Phenotypic Variation and Molecular Marker Network Expression of Some Agronomic Traits in Rice (Oryza sativa L.) RILS of Gr 89-1×Shuhui 527
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Field Planting and Investigating Seeds
2.3. Molecular Marker Grading Screening
2.4. Data Calculation and Processing
3. Results
3.1. Phenotypic Variation and Trait Distribution of RILs
3.2. Lines Differential Expression
3.3. Molecular Network Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brim, C.A. A modified pedigree method of selection in soybeans. Crop Sci. 1966, 6, 220. [Google Scholar] [CrossRef] [Green Version]
- Choo, T.M.; Reinbergs, E.; Park, S.J. Comparison of frequency distribution of doubled haploid and single seed descent lines in barley. Theor. Appl. Genet. 1982, 61, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Luedders, V.D.; Duclos, L.A.; Matson, A.L. Bulk, pedigree, and early generation testing breeding methods compared in soybeans. Crop Sci. 1973, 13, 363–364. [Google Scholar] [CrossRef]
- Cho, J.J.; Custer, D.M.; Brommonschenkel, S.H.; Tanksley, S.D. Conventional breeding: Host-plant resistance and the use of molecular markers to develop resistance to tomato spot wilt virus in vegetables. Acta Hortic. 1996, 431, 367–378. [Google Scholar] [CrossRef]
- Tanksley, S.D.; Young, N.D.; Paterson, A.H.; Bonierbale, M.W. RFLP mapping in plant breeding: New tools for an old science. Nat. Biotechnol. 1989, 7, 257–264. [Google Scholar] [CrossRef]
- Georges, M.; Nielsen, D.; Mackinnon, M.; Mishra, A.; Okimoto, R.; Pasquino, A.T.; Sargeant, L.S.; Sorensen, A.; Steele, M.R.; Zhao, X. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics 1995, 139, 907–920. [Google Scholar] [CrossRef]
- Fernando, R.L.; Grossman, M. Marker assisted selection using best linear unbiased prediction. Genet. Sel. Evol. 1989, 21, 467–477. [Google Scholar] [CrossRef]
- Meuwissen, T.H.E.; Goddard, M.E. The use of marker haplotypes in animal breeding schemes. Genet. Sel. Evol. 1996, 28, 161–176. [Google Scholar] [CrossRef]
- Deng, X.; Gan, L.; Liu, Y.; Luo, A.; Jin, L.; Chen, J.; Tang, R.; Lei, L.; Tang, J.; Zhang, J.; et al. Locating QTLs controlling overwintering seedling rate in perennial glutinous rice 89-1 (Oryza sativa L.). Genes Genom. 2018, 40, 1351–1361. [Google Scholar] [CrossRef]
- Zhao, K.; Tung, C.W.; Eizenga, G.C.; Wright, M.H.; Ali, M.L.; Price, A.H.; Norton, G.J.; Islam, M.R.; Reynolds, A.; Mezey, J.; et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa L. Nat. Commun. 2011, 2, 467. [Google Scholar] [CrossRef] [Green Version]
- Glaszmann, J.C.; Kilian, B.; Upadhyaya, H.D.; Varshney, R.K. Accessing genetic diversity for crop improvement. Curr. Opin. Plant Biol. 2010, 13, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Tai, L.; Luo, L.; Xiang, J.; Zhao, Z. Mapping QTLs for yield component traits using overwintering cultivated rice. J. Genet. 2010, 100, 31. [Google Scholar] [CrossRef]
- Pratap, A.; Bisen, P.; Loitongbam, B.; Rathi, S.R.; Parmita, P.; Singh, B.P.; Singh, P.K. Assessment of genetic diversity in rice germplasm (Oryza sativa L.) using SSR markers. Int. J. Curr. Microbiol. 2020, 9, 3346–3355. [Google Scholar] [CrossRef]
- Dedeurwaerdere, T.; Hannachi, M. Socio-economic drivers of coexistence of landraces and modern crop varieties in agro-biodiversity rich Yunnan rice fields. Ecol. Econ. 2019, 159, 177–188. [Google Scholar] [CrossRef]
- Thakur, S.; Bhardwaj, N.; Chahota, R.K. Evaluation of genetic diversity in ricebean [Vigna umbellata (Thunb.) Ohwi and Ohashi] germplasm using SSR markers. Electron. J. Plant Breed. 2017, 8, 674–679. [Google Scholar] [CrossRef]
- Xie, F.; Tian, P.; Ma, S.; Bai, T.; Chen, J.; Zhang, Q.; Tian, R.; Yang, Z.; Tian, L.; Li, P. Association analysis between SSR markers and salt-tolerant traits at seedling stage in japonica rice germplasm resource. J. Henan Agric. Sci. 2019, 48, 13–22. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, S.; Li, X.; Zhang, B.; Jiang, L.; Tang, Y.; Zhao, J.; Ma, X.; Cai, H.; Sun, C.; et al. Deletions linked to PROG1 gene participate in plant architecture domestication in Asian and African rice. Nat. Commun. 2018, 9, 4157. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhang, X.; Xue, H. Rice aleurone layer specific OsNF-YB1 regulates grain filling and endosperm development by interacting with an ERF transcription factor. J. Exp. Bot. 2016, 67, 6399–6411. [Google Scholar] [CrossRef]
- Li, W.; Zhu, Z.; Chern, M.; Yin, J.; Yang, C.; Ran, L.; Cheng, M.; He, M.; Wang, K.; Wang, J.; et al. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell 2017, 170, 114–126. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.; Li, X.; Lu, Z.; Zhang, H.; Ye, X.; Zhou, Y.; Li, J.; Yan, Y.; Pei, H.; Duan, F.; et al. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science 2022, 377, eabi8455. [Google Scholar] [CrossRef]
- Yu, X.; Zhao, Z.; Zheng, X.; Zhou, J.; Kong, W.; Wang, P.; Bai, W.; Zheng, H.; Zhang, H.; Li, J.; et al. A selfish genetic element confers non-Mendelian inheritance in rice. Science 2018, 360, 1130–1132. [Google Scholar] [CrossRef] [Green Version]
- Jia, Z. Scientific reports: Controlling the overfitting of heritability in genomic selection through cross validation. Sci. Rep. 2017, 7, 13678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gan, L.; Deng, X.; Liu, Y.; Luo, A.; Chen, J.; Xiang, J.; Zhao, Z. Genetic separation of chalkiness by hybrid rice of Huanghuazhan and CS197. Biocell 2020, 44, 451–459. [Google Scholar] [CrossRef]
- Dong, J.; Zeng, Y.; Ji, Z.; Chen, Y.; Wang, S.; Liang, Y.; Yang, C. Mining favorable alleles for rice sheath blight resistance by association mapping. Plant Growth Regul. 2021, 94, 61–72. [Google Scholar] [CrossRef]
- Bashyal, B.M.; Kirti, R.; Dhiraj, S.; Krishnan, S.G.; Singh, A.K.; Singh, N.K.; Rashmi, A. Screening and identification of new sources of resistance to sheath blight in wild rice accessions. Indian J. Genet. Plant Breed. 2017, 77, 341–347. [Google Scholar] [CrossRef] [Green Version]
- Karmegham, N.; Vellasamy, S.; Natesan, B.; Sharmac, M.P.; Farraj, D.A.; Elshikhd, M.S. Characterization of antifungal metabolite phenazine from rice rhizosphere fluorescent pseudomonads (FPs) and their effect on sheath blight of rice. Saudi J. Biol. Sci. 2020, 27, 3313–3326. [Google Scholar] [CrossRef]
- Ye, C.; Argayoso, M.A.; Redoña, E.D.; Sierra, S.N.; Laza, M.A.; Dilla, C.J.; Mo, Y.; Thomson, M.J.; Chin, J.; Delaviña, C.B.; et al. Mapping QTL for heat tolerance at flowering stage in rice using SNP markers. Plant Breed. 2012, 131, 33–41. [Google Scholar] [CrossRef]
- Huang, J.; Yan, M.; Zhu, X.; Zhang, T.; Shen, W.; Yu, P.; Wang, Y.; Sang, X.; Yu, G.; Zhao, B.; et al. Gene mapping of starch accumulation and premature leaf senescence in the ossac3 mutant of rice. Euphytica 2018, 214, 177. [Google Scholar] [CrossRef]
- Jang, S.-G.; Park, S.-Y.; Lar, S.M.; Zhang, H.; Lee, A.-R.; Cao, F.-Y.; Seo, J.; Ham, T.-H.; Lee, J.; Kwon, S.-W. Genome-Wide Association Study (GWAS) of Mesocotyl Length for Direct Seeding in Rice. Agronomy 2021, 11, 2527. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, Y.; Dunwell, J.M.; Zhang, Y. QTL.gCIMapping.GUI v2.0: An R software for detecting small-effect and linked QTLs for quantitative traits in bi-parental segregation populations. Comput. Struct. Biotechnol. J. 2020, 18, 59–65. [Google Scholar] [CrossRef]
- Liu, H.; Zhan, J.; Li, J.; Lu, X.; Liu, J.; Wang, Y.; Zhao, Q.; Ye, G. Genome-wide Association Study (GWAS) for Mesocotyl Elongation in Rice (Oryza sativa L.) under Multiple Culture Conditions. Genes 2019, 11, 49. [Google Scholar] [CrossRef] [Green Version]
- Tong, W.; He, Q.; Park, Y.J. Genetic variation architecture of mitochondrial genome reveals the differentiation in Korean landrace and weedy rice. Sci Rep. 2017, 7, 43327. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Ju, C.; Cheng, Y.; Cui, D.; Han, B.; Zhao, Z.; Ma, X.; Han, L. QTL Mapping of Mesocotyl Elongation and Confirmation of a QTL in Dongxiang Common Wild Rice in China. Agronomy 2022, 12, 1800. [Google Scholar] [CrossRef]
- Yang, W.; Yan, H.; Dong, C.; Zhang, E.; Xinxiang, A.; Tang, C.; Yang, Y.; Zhang, F.; He, J.; Xu, F. Analysis of genetic similarity based on SSR markers of the rice varieties from different geographic regions. Chin. Agric. Sci. Bull. 2011, 27, 24–30. Available online: https://en.cnki.com.cn/Article_en/CJFDTOTAL-ZNTB201112007.htm (accessed on 26 September 2022).
- Shu, A.; Kim, J.; Zhang, S.; Cao, G.; Nan, Z.; Lee, K.; Lu, Q.; Koh, H.; Han, L. Analysis on genetic similarity analysis of Japonica rice variety from different geography origin in the world. Sci. Agric. Sin. 2008, 41, 1879–1886. [Google Scholar] [CrossRef]
- Li, Y.; Zhong, B.; Yang, Z.; Luo, H.; He, G. Polymorphism analysis of SSR marker among American rice and Chinese rice. Mol. Plant Breed. 2004, 2, 801–806. [Google Scholar] [CrossRef]
Trait | Environment | Parents | RIL Population | |||||
---|---|---|---|---|---|---|---|---|
Gr 89-1 | Shuhui 527 | Mean ± SE | Range (%) | CV (%) | Skewness | Kurtosis | ||
PH/cm | E1 | 113.68 | 121.92 | 110.96 ± 0.69 a | 80.25~135.33 | 11.04 | −0.583 ± 0.138 | −0.438 ± 0.276 |
E2 | 105.88 | 117.32 | 108.03 ± 0.61 b | 82.39~129.64 | 10.01 | −0.516 ± 0.138 | −0.561 ± 0.276 | |
E3 | 112.57 | 120.37 | 110.22 ± 0.63 a | 82.69~132.45 | 10.13 | −0.477 ± 0.138 | −0.5 ± 0.276 | |
PL/cm | E1 | 23.19 | 27.68 | 25.43 ± 0.11 a | 21.17~29.46 | 7.35 | −0.251 ± 0.138 | −0.693 ± 0.276 |
E2 | 22.26 | 26.03 | 24.54 ± 0.09 b | 21.09~28.69 | 6.28 | 0.02 ± 0.138 | −0.74 ± 0.276 | |
E3 | 24.03 | 28.05 | 25.49 ± 0.09 a | 21.68~29.17 | 6.26 | −0.11 ± 0.138 | −0.484 ± 0.276 | |
GPP | E1 | 123.76 | 165.34 | 136.09 ± 1.12 a | 84.56~178.46 | 14.47 | −0.49 ± 0.138 | −0.094 ± 0.276 |
E2 | 119.63 | 153.14 | 131.63 ± 0.89 b | 89.16~164.10 | 12.92 | −0.625 ± 0.138 | −0.035 ± 0.276 | |
E3 | 125.84 | 168.37 | 134.4 ± 1.07 a | 86.12~177.64 | 14.08 | −0.576 ± 0.138 | 0.003 ± 0.276 | |
SSR/% | E1 | 90.2 | 88.12 | 61.18 ± 0.78 a | 28.97~90.12 | 22.57 | −0.287 ± 0.138 | −0.575 ± 0.276 |
E2 | 87.63 | 85.46 | 61.15 ± 0.73 a | 30.13~87.63 | 21.05 | −0.223 ± 0.138 | −0.667 ± 0.276 | |
E3 | 89.03 | 88.96 | 61.23 ± 0.74 a | 28.98~90.61 | 21.39 | −0.229 ± 0.138 | −0.444 ± 0.276 | |
TGW/g | E1 | 25.3 | 30.53 | 26.55 ± 0.09 a | 23.08~31.69 | 5.76 | 0.323 ± 0.138 | 0.45 ± 0.276 |
E2 | 24.96 | 29.19 | 26.34 ± 0.07 a | 22.13~30.33 | 4.48 | 0.174 ± 0.138 | 1.117 ± 0.276 | |
E3 | 25.2 | 30.79 | 26.43 ± 0.08 a | 22.16~31.49 | 5.6 | 0.31 ± 0.138 | 0.5 ± 0.276 | |
FLL/cm | E1 | 26.7 | 35.15 | 31.05 ± 0.23 a | 23.45~42.68 | 13.33 | 0.459 ± 0.138 | −0.902 ± 0.276 |
E2 | 25.77 | 36.17 | 30.04 ± 0.2 b | 24.28~38.92 | 11.72 | 0.783 ± 0.138 | −0.477 ± 0.276 | |
E3 | 27.9 | 36.28 | 31.22 ± 0.22 a | 22.37~40.19 | 12.43 | 0.369 ± 0.138 | −0.799 ± 0.276 | |
GL/mm | E1 | 4.6 | 7.31 | 6 ± 0.04 a | 4.21~7.52 | 11.83 | −0.213 ± 0.138 | −0.68 ± 0.276 |
E2 | 4.57 | 7.08 | 5.82 ± 0.04 b | 4.10~7.36 | 12.20 | −0.219 ± 0.138 | 0.463 ± 0.276 | |
E3 | 4.65 | 7.26 | 5.85 ± 0.04 b | 4..05~7.92 | 13.85 | −0.092 ± 0.138 | −0.215 ± 0.276 | |
GW/mm | E1 | 2.87 | 2.28 | 2.57 ± 0.01 a | 2.27~2.96 | 6.23 | 0.136 ± 0.138 | −0.901 ± 0.276 |
E2 | 2.8 | 2.19 | 2.56 ± 0.01 a | 2.19~2.93 | 5.86 | 0.00 ± 0.138 | −0.751 ± 0.276 | |
E3 | 2.85 | 2.31 | 2.57 ± 0.01 a | 2.12~2.96 | 6.23 | −0.087 ± 0.138 | −0.615 ± 0.276 |
Numbering | Code | A | B | C | PH (cm) | PL (cm) | GPP | SSR (%) | TGW (g) | FLL (cm) | GL (mm) | GW (mm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Gr 89-1 | 113.71 ± 4.22 | 23.16 ± 0.89 | 123.08 ± 3.16 | 88.95 ± 1.29 | 25.15 ± 0.17 | 26.79 ± 1.07 | 5.61 ± 0.04 | 2.84 ± 0.04 | ||||
Shuhui 527 | 119.87 ± 2.34 | 27.25 ± 1.08 | 162.28 ± 8.06 | 87.51 ± 1.83 | 30.17 ± 0.86 | 35.87 ± 0.62 | 7.22 ± 0.12 | 2.36 ± 0.06 | ||||
1 | 5 | 87.77 ± 1.33 | 25.66 ± 1.07 | 105.91 ± 2.32 | 57.23 ± 3 | 26.15 ± 0.72 | 25.42 ± 1.03 | 6.07 ± 0.28 | 2.61 ± 0.27 | |||
2 | 26 | 121.17 ± 5.91 | 28.37 ± 0.9 | 165.65 ± 6.13 | 44.48 ± 6.24 | 28 ± 0.31 | 33.17 ± 1.3 | 6.18 ± 0.22 | 2.53 ± 0.03 | |||
3 | 137 | 83.43 ± 1.1 | 27.83 ± 1.33 | 96.44 ± 2.14 | 82.71 ± 1.3 | 26.18 ± 0.21 | 26.95 ± 2.25 | 5.46 ± 0.28 | 2.61 ± 0.03 | |||
4 | 84 | 115.57 ± 3.9 | 28.01 ± 0.71 | 133.97 ± 3.98 | 42.65 ± 3.56 | 26.25 ± 0.3 | 34.33 ± 1.81 | 7.49 ± 0.19 | 2.34 ± 0.03 | |||
5 | 111 | 120.74 ± 2.38 | 26.43 ± 0.98 | 151.25 ± 8.72 | 66.59 ± 2.77 | 26.33 ± 0.35 | 27.78 ± 1.39 | 6.05 ± 0.39 | 2.36 ± 0.05 | |||
6 | 122 | 122.57 ± 2.31 | 27.06 ± 0.65 | 90.1 ± 5.41 | 72.48 ± 2.9 | 26.81 ± 0.6 | 30.56 ± 2.71 | 5.66 ± 0.15 | 2.65 ± 0.04 | |||
7 | 210 | 81.57 ± 1.47 | 26.82 ± 0.56 | 113.57 ± 3.76 | 83.96 ± 1.52 | 25.42 ± 0.65 | 27.97 ± 2.52 | 5.36 ± 0.24 | 2.82 ± 0.06 | |||
8 | 256 | 119.72 ± 2.61 | 28.3 ± 0.83 | 140.27 ± 5.35 | 61.05 ± 2.14 | 25 ± 0.85 | 25.88 ± 4.05 | 5.33 ± 0.3 | 2.66 ± 0.07 | |||
9 | 274 | 113.37 ± 1.68 | 22.76 ± 1.52 | 144.72 ± 3.14 | 45.55 ± 2.08 | 28.37 ± 0.48 | 30.93 ± 4.6 | 6.14 ± 0.34 | 2.66 ± 0.04 | |||
10 | 303 | 86.34 ± 5.24 | 24.4 ± 0.22 | 98.97 ± 10.66 | 74.24 ± 2.39 | 26.79 ± 0.72 | 27.14 ± 1.47 | 4.95 ± 0.41 | 2.73 ± 0.03 | |||
11 | 288 | 114.19 ± 1.76 | 25.87 ± 0.44 | 134.66 ± 2.45 | 59.48 ± 3.43 | 26.02 ± 0.27 | 28.01 ± 3.18 | 5.89 ± 0.25 | 2.40 ± 0.04 | |||
12 | 176 | 113.29 ± 2.05 | 25.57 ± 1.06 | 128.3 ± 1.34 | 76.36 ± 1.16 | 26.43 ± 0.68 | 34.67 ± 1.74 | 5.46 ± 0.31 | 2.66 ± 0.03 | |||
13 | 53 | 115.82 ± 1.89 | 24.46 ± 0.63 | 119.19 ± 6.43 | 47.99 ± 1.29 | 25.92 ± 1.22 | 37.94 ± 1.41 | 5.93 ± 0.16 | 2.88 ± 0.03 | |||
14 | 234 | 111.24 ± 8.89 | 26.03 ± 0.34 | 123.88 ± 3.73 | 70.87 ± 2.59 | 27.2 ± 0.24 | 26.92 ± 0.46 | 5.58 ± 0.43 | 2.39 ± 0.04 |
Trait | Differential Molecular Markers (Table S1 for Detailed Primer Information) |
---|---|
PH | aRM85, aRM274, aRM5414; bRM13, bRM17, bRM298, bRM449, bRM1195; cOSR28, cRM39, cRM71, cRM155, cRM162, cRM190, cRM598; dRM142, dRM221, dRM267, dRM292, dRM304, dRM311, dRM337, dRM497, dRM508, dRM599, dRM1163, dRM7102; eRM18, eRM50, eRM103, eRM154, eRM159, eRM185, eRM329, eRM334, eRM411, eRM524, eRM16844, eRM24614; fRM111, fRM213, fRM223, fRM232, fRM327, fRM481, fRM521, fRM23331, fRM23340, fRM26563; gRM1, gRM140, gRM195, gRM205, gRM214, gRM250, gRM258, gRM315, gRM350, gRM21587, gRM22319; hRM120, hRM255, hRM296, hRM542, hRM589, hRM12498, hRM27513 |
PL | aRM85, aRM274, aRM5414; bRM17, bRM35, bRM298, bRM449, bRM1195; cRM19, cRM39, cRM71, cRM87, cRM155, cRM162, cRM175, cRM8277; dRM209, dRM221, dRM231, dRM267, dRM292, dRM337, dRM472, dRM497, dRM508, dRM18383, dRM24291; eRM22, eRM50, eRM154, eRM159, eRM172, eRM202, eRM411, eRM500, eRM524, eRM19417, eRM26811; fRM208, fRM327, fRM463, fRM2615, fRM12850, fRM23359; gRM140, gRM210, gRM278, gRM307, gRM423, gRM551, gRM3417, gRM6172, gRM7446; hRM7, hRM129, hRM236, hRM309 |
GPP | aRM85, aRM274, aRM5414; bRM13, bRM17, bRM35, bRM449, bRM1195; cOSR28, cRM71, cRM87, cRM175, cRM190, cRM598, cRM8277; dRM142, dRM209, dRM231, dRM304, dRM337, dRM472, dRM497, dRM599, dRM1163, dRM7102, dRM18383; eRM18, eRM22, eRM72, eRM103, eRM159, eRM185, eRM329, eRM334, eRM573, eRM16844, eRM19417, eRM26811; fRM111, fRM213, fRM232, fRM259, fRM273, fRM306, fRM331, fRM336, fRM341, fRM481, fRM23331, fRM23340, fRM23520, fRM26796; gRM21, gRM113, gRM161, gRM176, gRM212, gRM214, gRM3148, gRM6172, gRM16937, gRM21587; hRM137, hRM146, hRM257, hRM284, hRM332 |
SSR | aRM85, aRM274, aRM5414; bRM13, bRM35, bRM298, bRM449, bRM1195; cRM19, cRM39, cRM71, cRM87, cRM155, cRM162, cRM175, cRM190, cRM598; dRM209, dRM221, dRM231, dRM267, dRM304, dRM311, dRM472, dRM508, dRM7102, dRM24291; eRM22, eRM72, eRM103, eRM172, eRM185, eRM202, eRM334, eRM411, eRM573, eRM1141, eRM24614; fRM114, fRM208, fRM327, fRM331, fRM463, fRM519, fRM23359, fRM26563; gRM113, gRM176, gRM195, gRM230, gRM345, gRM423, gRM438, gRM493, gRM551, gRM3417; hRM10, hRM108, hRM207, hRM217, hRM252, hRM266, hRM287, hRM316, hRM406, hRM424, hRM480, hRM526, hRM571, hRM5384, hRM12051, hRM14429, hRM18353, hRM24874 |
TGW | aRM85, aRM274, aRM5414; bRM13, bRM17, bRM35, bRM298, bRM449, bRM1195; cRM19, cOSR28, cRM87, cRM155, cRM162, cRM190, cRM8277; dRM142, dRM221, dRM267, dRM292, dRM304, dRM311, dRM337, dRM599, dRM1163, dRM18383, dRM24291; eRM18, eRM50, eRM154, eRM500, eRM1141, eRM16844, eRM24614, eRM26811; fRM114, fRM213, fRM223, fRM253, fRM306, fRM341, fRM470, fRM481, fRM521, fRM23331, fRM23520, fRM26796; gRM1, gRM109, gRM131, gRM205, gRM224, gRM230, gRM250, gRM278, gRM302, gRM307, gRM315, gRM443; hRM29, hRM215, hRM235, hRM270, hRM339, hRM590, hRM3331, hRM15811 |
FLL | aRM85, aRM274, aRM5414; bRM13, bRM17, bRM35, bRM298, bRM449, bRM1195; cRM19, cOSR28, cRM39, cRM71, cRM175, cRM190, cRM598, cRM8277; dRM142, dRM209, dRM231, dRM292, dRM311, dRM472, dRM508, dRM599, dRM18383; eRM18, eRM72, eRM185, eRM329, eRM500, eRM573, eRM1141, eRM16844, eRM19417, eRM26811; fRM111, fRM208, fRM219, fRM253, fRM259, fRM273, fRM306, fRM331, fRM470, fRM519, fRM2615, fRM12850, fRM23340; gRM443, gRM493, gRM567, gRM1282, gRM3148, gRM7446, gRM21605, gRM22319, gRM26547; hRM48, hRM229, hRM248, hRM251, hRM279, hRM288, hRM401, hRM432, hRM455, hRM490, hRM1942, hRM11982, hRM12140, hRM15857 |
GL | aRM85, aRM274, aRM5414; bRM13, bRM17, bRM35, bRM298, bRM449; cRM19, cOSR28, cRM39, cRM87, cRM155, cRM162, cRM175, cRM190, cRM598, cRM8277; dRM209, dRM304, dRM337, dRM472, dRM497, dRM508, dRM599, dRM1163, dRM7102, dRM18383, dRM24291; eRM50, eRM72, eRM172, eRM202, eRM411, eRM500, eRM524, eRM573, eRM24614; fRM219, fRM223, fRM259, fRM336, fRM341, fRM463, fRM521, fRM2615, fRM23520; gRM21, gRM161, gRM210, gRM350, gRM438, gRM1282, gRM3763, gRM16937; hRM102, hRM234, hRM276, hRM343, hRM440, hRM6621, hRM7245, hRM22187 |
GW | aRM85, aRM274, aRM5414; bRM13, bRM17, bRM35, bRM298, bRM1195; cRM19, cOSR28, cRM39, cRM71, cRM87, cRM155, cRM162, cRM175, cRM598, cRM8277; dRM142, dRM221, dRM231, dRM267, dRM292, dRM311, dRM497, dRM1163, dRM7102, dRM24291; eRM22, eRM103, eRM154, eRM159, eRM172, eRM202, eRM329, eRM334, eRM524, eRM1141, eRM19417; fRM114, fRM219, fRM232, fRM253, fRM273, fRM336, fRM470, fRM519, fRM12850, fRM23359, fRM26563, fRM26796; gRM109, gRM131, gRM17, gRM212, gRM224, gRM258, gRM302, gRM345, gRM567, gRM3763, gRM21605, gRM26547; hRM49, hRM239, hRM289, hRM348, hRM561, hRM12299 |
Marker Level | NTM | GW | SSR | TGW | PL | GPP | PH | GL | FLL | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NAM | CD (%) | NAM | CD (%) | NAM | CD (%) | NAM | CD (%) | NAM | CD (%) | NAM | CD (%) | NAM | CD (%) | NAM | CD (%) | ||
1 | 3 | 3 | 100.00 | 3 | 100.00 | 3 | 100.00 | 3 | 100.00 | 3 | 100.00 | 3 | 100.00 | 3 | 100.00 | 3 | 100.00 |
2 | 6 | 5 | 83.33 | 5 | 83.33 | 6 | 100.00 | 5 | 83.33 | 5 | 83.33 | 5 | 83.33 | 5 | 83.33 | 6 | 100.00 |
3 | 11 | 10 | 90.91 | 9 | 81.82 | 7 | 63.64 | 8 | 72.73 | 7 | 63.64 | 7 | 63.64 | 10 | 90.91 | 8 | 72.73 |
4 | 17 | 10 | 58.82 | 10 | 58.82 | 11 | 64.71 | 11 | 64.71 | 11 | 64.71 | 12 | 70.59 | 11 | 64.71 | 9 | 52.94 |
5 | 21 | 11 | 52.38 | 11 | 52.38 | 8 | 38.10 | 11 | 52.38 | 12 | 57.14 | 12 | 57.14 | 9 | 42.86 | 10 | 47.62 |
6 | 28 | 12 | 42.86 | 8 | 28.57 | 12 | 42.86 | 6 | 21.43 | 14 | 50.00 | 10 | 35.71 | 9 | 32.14 | 13 | 46.43 |
7 | 40 | 11 | 27.50 | 10 | 25.00 | 12 | 30.00 | 9 | 22.50 | 10 | 25.00 | 11 | 27.50 | 8 | 20.00 | 9 | 22.50 |
8 | 70 | 6 | 8.57 | 18 | 25.71 | 8 | 11.43 | 4 | 5.71 | 5 | 7.14 | 7 | 10.00 | 8 | 11.43 | 14 | 20.00 |
Marker Level | Label Number | Number of Detection Resources | Number of Differential Resources | Number of Polymorphic Markers |
---|---|---|---|---|
First-level marker | 3 | 309 | 76 | 3 |
Second-level marker | 6 | 76 | 53 | 5 |
Third-level marker | 11 | 53 | 41 | 8 |
Fourth-level marker | 17 | 41 | 28 | 11 |
Fifth-level marker | 21 | 28 | 21 | 13 |
Sixth-level marker | 28 | 21 | 17 | 15 |
Seventh-level marker | 40 | 17 | 13 | 21 |
Eighth-level marker | 70 | 13 | 7 | 26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gan, L.; Huang, L.; Wei, H.; Jiang, F.; Han, J.; Yu, J.; Liu, Q.; Yu, K.; Zhang, Q.; Fan, M.; et al. Phenotypic Variation and Molecular Marker Network Expression of Some Agronomic Traits in Rice (Oryza sativa L.) RILS of Gr 89-1×Shuhui 527. Agronomy 2022, 12, 2980. https://doi.org/10.3390/agronomy12122980
Gan L, Huang L, Wei H, Jiang F, Han J, Yu J, Liu Q, Yu K, Zhang Q, Fan M, et al. Phenotypic Variation and Molecular Marker Network Expression of Some Agronomic Traits in Rice (Oryza sativa L.) RILS of Gr 89-1×Shuhui 527. Agronomy. 2022; 12(12):2980. https://doi.org/10.3390/agronomy12122980
Chicago/Turabian StyleGan, Lu, Lunxiao Huang, Hongyu Wei, Fei Jiang, Jiajia Han, Jie Yu, Qian Liu, Kunchi Yu, Qiuyu Zhang, Mao Fan, and et al. 2022. "Phenotypic Variation and Molecular Marker Network Expression of Some Agronomic Traits in Rice (Oryza sativa L.) RILS of Gr 89-1×Shuhui 527" Agronomy 12, no. 12: 2980. https://doi.org/10.3390/agronomy12122980
APA StyleGan, L., Huang, L., Wei, H., Jiang, F., Han, J., Yu, J., Liu, Q., Yu, K., Zhang, Q., Fan, M., & Zhao, Z. (2022). Phenotypic Variation and Molecular Marker Network Expression of Some Agronomic Traits in Rice (Oryza sativa L.) RILS of Gr 89-1×Shuhui 527. Agronomy, 12(12), 2980. https://doi.org/10.3390/agronomy12122980