Leaf Color Chart (LCC)-Based Precision Nitrogen Management for Assessing Phenology, Agrometeorological Indices and Sustainable Yield of Hybrid Maize Genotypes under Temperate Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Weather Conditions
2.3. Experimental Design and Treatment Details
2.4. Crop Management Practices
2.5. LCC-Based Nitrogen Application
2.6. Biometric Crop Observations
2.7. Computation of Agrometeorological Indices and Thermal Use Efficiencies
2.8. Statistical Analysis
3. Results
3.1. Phenology
3.2. Agrometeorological Indices
3.2.1. Growing Degree Days
3.2.2. Heliothermal Units (HTU)
3.2.3. Photothermal Units (PTU)
3.2.4. Phenothermal Index (PTI)
3.2.5. Heat Use Efficiency (HUE) and Radiation Use Efficiency (RUE)
3.3. Yield
3.4. Regression Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Monteith, J.L. Climatic variation and the growth of crops. Quart. J. Royal Met. Soc. 1981, 107, 749–774. [Google Scholar] [CrossRef]
- Staeblar, M.A. Physiological Responses to Cold Stress in Maize (Zea mays L.) During Early Phase of Development. Master’s Thesis, University of Guelph, Guelph, ON, Canada, 2001. [Google Scholar]
- Ali, K.; Khali, S.K.; Munsif, A.F.; Nawab, K.; Khan, A.Z.; Kamal, A.; Khan, Z.H. Response of maize to various nitrogen sources and tillage practices. Sarhad J. Agr. 2012, 28, 9–14. [Google Scholar]
- Kumar, K.V.; Kumari, V.V. Nitrogen Management for Maize using Image Processing. Intern. J. Sci. Res. 2013, 4, 433–436. [Google Scholar]
- Moebius-Clune, B.; Harold, V.E.; Jeff, M. Adapt-N Uses Models and Weather Data to Improve Nitrogen Management for Corn. Better Cr. 2013, 97, 7–9. [Google Scholar]
- Hussain, T.; Gondal, M.A.; Yamani, Z.H.; Baig, M.A. Measurement of nutrients in green house soil with laser induced breakdown spectroscopy. Environ. Mon. Asses. 2007, 124, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Site-Specific Nutrient Management (SSNM). 2007. Available online: https://www.irri.org/news-and-events/news/irri (accessed on 8 February 2007).
- Takebe, M.; Yoneyama, T. Measurement of leaf colour scores and its implication to nitrogen nutrition of rice plants. Jap. Agri. Res. Quart. 1989, 23, 86–93. [Google Scholar]
- Islam, Z.; Bagchi, B.; Hossain, M. Adoption of leaf color chart for nitrogen use efficiency in rice: Impact assessment of a farmer-participatory experiment in West Bengal, India. Field Crops Res. 2007, 103, 70–75. [Google Scholar] [CrossRef]
- Witt, C.; Pasuquin, J.M.C.A.; Mutters, R.; Buresh, R.J. New leaf color chart for effective nitrogen management in rice. Bet. Cr. 2005, 89, 3639. [Google Scholar]
- Golla, B.; Tadesse, B.; Chalsisa, D.; Bayisa, E. Effect of sowing time and environmental variation on yield of different maize varieties. Open J. Pl. Sci. 2018, 3, 41–45. [Google Scholar]
- Xu, F.; Wang, B.; He, C.; Liu, D.L.; Feng, P.; Yao, N.; Zhang, R.; Xu, S.; Xue, J.; Feng, H. Optimizing Sowing Date and Planting Density Can Mitigate the Impacts of Future Climate on Maize Yield: A Case Study in the Guanzhong Plain of China. Agron. 2021, 11, 1452. [Google Scholar] [CrossRef]
- Piper, C. Soil and Plant Analysis; Asia Edition; Hans Publishers Bombay: Mumbai, India, 1966. [Google Scholar]
- Jackson, M. Soil Chemical Analysis, Pentice Hall of India Pvt.; Pentice Hall of India Ltd.: New Delhi, India, 1973; Volume 498, pp. 151–154. [Google Scholar]
- Walkely, A.; Black, T. Determination of organic carbon by rapid titration method. Soil Sci. 1934, 37, 29–35. [Google Scholar]
- Subbaiah, B. A rapid procedure for estimation of available nitrogen in soil. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Nuttonson, M.Y. Wheat-climate relationships and the use of phenology in ascertaining the thermal and photo-thermal requirements of wheat. Based on data of North America and of some thermally analogous areas of North America in the Soviet Union and in Finland. Amer. Insti. Crop Ecol. 1995, 338–344. [Google Scholar]
- Majumder, D.; Kingra, P.K.; Kukal, S.S. Canopy temperature and heat use efficiency of spring maize under modified soil microenvironment. Ann. Agri. Res. 2016, 37, 225–235. [Google Scholar]
- Deshmukh, A.P.; Kharbade, S.B.; Balasubramanian, R. Evaluation of growing degree days (GDD) values of timely and late sowing dates in different varieties of rice. Pharma. Inno. 2021, 10, 365–369. [Google Scholar]
- Thavaprakash, N.; Jaganathan, R.; Velayudham, K.; Gurusamy, L. Seasonal Influence on Phenology and Accumulated Heat Units in Relation to Yield of Baby Corn. Ind. J. Agri. Sci. 2007, 2, 826–831. [Google Scholar]
- Mittal, M. Effect of Sowing Dates and Irrigation Regimes on Phenology, Growth and Productivity of Varying Maturity Maize (Zea mays L.) Cultivars. Master’s Thesis, Maharana Pratap University of Agriculture and Technology, Udaipur, India, 1996. [Google Scholar]
- Parves, A.; Saika, M.; Pathak, K.; Choudhary, M. Effect of microclimatic regimes and nitrogen management practices on phenology, yield and agrometeorological indices for rabi maize. Jour. Pharm. Phyt. 2020, 9, 971–974. [Google Scholar]
- Bhat, T.A.; Ahmad, L.; Kotru, R. Relation between agrometeorological indices, crop phenology and yield of rice genotypes as influenced by real time N management. J. Agromet. 2015, 17, 90–97. [Google Scholar] [CrossRef]
- Hafiz, M.H.; Ashfaq, A.; Wajid, F.; Farhat, A.; Khaliqa, Q.; Shafqat, S. Nitrogen stimulates phonological traits, growth and GDD of maize. Pakistan J. Agric. Sci. 2013, 50, 337–343. [Google Scholar]
- Jagdish, S.; Hadda, M.S. Phenology and thermal indices of maize (Zea mays L.) influenced by subsoil compaction and nitrogen fertilization under semi-arid irrigated conditions. J. Appl. Nat. Sci. 2014, 6, 349–355. [Google Scholar]
- Bhat, T.A.; Kotru, R.; Singh, K.; Dar, S.B.; Ram, H. Real-time nitrogen management using leaf colour chart in rice (Oryza sativa) genotypes. Indian J. Agron. 2015, 60, 70–75. [Google Scholar]
- Taruna, A.; Solanki, N.S.; Sharma, S.K.; Jajoria, D.K.; Dotaniya, M.L. Phenology growth and yield of wheat in relation to agrometeorological indices under different sowing dates. Afr. J. Agri. Res. 2013, 8, 6366–6374. [Google Scholar]
- Naik, N.R.; Hemalatha, S.; Reddy, A.P.K.; Madhuri, K.V.N.; Umamahesh, V. Need based nitrogen management on growth attributes of Rabi maize (Zea mays L.) using leaf colour chart under varied plant density. Int. J. Chem. St. 2019, 7, 2591–2596. [Google Scholar]
- Rajesh, K.; Rupesh, D.; Neha, V. Thermal requirement of different rice varieties under raipur condition. Pl. Arch. 2015, 15, 319–322. [Google Scholar]
- Bhat, T.A.; Kotru, R.; Ahmad, L.; Ganai, M.A. Management of nitrogen through leaf colour chart (LCC) in rice under irrigated conditions of Kashmir. App. Biol. Res. 2015, 17, 24–30. [Google Scholar] [CrossRef]
- Banerjee, M.; Bhuiya, G.S.; Malik, G.C.; Maiti, D.; Dutta, S. Precision nutrient management through use of LCC and Nutrient Expert in hybrid maize under laterite soil of India. Univers. J. Food Nutr. Sci. 2014, 2, 33–36. [Google Scholar] [CrossRef]
- Praveen, K.V.; Patel, S.R.; Choudhary, J.L.; Bhelawe, S. Heat Unit Requirement of Different Rice Varieties under Chhattisgarh Plain Zones of India. Earth Sci. Cli. Ch. 2013, 5, 165. [Google Scholar]
- Jyothsna, K.; Padmaja, J.; Sreelatha, D.; Kumar, R.M.; Madhavi, A. Study on nutrient management of hybrid maize (Zea mays L.) through decision support tools. J. Phar. Phy. 2021, 10, 760–764. [Google Scholar]
- Moharana, S.; Gulati, J.; Jena, S. Effect of LCC-based nitrogen application on growth and yield of rice (Oryza sativa L.) varieties during dry season. Indian J. Agric. Res. 2017, 51, 49–53. [Google Scholar]
- Bhat, T.A.; Kotru, R.; Ahmad, L.; Ganai, M.; Mahdi, S. Response of rice genotypes (Oryza sativa L.) to Leaf Colour Chart based nitrogen management under temperate environment. Int. J. Eco. Environ. Sci. 2015, 41, 95–100. [Google Scholar]
- Bhavana, B.; Laxminarayana, P.; Latha, A.M.; Anjaiah, T. Judicious Nitrogen Management using Leaf Colour Chart for Enhancing Growth and Yield of Short Duration Transplanted Rice (Oryza sativa L.). Int. J. Curr. Microbiol. App. Sci. 2020, 9, 2850–2856. [Google Scholar] [CrossRef]
- Fayaz, S.; Kanth, R.; Bhat, T.; Bhat, M.; Alie, B.; Dar, Z.; Mehdi, Z.; Maqbool, S.; Rasool, K. Effect of precision nitrogen management through LCC on nutrient content and uptake of maize (Zea mays L.) under temperate conditions of Kashmir. Int. J. Plant Soil Sci. 2021, 33, 1–11. [Google Scholar] [CrossRef]
- Mathukia, R.K.; Puja, R.; Dadhania, N.M. Climate change adaptation: Real time nitrogen management in maize (Zea mays L.) using leaf colour chart. Curr. W. Environ. 2014, 9, 1028–1033. [Google Scholar] [CrossRef]
- Bhat, T.A.; Kanth, R.H.; Jan, B.; Nazir, A.; Ahanger, S.A.; Mir, M.S.; Naikoo, N.B.; Fayaz, S.; Dar, K.A.; Gul, A. Real-Time nitrogen application of rice varieties based on leaf colour chart under system of rice intensification in temperate climate. Agronomy 2022, 12, 2229. [Google Scholar] [CrossRef]
- Bhat, T.A.; Kotru, R.; Verma, A.; Ganai, M.A.; Latie, L.A.D.; Teli, N.A. Leaf Colour Chart Based N Management for Yield, Nutrient Uptake and Yield of Rice Genotypes. Int. J. Curr. Microbiol. App. Sci. 2017, 6, 3531–3538. [Google Scholar]
- Liu, J.; Jiang, B.; Shen, J.; Zhu, X.; Yi, W.; Li, Y.; Wu, J. Contrasting effects of straw and straw-derived biochar applications on soil carbon accumulation and nitrogen use efficiency in double-rice cropping systems. Agric. Ecosyst. Environ. 2021, 311, 107286. [Google Scholar] [CrossRef]
- Iqbal, B.; Anwar, S.; Iqbal, F.; Khattak, W.; Islam, M.; Khan, S. Response of wheat crop to humic acid and nitrogen levels. Ec Agric. 2016, 3, 558–565. [Google Scholar]
- Sen, A.; Srivastava, V.K.; Singh, M.K.; Singh, R.K.; Kumar, S. Leaf colour chart vis-a-vis nitrogen management in different rice genotypes. Amer. J. Pl. Sci. 2011, 2, 223. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, N.; Zada, A.; Junaid, M.; Ali, A. Bridging the Yield Gap in Rice Production by Using Leaf Color Chart for Nitrogen Management. J. Bot. 2016, 2016, 2728391. [Google Scholar] [CrossRef]
- Fariba, E.; Ghafoor, A.; Ali, D.M. Wheat Yield Prediction through Agro Meteorological Indices for Ardebil District. World Acad. Sci. Eng. Tech. 2009, 25, 32–35. [Google Scholar]
- Pazhanisamy, S.; Narayanan, A.; Sridevi, V.; Rodda, C.D. Correlation regression studies between different weather parameters and yield of aerobic rice. Int. J. Chem. Stud. 2020, 8, 2357–2360. [Google Scholar]
- Bisma, J.; Bhat, M.A.; Tauseef, A.B.; Munazah, Y.; Aijaz, N.; Bhat, M.A.; Amir, H.M.; Fehim, J.W.; Jitendra, K.S.; Rajesh, K.; et al. Evaluation of seedling age and nutrient sources on phenology, yield and agrometeorological indices for sweet corn (Zea mays saccharata L.). Saudi J. Bio. Scie. 2022, 29, 735–742. [Google Scholar]
Characteristics | Status | Range | Method Used |
---|---|---|---|
| International Pipette Method [13] | ||
Coarse sand | 20.00 | ||
Silt (%) | 50.00 | ||
Clay (%) | 30.00 | ||
Texture | Silty-clay–loam | ||
| |||
PH | 7.1 | Neutral | Blackman’s glass method [14] |
OC | 0.66 (%) | Medium | Black and Walkely method [15] |
N | 320.5 (kg ha−1) | Medium | Potassium permanganate method [16] |
P | 19.75 (kg ha−1) | Medium | Extraction with 0.5 M NaoHCO3 [17] |
K | 170.2 (kg ha−1) | Medium | Flame photometer method [14] |
Treatments | No. of Splits | 2019 | 2020 | ||||
---|---|---|---|---|---|---|---|
Shalimar Maize Hybrid-2 | Vivek-45 | Kanchan-517 | Shalimar Maize Hybrid-2 | Vivek-45 | Kanchan-517 | ||
Control | - | - | - | - | - | - | - |
Recommended N | 3 | 150 | 150 | 150 | 150 | 150 | 150 |
LCC ≤ 3@20 kg N ha−1 | 4 | 80 | 80 | 80 | 80 | 80 | 80 |
LCC ≤ 3@30 kg N ha−1 | 3 | 90 | 90 | 90 | 90 | 90 | 90 |
LCC ≤ 4@20 kg N ha−1 | 5 | 100 | 100 | 100 | 100 | 100 | 100 |
LCC ≤ 4@30 kg N ha−1 | 4 | 120 | 120 | 120 | 120 | 120 | 120 |
LCC ≤ 5@20 kg N ha−1 | 6 | 120 | 120 | 120 | 120 | 120 | 120 |
LCC ≤ 5@30 kg N ha−1 | 5 | 150 | 150 | 150 | 150 | 150 | 150 |
Treatments | Knee-High Stage | Tasseling Stage | Silking Stage | Harvest | ||||
---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |
Hybrids | ||||||||
Shalimar Maize Hybrid-2 | 41 | 39 | 74 | 73 | 80 | 78 | 128 | 126 |
Vivek-45 | 39 | 37 | 73 | 71 | 79 | 77 | 127 | 125 |
Kanchan-517 | 37 | 36 | 72 | 71 | 78 | 76 | 125 | 124 |
SEm± | 0.49 | 0.39 | 0.42 | 0.40 | 0.65 | 0.61 | 0.90 | 0.96 |
C.D. (5%) | NS | NS | NS | NS | NS | NS | NS | NS |
Nitrogen management | ||||||||
Control | 36 | 35 | 69 | 68 | 74 | 72 | 121 | 120 |
Recommended N | 38 | 37 | 73 | 71 | 79 | 77 | 126 | 124 |
LCC ≤ 3@20 kg N ha−1 | 37 | 36 | 70 | 69 | 77 | 75 | 125 | 123 |
LCC ≤ 3@30 kg N ha−1 | 38 | 36 | 71 | 70 | 77 | 75 | 125 | 124 |
LCC ≤ 4@20 kg N ha−1 | 39 | 38 | 74 | 72 | 79 | 77 | 127 | 125 |
LCC ≤ 4@30 kg N ha−1 | 40 | 38 | 74 | 73 | 80 | 79 | 129 | 127 |
LCC ≤ 5@20 kg N ha−1 | 40 | 39 | 74 | 73 | 81 | 79 | 129 | 127 |
LCC ≤ 5@30 kg N ha−1 | 43 | 42 | 78 | 76 | 85 | 83 | 132 | 130 |
SEm± | 0.40 | 0.36 | 0.80 | 0.76 | 0.86 | 0.80 | 0.83 | 0.78 |
C.D. (5%) | 1.22 | 1.09 | 2.41 | 2.29 | 2.58 | 2.40 | 2.49 | 2.34 |
Interaction | NS | NS | NS | NS | NS | NS | NS | NS |
Treatments | Knee-High Stage | Tasseling Stage | Silking Stage | Harvest | ||||
---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |
Hybrids | ||||||||
Shalimar Maize Hybrid-2 | 735.25 | 773.15 | 1515.75 | 1587.3 | 1684 | 1715.35 | 2721.95 | 2790.15 |
Vivek-45 | 695.4 | 729.4 | 1492 | 1538.55 | 1629.5 | 1688.05 | 2690.7 | 2771.15 |
Kanchan-517 | 652.3 | 705.65 | 1468.3 | 1538.55 | 1601.5 | 1662.3 | 2645.95 | 2751.15 |
SEm± | 9.26 | 7.83 | 7.32 | 8.88 | 6.66 | 8.29 | 9.91 | 5.99 |
C.D. (5%) | 27.80 | 23.50 | 21.97 | 26.65 | 19.98 | 24.88 | 29.72 | 17.88 |
Nitrogen management | ||||||||
Control | 614.8 | 659.9 | 1372.05 | 1437.05 | 1492 | 1538.45 | 2543.45 | 2653.55 |
Recommended N | 680.55 | 729.4 | 1492 | 1539.65 | 1642 | 1688.05 | 2668.45 | 2763.74 |
LCC ≤ 3@20 kg N ha−1 | 652.3 | 690.04 | 1423.3 | 1488.8 | 1592 | 1634.51 | 2645.9 | 2731.4 |
LCC ≤ 3@30 kg N ha−1 | 673.15 | 705.55 | 1445.3 | 1513.3 | 1610.9 | 1639.3 | 2666.95 | 2751.15 |
LCC ≤ 4@20 kg N ha−1 | 695.83 | 734.1 | 1512.75 | 1569.55 | 1645.5 | 1688.05 | 2690.7 | 2771.15 |
LCC ≤ 4@30 kg N ha−1 | 715.3 | 750.4 | 1515.95 | 1589.3 | 1664 | 1730.1 | 2733.45 | 2809.15 |
LCC ≤ 5@20 kg N ha−1 | 739.3 | 773.1 | 1556.3 | 1626.85 | 1695.6 | 1743.1 | 2749.51 | 2816.42 |
LCC ≤ 5@30 kg N ha−1 | 783.3 | 846.1 | 1618.5 | 1673.92 | 1784 | 1847 | 2791.2 | 2869.9 |
SEm± | 12.12 | 13.97 | 16.74 | 15.11 | 22.11 | 23.43 | 18.82 | 17.18 |
C.D. (5%) | 36.47 | 41.92 | 50.24 | 45.34 | 66.34 | 71.29 | 56.46 | 51.54 |
Interaction | NS | NS | NS | NS | NS | NS | NS | NS |
Treatments | Knee-High Stage | Tasseling Stage | Silking Stage | Harvest | ||||
---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |
Hybrids | ||||||||
Shalimar Maize Hybrid-2 | 5737.64 | 6666.93 | 11,785.98 | 13,707.75 | 12,697.36 | 14,811.7 | 20,614.52 | 22,877.02 |
Vivek-45 | 5342.10 | 6268.90 | 11,461.83 | 13,236.3 | 12,441.95 | 14,561.12 | 20,474.74 | 22,707.91 |
Kanchan-517 | 5059.38 | 5999.99 | 11,216.18 | 13,211.99 | 12,400.95 | 14,312.35 | 20,206.59 | 22,524.21 |
SEm± | 77.29 | 63.18 | 90.76 | 95.16 | 76.07 | 73.32 | 46.33 | 51.87 |
C.D. (5%) | 231.87 | 189.56 | 272.28 | 285.50 | 228.21 | 219.98 | 138.99 | 155.63 |
Nitrogen management | ||||||||
Control | 4737.38 | 5616.69 | 10,479.28 | 12,449.5 | 11,437.19 | 13,170.82 | 19,328.12 | 21,622.01 |
Recommended N | 5365.60 | 6228.69 | 11,429.13 | 13,234.66 | 12,537.4 | 14,532 | 20,377.64 | 22,666.85 |
LCC ≤ 3@20 kg N ha−1 | 5098.52 | 5867.26 | 10,871.98 | 12,851.15 | 12,285.28 | 14,032.81 | 20,206.21 | 22,316.39 |
LCC ≤ 3@30 kg N ha−1 | 5307.26 | 5999.13 | 11,071.81 | 13,051.13 | 12,431.13 | 14,073.94 | 20,366.96 | 22,563.49 |
LCC ≤ 4@20 kg N ha−1 | 5340.53 | 6268.83 | 11,716.75 | 13,439.27 | 12,564.12 | 14,532 | 20,475.04 | 22,679.65 |
LCC ≤ 4@30 kg N ha−1 | 5425.94 | 6408.02 | 11,741.54 | 13,661.45 | 12,546.56 | 14,887.62 | 20,675.76 | 23,001.68 |
LCC ≤ 5@20 kg N ha−1 | 5603.60 | 6666.50 | 12,054.06 | 13,984.22 | 12,731.65 | 15,154.62 | 20,813.75 | 23,061.21 |
LCC ≤ 5@30 kg N ha−1 | 6159.43 | 7429.16 | 12,539.44 | 14,411.13 | 13,746.95 | 16,110.01 | 21,212.18 | 23,705.37 |
SEm± | 108.63 | 81.45 | 132.22 | 125.66 | 166.08 | 174.40 | 132.22 | 138.58 |
C.D. (5%) | 325.90 | 244.36 | 396.67 | 376.98 | 498.26 | 523.22 | 396.67 | 415.76 |
Interaction | NS | NS | NS | NS | NS | NS | NS | NS |
Treatments | Knee-High Stage | Tasseling Stage | Silking Stage | Harvest | ||||
---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |
Hybrids | ||||||||
Shalimar Maize Hybrid-2 | 10,185.42 | 10,698.08 | 21,397.84 | 22,458.71 | 23,853.86 | 24,201.87 | 39,601.65 | 40,549.25 |
Vivek-45 | 9622.25 | 10,081.04 | 21,050.63 | 21,682.79 | 23,068.83 | 23,870.72 | 39,125.47 | 40,250.95 |
Kanchan-517 | 9015.43 | 9747.143 | 20,704.5 | 21,682.79 | 22,659.62 | 23,493.29 | 38,432.42 | 39,938.44 |
SEm± | 110.04 | 116.18 | 104.32 | 140.81 | 132.48 | 108.93 | 135.08 | 95.38 |
C.D. (5%) | 330.13 | 348.56 | 312.98 | 422.43 | 397.45 | 326.81 | 405.24 | 286.14 |
Nitrogen management | ||||||||
Control | 8506.99 | 91,22.238 | 19,358.25 | 20,279.17 | 21,122.24 | 21,734.71 | 36,977.52 | 38,542.81 |
Recommended N | 9416.77 | 10,082.98 | 21,050.63 | 21,727.03 | 23,245.79 | 23,848.21 | 38,794.82 | 40,143.32 |
LCC ≤ 3@20 kg N ha−1 | 9025.88 | 9538.883 | 20,081.34 | 21,009.45 | 22,537.94 | 23,091.81 | 38,466.98 | 39,673.59 |
LCC ≤ 3@30 kg N ha−1 | 9314.38 | 9753.288 | 20,391.74 | 21,355.19 | 22,805.51 | 23,159.48 | 38,773.01 | 39,960.45 |
LCC ≤ 4@20 kg N ha−1 | 9628.20 | 10,147.95 | 21,343.39 | 22,148.97 | 23,295.34 | 23,848.21 | 39,118.29 | 40,250.95 |
LCC ≤ 4@30 kg N ha−1 | 9897.61 | 10,373.28 | 21,388.54 | 22,427.67 | 23,557.25 | 24,442.28 | 39,739.81 | 40,802.9 |
LCC ≤ 5@20 kg N ha−1 | 10,229.69 | 10,687.08 | 21,957.84 | 22,957.56 | 24,004.61 | 24,625.94 | 39,973.29 | 40,908.5 |
LCC ≤ 5@30 kg N ha−1 | 10,838.52 | 11,696.2 | 22,835.42 | 23,625.15 | 25,284.4 | 26,093.8 | 40,581.63 | 41,688.17 |
SEm± | 178.42 | 134.77 | 172.32 | 200.76 | 217.40 | 199.72 | 196.25 | 183.30 |
C.D. (5%) | 535.27 | 404.32 | 516.98 | 602.28 | 652.21 | 599.18 | 588.76 | 549.92 |
Interaction | NS | NS | NS | NS | NS | NS | NS | NS |
Treatments | Knee-High Stage | Tasseling Stage | Silking Stage | Harvest | ||||
---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |
Hybrids | ||||||||
Shalimar Maize Hybrid-2 | 18.16 | 19.67 | 20.46 | 21.86 | 20.80 | 21.89 | 21.27 | 22.07 |
Vivek-45 | 17.97 | 19.46 | 20.55 | 21.67 | 20.88 | 21.96 | 21.23 | 22.15 |
Kanchan-517 | 17.40 | 19.53 | 20.34 | 21.81 | 20.72 | 21.77 | 21.10 | 22.24 |
SEm± | 0.05 | 0.06 | 0.04 | 0.03 | 0.01 | 0.02 | 0.01 | 0.02 |
C.D. (5%) | 0.15 | 0.18 | 0.11 | 0.09 | 0.04 | 0.06 | 0.03 | 0.07 |
Nitrogen management | ||||||||
Control | 17.03 | 18.94 | 19.85 | 21.28 | 20.17 | 21.28 | 20.99 | 22.19 |
Recommended N | 17.62 | 19.75 | 20.44 | 21.55 | 20.90 | 21.97 | 21.19 | 22.14 |
LCC ≤ 3@20 kg N ha−1 | 17.44 | 19.53 | 20.22 | 21.63 | 20.79 | 21.86 | 21.18 | 22.15 |
LCC ≤ 3@30 kg N ha−1 | 17.86 | 19.38 | 20.24 | 21.65 | 20.70 | 21.76 | 21.13 | 22.26 |
LCC ≤ 4@20 kg N ha−1 | 17.93 | 20.04 | 20.54 | 21.64 | 20.74 | 21.80 | 21.19 | 22.11 |
LCC ≤ 4@30 kg N ha−1 | 18.06 | 19.62 | 20.46 | 21.89 | 20.72 | 22.17 | 21.27 | 22.13 |
LCC ≤ 5@20 kg N ha−1 | 17.74 | 19.80 | 20.44 | 21.87 | 20.91 | 22.04 | 21.18 | 22.04 |
LCC ≤ 5@30 kg N ha−1 | 18.17 | 20.22 | 20.80 | 21.81 | 21.01 | 22.19 | 21.16 | 21.95 |
SEm± | 0.10 | 0.11 | 0.09 | 0.07 | 0.03 | 0.05 | 0.05 | 0.04 |
C.D. (5%) | 0.29 | 0.32 | 0.26 | 0.22 | 0.10 | 0.15 | 0.14 | 0.12 |
Interaction | NS | NS | NS | NS | NS | NS | NS | NS |
Treatments | Heat Use Efficiency Grain Yield Basis (kg/ha/°C day) | Heat Use Efficiency Biological Yield Basis (kg/ha/°C day) | Radiation Use Efficiency (kg/ha/°C day) | |||
---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |
Hybrids | ||||||
Shalimar Maize Hybrid-2 | 2.29 | 2.17 | 6.26 | 5.94 | 3.45 | 3.56 |
Vivek-45 | 1.93 | 1.79 | 5.59 | 5.24 | 3.40 | 3.52 |
Kanchan-517 | 1.66 | 1.60 | 5.39 | 4.94 | 3.28 | 3.39 |
SEm± | 0.03 | 0.04 | 0.05 | 0.16 | 0.01 | 0.01 |
C.D. (5%) | 0.10 | 0.11 | 0.15 | 0.17 | 0.03 | 0.04 |
Nitrogen management | ||||||
Control | 1.60 | 1.45 | 4.87 | 4.48 | 3.22 | 3.34 |
Recommended N | 1.95 | 1.81 | 5.74 | 5.36 | 3.55 | 3.71 |
LCC ≤ 3@20 kg N ha−1 | 1.95 | 1.81 | 5.62 | 5.26 | 3.41 | 3.56 |
LCC ≤ 3@30 kg N ha−1 | 1.97 | 1.83 | 5.68 | 5.32 | 3.38 | 3.52 |
LCC ≤ 4@20 kg N ha−1 | 2.07 | 1.93 | 5.92 | 5.56 | 3.41 | 3.50 |
LCC ≤ 4@30 kg N ha−1 | 2.06 | 1.93 | 5.88 | 5.54 | 3.36 | 3.45 |
LCC ≤ 5@20 kg N ha−1 | 2.12 | 2.00 | 5.97 | 5.64 | 3.33 | 3.43 |
LCC ≤ 5@30 kg N ha−1 | 2.20 | 2.06 | 6.14 | 5.79 | 3.34 | 3.44 |
SEm± | 0.04 | 0.05 | 0.07 | 0.08 | 0.04 | 0.03 |
C.D. (5%) | 0.13 | 0.14 | 0.22 | 0.23 | 0.09 | 0.08 |
Interaction | NS | NS | NS | NS | NS | NS |
Treatments | Grain Yield (q ha−1) | Biological Yield (q ha−1) | ||
---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | |
Hybrids | ||||
Shalimar Maize Hybrid-2 | 62.35 | 60.65 | 170.26 | 165.86 |
Vivek-45 | 51.92 | 49.69 | 150.47 | 145.16 |
Kanchan-517 | 46.42 | 43.92 | 141.61 | 135.81 |
SEm± | 1.16 | 1.29 | 3.18 | 3.13 |
C.D. (5%) | 4.45 | 3.85 | 9.60 | 9.49 |
Nitrogen management | ||||
Control | 40.65 | 37.50 | 123.94 | 117.76 |
Recommended N | 52.10 | 49.95 | 153.25 | 148.08 |
LCC ≤ 3@20 kg N ha−1 | 51.70 | 49.56 | 148.75 | 143.58 |
LCC ≤ 3@30 kg N ha−1 | 52.46 | 50.32 | 151.58 | 146.41 |
LCC ≤ 4@20 kg N ha−1 | 55.62 | 53.48 | 159.22 | 154.04 |
LCC ≤ 4@30 kg N ha−1 | 56.32 | 54.17 | 160.75 | 155.58 |
LCC ≤ 5@20 kg N ha−1 | 58.38 | 56.24 | 164.13 | 158.96 |
LCC ≤ 5@30 kg N ha−1 | 61.27 | 59.13 | 171.30 | 166.13 |
SEm± | 0.91 | 0.78 | 1.02 | 1.02 |
C.D. (5%) | 2.62 | 2.34 | 2.93 | 2.86 |
Interaction | S | S | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fayaz, S.; Kanth, R.H.; Bhat, T.A.; Valipour, M.; Iqbal, R.; Munir, A.; Nazir, A.; Mir, M.S.; Ahanger, S.A.; Al-Ashkar, I.; et al. Leaf Color Chart (LCC)-Based Precision Nitrogen Management for Assessing Phenology, Agrometeorological Indices and Sustainable Yield of Hybrid Maize Genotypes under Temperate Climate. Agronomy 2022, 12, 2981. https://doi.org/10.3390/agronomy12122981
Fayaz S, Kanth RH, Bhat TA, Valipour M, Iqbal R, Munir A, Nazir A, Mir MS, Ahanger SA, Al-Ashkar I, et al. Leaf Color Chart (LCC)-Based Precision Nitrogen Management for Assessing Phenology, Agrometeorological Indices and Sustainable Yield of Hybrid Maize Genotypes under Temperate Climate. Agronomy. 2022; 12(12):2981. https://doi.org/10.3390/agronomy12122981
Chicago/Turabian StyleFayaz, Suhail, Raihana Habib Kanth, Tauseef Ahmad Bhat, Mohammad Valipour, Rashid Iqbal, Awais Munir, Aijaz Nazir, Mohd Salim Mir, Shafat Ahmad Ahanger, Ibrahim Al-Ashkar, and et al. 2022. "Leaf Color Chart (LCC)-Based Precision Nitrogen Management for Assessing Phenology, Agrometeorological Indices and Sustainable Yield of Hybrid Maize Genotypes under Temperate Climate" Agronomy 12, no. 12: 2981. https://doi.org/10.3390/agronomy12122981
APA StyleFayaz, S., Kanth, R. H., Bhat, T. A., Valipour, M., Iqbal, R., Munir, A., Nazir, A., Mir, M. S., Ahanger, S. A., Al-Ashkar, I., & Sabagh, A. E. (2022). Leaf Color Chart (LCC)-Based Precision Nitrogen Management for Assessing Phenology, Agrometeorological Indices and Sustainable Yield of Hybrid Maize Genotypes under Temperate Climate. Agronomy, 12(12), 2981. https://doi.org/10.3390/agronomy12122981