Research on the Influence of Fertilization System on the Production and Sustainability of Temporary Grasslands from Romania
Abstract
:1. Introduction
2. Material and Methods
2.1. General Characterization of the Researched Area
2.2. Material and Methods
- Factor A—fertilization system, with the doses:
- a1: chemical − 50 kg ha−1 N + 50 kg ha−1 P2O5 + 50 kg ha−1 K2O
- a2: organic − 30 t ha−1 manure + 50 kg ha−1 P2O5 + 50 kg ha−1 K2O
- -
- Dry Matter (DM) was determined by oven-drying at 60 °C until a constant mass was obtained;
- -
- total nitrogen (Nt) was calculated by the Kjeldahl method, after which crude protein (PB) was calculated using the formula PB = Nt × 6.25;
- -
- cellulose was measured by the photometric method through successive hydrolysis (boiling in 1.25% sulfuric acid solution, then in sodium hydroxide) and separating the mineral salts phosphorus (P), potassium (K), and calcium (Ca) after calcination at a temperature of 550 °C [58].
3. Results
3.1. Climatic Characterization of the 2017–2020 Research Period
3.1.1. The Thermal Regime
3.1.2. Rainfall Regime
3.2. Dry Matter Production in the Period 2017–2020
3.3. Annual Production Dynamics
3.4. Floristic Structure
3.5. Chemical Composition
3.6. Economic Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joner, E.J. The Effect of Long-Term Fertilization with Organic or Inorganic Fertilizers on Mycorrhiza-Mediated Phosphorus Uptake in Subterranean Clover. Biol. Fertil. Soils 2000, 32, 435–440. [Google Scholar]
- Jitea, M.I.; Mihai, V.C.; Arion, F.H.; Muresan, I.C.; Dumitras, D.E. Innovation gaps and barriers in alternative innovative solutions for sustainable High Nature Value Grasslands. Evidence from Romania. Agriculture 2021, 11, 235. [Google Scholar] [CrossRef]
- Vaida, I.; Pacurar, F.; Rotar, I.; Tomos, L.; Stoian, V. Changes in Diversity Due to Long-Term Management in a High Natural Value Grassland. Plants 2021, 10, 739. [Google Scholar] [CrossRef] [PubMed]
- Ning, Q.; Jiang, L.; Niu, G.; Yu, Q.; Liu, J.; Wang, R.; Liao, S.; Huang, J.; Han, X.; Yang, J. Mowing increased plant diversity but not soil microbial biomass under N-enriched environment in a temperate grassland. Plant Soil 2022, 1–13. [Google Scholar] [CrossRef]
- Kose, M.; Melts, I.; Heinsoo, K. Medicinal plants in semi-natural grasslands: Impact of Management. Plants 2022, 11, 353. [Google Scholar] [CrossRef]
- Shaji, H.; Chandran, V.; Mathew, L. Chapter 13—Organic Fertilizers as a Route to Controlled Release of Nutrients. In Controlled Release Fertilizers for Sustainable Agriculture; Lewu, F.B., Volova, T., Thomas, S., Rakhimol, K.R., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 231–245. ISBN 9780128195550. [Google Scholar]
- Weigelt, A.; King, R.; Bol, R.; Bardgett, R.D. Inter-specific variability in organic nitrogen uptake of three temperate grassland species. J. Plant Nutr. Soil Sci. 2003, 166, 606–611. [Google Scholar] [CrossRef]
- Gaga, I.; Pacurar, F.; Vaida, I.; Plesa, A.; Rotar, I. Responses of Diversity and Productivity to Organo-Mineral Fertilizer Inputs in a High-Natural-Value Grassland, Transylvanian Plain, Romania. Plants 2022, 11, 1975. [Google Scholar] [CrossRef]
- Peeters, A. Food and Agriculture Organization. Wild and Sown Grasses: Profiles of a Temperate Species Selection, Ecology, Biodiversity and Use; Food & Agriculture Organization: Rome, Italy, 2004; ISBN 9789251051597. [Google Scholar]
- Mălinas, A.; Rotar, I.; Vidican, R.; Iuga, V.; Păcurar, F.; Mălinas, C.; Moldovan, C. Designing a sustainable temporary grassland system by monitoring nitrogen use efficiency. Agronomy 2020, 10, 149. [Google Scholar] [CrossRef] [Green Version]
- Goulding, K.; Jarvis, S.; Whitmore, A. Optimizing nutrient management for farm systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 667–680. [Google Scholar] [CrossRef] [Green Version]
- Hiremath, A.J.; Ewel, J.J. Ecosystem nutrient use efficiency, productivity, and nutrient accrual in model tropical communities. Ecosystems 2001, 4, 669–682. [Google Scholar] [CrossRef]
- Ranta, M.; Rotar, I.; Vidican, R.; Malinas, A.; Ranta, O.; Lefter, N. Influence of the UAN fertilizer application on quantitative and qualitative changes in semi-natural grassland in Western Carpathians. Agronomy 2021, 11, 267. [Google Scholar] [CrossRef]
- Tong, Z.; Quan, G.; Wan, L.; He, F.; Li, X. The effect of fertilizers on biomass and biodiversity on a semi-arid grassland of Northern China. Sustainability 2019, 11, 2854. [Google Scholar] [CrossRef] [Green Version]
- Bardgett, R.D.; Mawdsley, J.L.; Edwards, S.; Hobbs, P.J.; Rodwell, J.S.; Davies, W.J. Plant species and nitrogen effects on soil biological properties of temperate upland grasslands. Funct. Ecol. 1999, 13, 650–660. [Google Scholar] [CrossRef] [Green Version]
- Erisman, J.W.; Leach, A.; Bleeker, A.; Arwell, B.; Cattaneo, L.; Galloway, J. An integrated approach to a nitrogen use efficiency (NUE) indicator for the food production–consumption chain. Sustainability 2018, 10, 925. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.F.; Swenson, W.; Querejeta, J.I.; Egerton-Warburton, L.M.; Treseder, K.K. Ecology of mycorrhizae: A conceptual framework for complex interactions among plants and fungi. Annu. Rev. Phytopathol. 2003, 41, 271–303. [Google Scholar] [CrossRef] [Green Version]
- Ingraffia, R.; Giambalvo, D.; Frenda, A.S.; Roma, E.; Ruisi, P.; Amato, G. Mycorrhizae differentially influence the transfer of nitrogen among associated plants and their competitive relationships. Appl. Soil Ecol. 2021, 168, 104127. [Google Scholar] [CrossRef]
- John, T.S.; Coleman, D.C. The role of mycorrhizae in plant ecology. Can. J. Bot. 1983, 61, 1005–1014. [Google Scholar] [CrossRef]
- Sheng, M.; Tang, M.; Chen, H.; Yang, B.; Zhang, F.; Huang, Y. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 2008, 18, 287–296. [Google Scholar] [CrossRef]
- Vandenkoornhuyse, P.; Quaiser, A.; Duhamel, M.; Le Van, A.; Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 2015, 206, 1196–1206. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, K.; Wurzburger, N.; Zhang, J. Relationships between plant diversity and soil microbial diversity vary across taxonomic groups and spatial scales. Ecosphere 2020, 11, e02999. [Google Scholar] [CrossRef] [Green Version]
- Corcoz, L.; Păcurar, F.; Pop-Moldovan, V.; Vaida, I.; Stoian, V.; Vidican, R. Mycorrhizal Patterns in the Roots of Dominant Festuca rubra in a High-Natural-Value Grassland. Plants 2021, 11, 112. [Google Scholar] [CrossRef] [PubMed]
- Vidican, R.; Păcurar, F.; Vâtcă, S.D.; Pleșa, A.; Stoian, V. Arbuscular mycorrhizas traits and yield of winter wheat profiled by mineral fertilization. Agronomy 2020, 10, 846. [Google Scholar] [CrossRef]
- Ghete, A.B.; Has, V.; Vidican, R.; Copândean, A.; Ranta, O.; Moldovan, C.M.; Crisan, I.; Duda, M.M. Influence of Detasseling methods on seed yield of some parent inbred lines of Turda maize hybrids. Agronomy 2020, 10, 729. [Google Scholar] [CrossRef]
- Corcoz, L.; Păcurar, F.; Pop-Moldovan, V.; Vaida, I.; Pleșa, A.; Stoian, V.; Vidican, R. Long-Term Fertilization Alters Mycorrhizal Colonization Strategy in the Roots of Agrostis capillaris. Agriculture 2022, 12, 847. [Google Scholar] [CrossRef]
- Stoian, V.; Vidican, R.; Florin, P.; Corcoz, L.; Pop-Moldovan, V.; Vaida, I.; Vâtcă, S.D.; Stoian, V.A.; Pleșa, A. Exploration of Soil Functional Microbiomes—A Concept Proposal for Long-Term Fertilized Grasslands. Plants 2022, 11, 1253. [Google Scholar] [CrossRef] [PubMed]
- Corcoz, L.; Păcurar, F.; Vaida, I.; Pleșa, A.; Moldovan, C.; Stoian, V.; Vidican, R. Deciphering the Colonization Strategies in Roots of Long-Term Fertilized Festuca rubra. Agronomy 2022, 12, 650. [Google Scholar] [CrossRef]
- Luo, W.; Xu, C.; Ma, W.; Yue, X.; Liang, X.; Zuo, X.; Knapp, A.K.; Smith, M.D.; Sardans, J.; Dijkstra, F.A.; et al. Effects of extreme drought on plant nutrient uptake and resorption in rhizomatous vs bunchgrass-dominated grasslands. Oecologia 2018, 188, 633–643. [Google Scholar] [CrossRef]
- Hodge, A.; Storer, K. Arbuscular mycorrhiza and nitrogen: Implications for individual plants through to ecosystems. Plant Soil 2015, 386, 1–19. [Google Scholar] [CrossRef]
- Ganugi, P.; Masoni, A.; Pietramellara, G.; Benedettelli, S. A review of studies from the last twenty years on plant-arbuscular mycorrhizal fungi associations and their uses for wheat crops. Agronomy 2019, 9, 840. [Google Scholar] [CrossRef] [Green Version]
- Brito, I.; Goss, M.J.; De Carvalho, M. Effect of tillage and crop on arbuscular mycorrhiza colonization of winter wheat and triticale under Mediterranean conditions. Soil Manag. 2012, 28, 202–208. [Google Scholar] [CrossRef]
- Manufacturer of Fertilizers Mineral for Agriculture. Available online: https://www.azomures.com/ (accessed on 25 June 2022).
- Verzeaux, J.; Hirel, B.; Dubois, F.; Lea, P.J.; Tétu, T. Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: Basic and agronomic aspects. Plant Sci. 2017, 264, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Janišová, M.; Michalcová, D.; Bacaro, G.; Ghisla, A. Landscape Effects on Diversity of Semi-Natural Grasslands. Agric. Ecosyst. Environ. 2014, 182, 47–58. [Google Scholar] [CrossRef]
- Stone, D.; Ritz, K.; Griffiths, B.G. Selection of Biological Indicators Appropriate for European Soil Monitoring. Appl. Soil Ecol. 2016, 97, 12–22. [Google Scholar] [CrossRef]
- Glab, T.; Kacorzyk, P. Root Distribution and Herbage Production under Different Management Regimes of Mountain Grassland. Soil Tillage Res. 2011, 113, 99–104. [Google Scholar] [CrossRef]
- Rotar, I.; Vaida, I.; Păcurar, F. Species with indicative values for the management of the mountain grasslands. Rom. Agric. Res. Nardi Fundulea 2020, 37, 189–196. [Google Scholar]
- Abedi, T.; Gavanji, S.; Mojiri, A. Lead and Zinc Uptake and Toxicity in Maize and Their Management. Plants 2022, 11, 1922. [Google Scholar] [CrossRef]
- Dmytrash-Vatseba, I.I.; Shumska, N.V. Dynamics of Plant Cover of Meadow Steppes after the Cessation of Traditional Management in Opillia. Biosyst. Divers. 2020, 28, 224–229. [Google Scholar] [CrossRef]
- Van Dobben, H.F.; Wamelink, G.W.; Slim, P.A.; Kami’ nski, J.; Piórkowski, H. Species-Rich Grassland Can Persist under Nitrogen-Rich but Phosphorus-Limited Conditions. Plant Soil 2017, 411, 451–466. [Google Scholar] [CrossRef] [Green Version]
- Pruchniewicz, D. Abandonment of Traditionally Managed Mesic Mountain Meadows Affects Plant Species Composition and Diversity. Basic Appl. Ecol. 2017, 20, 10–18. [Google Scholar] [CrossRef]
- Velado-Alonso, E.; Gómez-Sal, A.; Bernués, A.; Martín-Collado, D. Disentangling the multidimensional relationship between livestock breeds and ecosystem services. Animals 2021, 11, 2548. [Google Scholar] [CrossRef]
- Vâtca, S.; Vidican, R.; Gâdea, S.; Horvat, M.; Vâtca, A.; Stoian, V.A.; Stoian, V. Blackcurrant Variety Specific Growth and Yield Formation as a Response to Foliar Fertilizers. Agronomy 2020, 10, 2014. [Google Scholar] [CrossRef]
- Cassman, N.A.; Leite, M.F.A.; Pan, Y.; de Hollander, M.; van Veen, J.A.; Kuramae, E.E. Plant and Soil Fungal but Not Soil Bacterial Communities Are Linked in Long-Term Fertilized Grassland. Sci. Rep. 2016, 6, 23680. [Google Scholar] [CrossRef] [PubMed]
- Duff, A.M.; Forrestal, P.; Ikoyi, I.; Brennan, F. Assessing the long-term impact of urease and nitrification inhibitor use on microbial community composition, diversity and function in grassland soil. Soil Biol. Biochem. 2022, 170, 108709. [Google Scholar] [CrossRef]
- Le Roux, X.; Schmid, B.; Poly, F.; Barnard, R.L.; Niklaus, P.A.; Guillaumaud, N.; Habekost, M.; Oelmann, Y.; Philippot, L.; Salles, J.F.; et al. Soil Environmental Conditions and Microbial Build-Up Mediate the Effect of Plant Diversity on Soil Nitrifying and Denitrifying Enzyme Activities in Temperate Grasslands. PLoS ONE 2013, 8, e61069. [Google Scholar] [CrossRef] [PubMed]
- Christina, B.; Braker, G.; Matthies, D.; Reuter, A.; Engels, C.; Conrad, R. Impact of plant functional group, plant species, and sampling time on the composition of nirK-type denitrifier communities in soil. Appl. Environ. Microbiol. 2007, 73, 6876–6884. [Google Scholar]
- Burescu, L.I.N.; Morar-Burescu, E.A.; Stef, S.F.; Vlad, I.A.; Bartha, S.; Pop, I.F.; Bojinescu-Rostescu, I. Vegetation and productive potential of dominant grasslands by Festuca valesiaca and Agrostis capillaris in northwestern Romania. Rom. Agric. Res. 2021, 39, 1–14. [Google Scholar]
- Al-Maliki, S.; Al-zabee, M. Interactions between Biofertilizers and Chemical Fertilizers Affected Soil Biological Properties and Potato Yield. Euphrates J. Agric. Sci. 2019, 11, 1–13. [Google Scholar]
- Hack-ten Broeke, M.J.D.; Schut, A.G.T.; Bouma, J. Effects on nitrate leaching and yield potential of implementing newly developed sustainable land use systems for dairy farming on sandy soils in The Netherlands. Geoderma 1999, 91, 217–235. [Google Scholar] [CrossRef]
- Bridgham, S.D.; Pastor, J.; Mc Claugherty, C.A.; Richardson, C.J. Nutrient-use efficiency—A litter fall index, a model, and a test along a nutrient-availability gradient in North-Carolina peat lands. Am. Nat. 1995, 145, 1–21. [Google Scholar] [CrossRef]
- Mastalerczuk, G.; Borawska-Jarmułowicz, B.; Kalaji, H.M.; Da browski, P.; Paderewski, J. Gas-exchange parameters and morphological features of festulolium (Festulolium braunii K. Richert A. Camus) in response to nitrogen dosage. Photosynthetica 2017, 55, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Hejduk, S.; Kno, P. Effect of provenance and ploidity of red clover varieties on productivity, persistence and growth pattern in mixture with grasses. Plant Soil Environ. 2010, 56, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Raun, W.R.; Johnson, G.V. Improving nitrogen use efficiency for cereal production. Agron. J. 1999, 91, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Zhang, Y.; Lan, H.; Mao, L.; Zeng, S.; Chen, Y. Investigating long-term trends of climate change and their spatial variations caused by regional and local environments through data mining. J. Geogr. Sci. 2018, 28, 802–818. [Google Scholar] [CrossRef] [Green Version]
- Adamov, T.; Ciolac, R.; Iancu, T.; Brad, I.; Peț, E.; Popescu, G.; Șmuleac, L. Sustainability of Agritourism Activity. Initiatives and Challenges in Romanian Mountain Rural Regions. Sustainability 2020, 12, 2502. [Google Scholar] [CrossRef] [Green Version]
- Aghajanzadeh-Darzi, P.; Martin, R.; Laperche, S.; Jayet, P.A. Climate change impacts on European agriculture revisited: Adding the economic dimension of grasslands. Reg. Environ. Chang. 2017, 17, 261–272. [Google Scholar] [CrossRef]
- Răduțoiu, D.; Simeanu, C.G.; Stan, I. Contributions to halophilic flora and vegetation in Oltenia (Romania). Sci. Pap. Ser. b-Hortic. 2018, 62, 655–660. [Google Scholar]
- Călina, A.; Călina, J.; Tiberiu, I. Research regarding the implementation, development and impact of agritourism on Romania’s rural areas between 1990 and 2015. Environ. Eng. Manag. J. 2017, 16, 157–168. [Google Scholar] [CrossRef]
- Galluzzo, N. A quantitative analysis on Romanian rural areas, agritourism and the impacts of European Union’s financial subsidies. J. Rural. Stud. 2021, 82, 458–467. [Google Scholar] [CrossRef]
- Ionescu, I. Temporary Grasslands in the Subcarpathian Area of Oltenia; Edit. Sitech: Craiova, Romania, 2003; pp. 110–238. [Google Scholar]
- Dragomir, C.; Dragomir, N.; Marușca, T.; Blaj, A. The effect of mineral and organic fertilisation on the nodulation capacity at leguminous species in permanent grasslands. J. Food Agric. Environ. 2012, 10, 403–407. [Google Scholar]
- Dragomir, N.; Toth, S.; Dragomir, C.; Sauer, M.; Sauer, I.; Tarjoc, F.; Văcariu, D.; Constantinescu, S. Study of Nitrogen Balance in Some Fodder Systems I: Italian Ray Grass (Lolium multiflorum L.) Fodder System. Sci. Pap. Anim. Sci. Biotechnol. 2013, 46, 138–141. [Google Scholar]
- Mihalache, M.; Ilie, L.; Madjar, R. Translocation of heavy metals from sewage sludge amended soil to plant. Rev. Roum. De Chimie. 2014, 59, 81–89. [Google Scholar]
- Bampa, F.; O’Sullivan, L.; Madena, K.; Sandén, T.; Heide, H.; Henriksen, B.C.; Ghaley, B.B.; Jones, A.; Staes, J.; Sturel, S.; et al. Harvesting European knowledge on soil functions and land management using multi-criteria decision analysis. Soil Use Manag. 2019, 35, 6–20. [Google Scholar] [CrossRef] [Green Version]
- Călina, A.; Călina, J. Research on the production of forage for the agro-touristic farms in Romania by cultivating perennial leguminous plants. Environ. Eng. Manag. J. 2015, 14, 657–663. [Google Scholar] [CrossRef]
- Călina, A.; Călina, J. Research regardig the agriproductive properties of the typical reddish preluvosol between Jiu and Olt rivers and its evolution from 1997–2017 in farms and agritouristic households. Rom. Agric. Res. 2019, 36, 251–261. [Google Scholar]
- Cayley, J.W.D.; Bird, P.R. Techniques for Measuring Pastures; Department of Agriculture Technical Report Series No. 191; Victoria Department of Agriculture, Pastoral and Veterinary Institute Hamilton: Victoria, Australia, 1996; pp. 34–40. [Google Scholar]
- Botu, I.; Botu, M. Biostatistical Analysis and Experimental Design in Biology and Agriculture; Edit. Conphys: Râmnicu Vâlcea, Romania, 2003; pp. 12–145. [Google Scholar]
- Săulescu, N.A.; Săulescu, N.N. The Field of Experience; Edit. Agro-Forestry: Bucharest, Romania, 1967; pp. 28–140. [Google Scholar]
- Ştefan, G. Agrarian Economy; Edit. Junimea: Iasi, Romania, 2006; pp. 21–165. [Google Scholar]
- Badiu, D.; Arion, F.H.; Muresan, I.C.; Lile, R.; Mitre, V. Evaluation of economic efficiency of apple orchard investments. Sustainability 2015, 7, 10521–10533. [Google Scholar] [CrossRef] [Green Version]
- Kanianska, R.; Kizeková, M.; Makovníková, J. Quantification of present and past biomass productivity as a support to effective biomass management. J. Environ. Plan. Manag. 2016, 59, 1456–1472. [Google Scholar] [CrossRef]
- Marusca, T.; Blaj, V.A.; Mocanu, V.; Ene, A.T.; Andreoiu, C.A.; Dragos, M.; Marian, P.Z. An efficient farming system in mountain grasslands from Carpathian. J. Mt. Agric. Balk. 2016, 19, 42–52. [Google Scholar]
- Maruşca, T.; Dragomir, N.; Mocanu, V.; Blaj, A. Effect of Long-Term Fertilisation and Amendment on Sub-Alpine Grasslands in the Bucegi Mountains. Sci. Pap. Anim. Sci. Biotechnol. 2013, 46, 159–162. [Google Scholar]
- Miluţ, M.; Croitoru, A. Influence of the exploitation way and vegetation regrowth length on the temporary meadows yield. Ann. Univ. Craiova Agric. Mont. Cadastre 2008, 38, 245–253. [Google Scholar]
- Rotar, I.; Vidican, R.; Toth, G.; Pleșa, A.; Vaida, I.; Iuga, V.; Morea, A. Influence of Mineral and Organic Fertilization on Grassland from Transilvanian Plateau. Bull. USAMV Ser. Agric. 2018, 75, 2–8. [Google Scholar] [CrossRef]
- Păcurar, F.; Rotar, I.; Vidican, R.; Vaida, I.; Plesa, A.; Iuga, V.; Constantea, D. The long-term effect of the organic inputs on the productivity of Festuca rubra grasslands in the central area of Apuseni Mountains. Rom. J. Grassl. Forage Crops 2018, 18, 57–63. [Google Scholar]
- Pfeiffer, T.Ž.; Maronić, D.Š.; Zahirović, V.; Stević, F.; Mihaljević, M. Effectiveness of mowing for the flora diversity preservation: A case study of steppe-like grassland in Croatia (NATURA 2000 site). Biodivers. Conserv. 2017, 26, 439–460. [Google Scholar] [CrossRef]
- Samuil, C. The influence of fertilization and distance between rows on some sainfoin (Onobrychis viciifolia Scop.) morphoproductive indicators. Res. J. Agric. Sci. 2020, 50, 2–9. [Google Scholar]
- Pastor, J.; Bridgham, S.D. Nutrient efficiency along nutrient availability gradients. Oecologia 1999, 118, 50–58. [Google Scholar] [CrossRef]
- Aerts, R. Nutrient use efficiency in evergreen and deciduous species from heathlands. Oecologia 1990, 84, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Călina, J.; Călina, A.; Ciobanu, A. Identification of the best apple and pear tree varieties suitable to be grown in farms and agritourism households in the south-west area of Romania. Environ. Eng. Manag. J. 2022, 21, 995–1009. [Google Scholar] [CrossRef]
- Luo, J.; Klein, C.A.M.; Ledgard, S.F.; Saggar, S. Management options to reduce nitrous oxide emissions from intensively grazed pastures: A review. Agric. Ecosyst. Environ. 2010, 136, 282–291. [Google Scholar] [CrossRef]
- Dhamala, N.R.; Rasmussen, J.; Carlsson, G.; Søegaard, K.; Eriksen, J. N transfer in three-species grass-clover mixtures with chicory, ribwort plantain or caraway. Plant Soil 2017, 413, 217–230. [Google Scholar] [CrossRef] [Green Version]
- Wilsey, B.J.; Potvin, C. Biodiversity and ecosystem functioning: Importance of species evenness in an old field. Ecology 2000, 81, 887–892. [Google Scholar] [CrossRef]
- Abadi, A.; Khakzand, M. Extracting the qualitative dimensions of agritourism for the sustainable development of Charqoli village in Iran: The promotion of vernacular entrepreneurship and environment-oriented preservation perspectives. Environ. Dev. Sustain. 2022, 24, 12609–12671. [Google Scholar] [CrossRef]
- Kubal-Czerwińska, M.; Mitrofanenko, T.; Szabó-Diószeghy, Á.; Szabó, M.; Szpara, K.; Zawilińska, B. Agritourism and local products in terms of protection and sustainable development of the Carpathians: A participatory discussion on key issues and challenges. Hum. Geogr. 2022, 16, 33–52. [Google Scholar]
- Solymannejad, R.; Alibaygi, A.; Salehi, L. Barriers and Facilitators of Agri-Tourism Sustainable Development in West of Mazandaran Province. Geogr. Environ. Plan. 2022, 33, 37–62. [Google Scholar]
Specification | Average/Sum | |||||||
---|---|---|---|---|---|---|---|---|
Annually | Growing Season | Annually | Growing Season | |||||
T(°C) | Rainfall (mm) | T(°C) | Rainfall (mm) | T(°C) | Rainfall (mm) | T(°C) | Rainfall (mm) | |
2017 | 2018 | |||||||
Average/Sum | 10.6 | 1167.0 | 17.4 | 731.0 | 10.1 | 982.2 | 17.7 | 593.0 |
Multi-year average | 10.2 | 798.0 | 17.2 | 453.2 | 10.2 | 798.0 | 17.2 | 453.2 |
Deviation | +0.4 | +369.0 | +0.2 | +277.8 | −0.1 | +184.2 | +0.5 | +139.8 |
2019 | 2020 | |||||||
Average/Sum | 12.7 | 740.5 | 18.9 | 536.6 | 11.0 | 935.2 | 18.5 | 454.5 |
Multi-year average | 10.2 | 798.0 | 17.2 | 453.2 | 10.2 | 798.0 | 17.2 | 453.2 |
Deviation | +2.5 | −57.5 | +1.7 | +83.4 | +0.8 | +137.2 | +1.3 | +1.3 |
No. | Variant | Absolute Yield (t ha−1 DM) | % | Difference | Significance |
---|---|---|---|---|---|
1 | 50 N, 50 P2O5, 50 K2O | 1.34 | 100 | - | Control |
2 | 30 t ha−1 manure + 50 P2O5, 50 K2O | 2.72 | 215 | 1.38 | *** |
No. | Year | Variant | The Annual Dose of N (Kg ha−1) | Absolute Yield (t ha−1 DM) | % | Difference | Significance |
---|---|---|---|---|---|---|---|
1. | 2018 | 50 N, 50 P2O5, 50 K2O | 80 | 7.13 | 100 | - | Control |
30 t ha−1 manure + 50 P2O5, 50 K2O | 80 | 9.46 | 132 | 2.33 | * * * | ||
LSD 5% = 0.30 t ha−1 DM; LSD 1% = 0.69 t ha−1 DM; LSD 0.1% = 2.33 t ha−1 DM | |||||||
2. | 2019 | 50 N, 50 P2O5, 50 K2O | 80 | 5.54 | 100 | - | Control |
30 t ha−1 manure + 50 P2O5, 50 K2O | 80 | 5.95 | 109 | 0.41 | - | ||
LSD 5% = 0.45 t ha−1 DM; LSD 1% = 1.06 t ha−1 DM; LSD 0.1% = 3.37 t ha−1 DM | |||||||
3. | 2020 | 50 N, 50 P2O5, 50 K2O | 80 | 6.75 | 100 | - | Control |
30 t ha−1 manure + 50 P2O5, 50 K2O | 80 | 7.22 | 107 | 0.47 | - | ||
LSD 5% = 1.14 t ha−1 DM; LSD 1% = 2.64 t ha−1 DM; LSD 0.1% = 8.41 t ha−1 DM | |||||||
4. | Average 2018–2020 | 50 N, 50 P2O5, 50 K2O | 80 | 6.47 | 100 | - | Control |
30 t ha−1 manure + 50 P2O5, 50 K2O | 80 | 7.54 | 118 | 1.07 | * * * | ||
LSD 5% = 0.24 t ha−1 DM; LSD 1% = 0.36 t ha−1 DM; LSD 0,1% = 0.58 t ha−1 DM |
Fertilization System | The Annual Dose of N (kg ha−1) | Year 2017 | Year 2018 | Year 2019 | Year 2020 | ||||
---|---|---|---|---|---|---|---|---|---|
t ha−1 DM | % | t ha−1 DM | % | t ha−1 DM | % | t ha−1 DM | % | ||
50 N, 50 P2O5, 50 K2O | 80 | 1.34 | 5.75 | 7.13 | 35.5 | 5.54 | 23.25 | 6.75 | 35.5 |
30 t ha−1 manure + 50 P2O5, 50 K2O | 80 | 2.72 | 10.5 | 9.46 | 38 | 5.95 | 21 | 7.22 | 30.5 |
No. | Year | Fertilization System | First Harvest * | Second Harvest * | ||
---|---|---|---|---|---|---|
Grasses (%) | Legumes (%) | Grasses (%) | Legumes (%) | |||
1. | 2018 | 50 N, 50 P2O5, 50 K2O | 75.5 | 24.5 | 36.5 | 63.5 |
30 t ha−1 manure + 50 P2O5, 50 K2O | 71 | 29 | 30 | 70 | ||
2. | 2019 | 50 N, 50 P2O5, 50 K2O | 82.5 | 17.5 | 69 | 31 |
30 t ha−1 manure + 50 P2O5, 50 K2O | 79 | 21 | 80 | 20 | ||
3. | 2020 | 50 N, 50 P2O5, 50 K2O | 72.5 | 25 | 73 | 23 |
30 t ha−1 manure + 50 P2O5, 50 K2O | 77 | 19 | 75 | 20 |
Variant | Annual Dose of N (kg ha−1) | Crude Protein (%) | Cellulose (%) | P (%) | K (%) | Ca (%) |
---|---|---|---|---|---|---|
Fertilization System | ||||||
50 N, 50 P2O5, 50 K2O | 80 | 12.93 | 29.37 | 0.32 | 1.68 | 0.3 |
30 t ha−1 manure +50 P2O5, 50 K2O | 80 | 13.96 | 32.14 | 0.36 | 1.8 | 0.33 |
Fertilization System | Production Average (t ha−1 DM) | Total Costs (EUR ha−1) | Production Costs (EUR t−1 DM) | Price of Sale * (EUR t−1 DM) | Value of Production (EUR ha−1) | Profit (EUR ha−1) | Profitability Rate (%) |
---|---|---|---|---|---|---|---|
50 N, 50 P2O5, 50 K2O | 6.47 | 570.98 | 88.24 | 168.42 | 1089.68 | 518.71 | 90.84 |
30 t/ha manure + 50 P2O5,50 K2O | 7.54 | 569.34 | 75.5 | 210.53 | 1587.37 | 1018.03 | 178.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Călina, J.; Călina, A.; Iancu, T.; Miluț, M.; Croitoru, A.C. Research on the Influence of Fertilization System on the Production and Sustainability of Temporary Grasslands from Romania. Agronomy 2022, 12, 2979. https://doi.org/10.3390/agronomy12122979
Călina J, Călina A, Iancu T, Miluț M, Croitoru AC. Research on the Influence of Fertilization System on the Production and Sustainability of Temporary Grasslands from Romania. Agronomy. 2022; 12(12):2979. https://doi.org/10.3390/agronomy12122979
Chicago/Turabian StyleCălina, Jenica, Aurel Călina, Tiberiu Iancu, Marius Miluț, and Alin Constantin Croitoru. 2022. "Research on the Influence of Fertilization System on the Production and Sustainability of Temporary Grasslands from Romania" Agronomy 12, no. 12: 2979. https://doi.org/10.3390/agronomy12122979
APA StyleCălina, J., Călina, A., Iancu, T., Miluț, M., & Croitoru, A. C. (2022). Research on the Influence of Fertilization System on the Production and Sustainability of Temporary Grasslands from Romania. Agronomy, 12(12), 2979. https://doi.org/10.3390/agronomy12122979