 | 11.2 |
Cattle slurry | 5854.0 | 12.2 | 38.9 | 60.0 | 50.0 | 217.7 | 155.5 |
Pig slurry | 3110.2 | 7.9 | 35.0 | 60.0 | 50.0 | 195.7 | 48.1 |
Sheep/goat slurry | 60.3 | 52.2 | 40.6 | 60.0 | 50.0 | 227.3 | 7.2 |
Poultry slurry | 24.4 | 24.8 | 28.5 | 60.0 | 50.0 | 159.6 | 1.0 |
Rabbit slurry | 18.6 | 27.8 | 37.7 | 60.0 | 50.0 | 210.7 | 1.1 |
Cattle manure | 4660.9 | 30.0 | 30.0 | 60.0 | 50.0 | 167.9 | 234.8 |
Pig manure | 2.8 | 27.0 | 45.7 | 60.0 | 50.0 | 255.8 | 0.2 |
Sheep/goat manure | 129.3 | 61.4 | 18.1 | 60.0 | 50.0 | 101.3 | 8.0 |
Poultry manure | 238.5 | 60.3 | 41.2 | 60.0 | 50.0 | 230.5 | 33.2 |
Equine manure | 116.1 | 88.9 | 49.0 | 60.0 | 50.0 | 274.3 | 28.3 |
TOTAL | 909.7 |
Biomass Type | Calculated Specific Biomethane Yield | Reported Biomethane Yield * | References |
---|---|---|---|
(m3 CH4 t VS−1) | (m3 CH4 t VS−1) | ||
Maize stalk | 341.3 | 400 | [47] |
Rice straw | 334.0 | 280–453 | [21] |
Wheat straw | 357.5 | 244–455 | [21] |
Barley straw | 246.0 | 244–455 | [21] |
Soya stalk | 332.4 | 144–418 | [21] |
Sunflower stalk | 269.2 | 300–330 | [48] |
Canola stalk | 327.9 | 300–330 | [48] |
Horticultural residue | 405.7 | 340 | [49] |
Cattle slurry | 262.4 | 110–375 | [47] |
Pig slurry | 381.5 | 300 | [50] |
Sheep/goats slurry | 348.6 | 36–307 | [21] |
Poultry slurry | 275.4 | 320 | [49] |
Rabbit slurry | 239.7 | 286 | [51] |
Cattle manure | 184.5 | 120–210 | [47,52] |
Pig manure | 293.0 | 317 | [53] |
Sheep/goats manure | 184.6 | 36–307 | [21] |
Poultry manure | 279.6 | 320 | [49] |
Equine manure | 409.6 | 116–562 | [21] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assandri, D.; Bagagiolo, G.; Cavallo, E.; Pampuro, N. Replacing Agricultural Diesel Fuel with Biomethane from Agricultural Waste: Assessment of Biomass Availability and Potential Energy Supply in Piedmont (North-West Italy). Agronomy 2022, 12, 2996. https://doi.org/10.3390/agronomy12122996
Assandri D, Bagagiolo G, Cavallo E, Pampuro N. Replacing Agricultural Diesel Fuel with Biomethane from Agricultural Waste: Assessment of Biomass Availability and Potential Energy Supply in Piedmont (North-West Italy). Agronomy. 2022; 12(12):2996. https://doi.org/10.3390/agronomy12122996
Chicago/Turabian StyleAssandri, Davide, Giorgia Bagagiolo, Eugenio Cavallo, and Niccolò Pampuro. 2022. "Replacing Agricultural Diesel Fuel with Biomethane from Agricultural Waste: Assessment of Biomass Availability and Potential Energy Supply in Piedmont (North-West Italy)" Agronomy 12, no. 12: 2996. https://doi.org/10.3390/agronomy12122996
APA StyleAssandri, D., Bagagiolo, G., Cavallo, E., & Pampuro, N. (2022). Replacing Agricultural Diesel Fuel with Biomethane from Agricultural Waste: Assessment of Biomass Availability and Potential Energy Supply in Piedmont (North-West Italy). Agronomy, 12(12), 2996. https://doi.org/10.3390/agronomy12122996