Biochar-Compost Additions Have Strong Short-Term Effects on Carbon and Nitrogen Emissions from an Agricultural Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Design
2.2. Greenhouse and Nitrogen Gas Flux Measurements
2.2.1. Methane, Carbon Dioxide, Nitrous Oxide
2.2.2. Nitric Oxide Fluxes
2.2.3. Dinitrogen Fluxes
2.3. Soil Analysis
2.4. Data Analysis
3. Results
3.1. Meteorological Data and Yields 2014
3.2. Analyses of Pure BC Compost Mixtures
3.3. Soil GHG Emissions
3.4. Soil Analysis
3.5. Dinitrogen Fluxes
4. Discussion
4.1. Effects of BC-Compost Application on C-Gases
4.2. Effects of BC-Compost Application on N-Gases
4.3. Effects of BC-Compost Application on Soil Microbial Biomass
4.4. Effects of BC-Compost on Denitrification
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. The Physical Science Basis. In Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Montzka, S.A.; Dlugokencky, E.J.; Butler, J.H. Non—CO2 Greenhouse Gases and Climate Change. Nature 2011, 476, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Hibbard, K.A.; Law, B.E.; Reichstein, M.; Sulzman, J. An Analysis of Soil Respiration across Northern Hemisphere Temperate Ecosystems. Biogeochemistry 2005, 73, 29–70. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous Oxide Emissions from Soils: How Well Do We Understand the Processes and Their Controls? Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130122. [Google Scholar] [CrossRef] [PubMed]
- Baggs, E.M. Soil Microbial Sources of Nitrous Oxide: Recent Advances in Knowledge, Emerging Challenges and Future Direction. Curr. Opin. Environ. Sustain. 2011, 3, 321–327. [Google Scholar] [CrossRef]
- Ettwig, K.F.; Shima, S.; Van De Pas-Schoonen, K.T.; Kahnt, J.; Medema, M.H.; Op Den Camp, H.J.M.; Jetten, M.S.M.; Strous, M. Denitrifying Bacteria Anaerobically Oxidize Methane in the Absence of Archaea. Environ. Microbiol. 2008, 10, 3164–3173. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Routledge: London, UK, 2015. [Google Scholar] [CrossRef]
- El-Naggar, A.; Lee, S.S.; Rinklebe, J.; Farooq, M.; Song, H.; Sarmah, A.K.; Zimmerman, A.R.; Ahmad, M.; Shaheen, S.M.; Ok, Y.S. Biochar Application to Low Fertility Soils: A Review of Current Status, and Future Prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable Biochar to Mitigate Global Climate Change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [Green Version]
- Kammann, C.; Ippolito, J.; Hagemann, N.; Borchard, N.; Cayuela, M.L.; Estavillo, J.M.; Fuertes-Mendizabal, T.; Jeffery, S.; Kern, J.; Novak, J.; et al. Biochar as a Tool to Reduce the Agricultural Greenhouse-Gas Burden—Knowns, Unknowns and Future Research Needs. J. Environ. Eng. Landsc. Manag. 2017, 25, 114–139. [Google Scholar] [CrossRef] [Green Version]
- Weldon, S.; Rasse, D.P.; Budai, A.; Tomic, O.; Dörsch, P. The Effect of a Biochar Temperature Series on Denitrification: Which Biochar Properties Matter? Soil Biol. Biochem. 2019, 135, 173–183. [Google Scholar] [CrossRef]
- Borchard, N.; Schirrmann, M.; Cayuela, M.L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizábal, T.; Sigua, G.; Spokas, K.; Ippolito, J.A.; et al. Biochar, Soil and Land-Use Interactions That Reduce Nitrate Leaching and N2O Emissions: A Meta-Analysis. Sci. Total Environ. 2019, 651, 2354–2364. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, J.; Xue, J.; Zhang, L. Quantifying the Effects of Biochar Application on Greenhouse Gas Emissions from Agricultural Soils: A Global Meta-Analysis. Sustainability 2020, 12, 3436. [Google Scholar] [CrossRef] [Green Version]
- Joseph, S.; Cowie, A.L.; Van Zwieten, L.; Bolan, N.; Budai, A.; Buss, W.; Cayuela, M.L.; Graber, E.R.; Ippolito, J.A.; Kuzyakov, Y.; et al. How Biochar Works, and When It Doesn’t: A Review of Mechanisms Controlling Soil and Plant Responses to Biochar. GCB Bioenergy 2021, 13, 1731–1764. [Google Scholar] [CrossRef]
- Kammann, C.; Ratering, S.; Eckhard, C.; Müller, C. Biochar and Hydrochar Effects on Greenhouse Gas (Carbon Dioxide, Nitrous Oxide, and Methane) Fluxes from Soils. J. Environ. Qual. 2012, 41, 1052–1066. [Google Scholar] [CrossRef] [PubMed]
- Karhu, K.; Mattila, T.; Bergström, I.; Regina, K. Biochar Addition to Agricultural Soil Increased CH4 Uptake and Water Holding Capacity—Results from a Short-Term Pilot Field Study. Agric. Ecosyst. Environ. 2011, 140, 309–313. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Kammann, C.; Cayuela, M.L.; Singh, B.P.; Joseph, S.; Kimber, K.; Donne, S.; Clough, T.; Spokas, K. Biochar Effects on Nitrous Oxide and Methane Emissions from Soil. Biochar Environ. Manag. 2015, 487–518. [Google Scholar] [CrossRef]
- Song, X.; Pan, G.; Zhang, C.; Zhang, L.; Wang, H. Effects of Biochar Application on Fluxes of Three Biogenic Greenhouse Gases: A Meta-analysis. Ecosyst. Health Sustain. 2016, 2, e01202. [Google Scholar] [CrossRef] [Green Version]
- Jeffery, S.; Verheijen, F.; Kammann, C.; Abalos, D. Biochar Effects on Methane Emissions from Soils: A Meta-Analysis. Soil Biol. Biochem. 2016, 101, 251–258. [Google Scholar] [CrossRef]
- Cayuela, M.L.; Sánchez-Monedero, M.A.; Roig, A.; Hanley, K.; Enders, A.; Lehmann, J. Biochar and Denitrification in Soils: When, How Much and Why Does Biochar Reduce N2O Emissions? Sci. Rep. 2013, 3, 1732. [Google Scholar] [CrossRef] [Green Version]
- Clough, T.J.; Condron, L.M.; Kammann, C.; Müller, C. A Review of Biochar and Soil Nitrogen Dynamics. Agronomy 2013, 3, 275–293. [Google Scholar] [CrossRef]
- Nelissen, V.; Saha, B.K.; Ruysschaert, G.; Boeckx, P. Effect of Different Biochar and Fertilizer Types on N2O and NO Emissions. Soil Biol. Biochem. 2014, 70, 244–255. [Google Scholar] [CrossRef]
- Obia, A.; Cornelissen, G.; Mulder, J.; Dörsch, P. Effect of Soil PH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils. PLoS ONE 2015, 10, e0138781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panday, D.; Mikha, M.; Maharjan, B. Coal Char Affects Soil PH to Reduce Ammonia Volatilization from Sandy Loam Soil. Agrosyst. Geosci. Environ. 2020, 3, e20123. [Google Scholar] [CrossRef]
- Davidson, E.A.; Kingerlee, W. A Global Inventory of Nitric Oxide Emissions from Soils. Nutr. Cycl. Agroecosyst. 1997, 48, 37–50. [Google Scholar] [CrossRef]
- Dannenmann, M.; Butterbach-Bahl, K.; Gasche, R.; Willibald, G.; Papen, H. Dinitrogen Emissions and the N2:N2O Emission Ratio of a Rendzic Leptosol as Influenced by PH and Forest Thinning. Soil Biol. Biochem. 2008, 40, 2317–2323. [Google Scholar] [CrossRef]
- Friedl, J.; Cardenas, L.M.; Clough, T.J.; Dannenmann, M.; Hu, C.; Scheer, C. Measuring Denitrification and the N2O:(N2O+N2) Emission Ratio from Terrestrial Soils. Curr. Opin. Environ. Sustain. 2020, 47, 61–71. [Google Scholar] [CrossRef]
- Ameloot, N.; Maenhout, P.; De Neve, S.; Sleutel, S. Biochar-Induced N2O Emission Reductions after Field Incorporation in a Loam Soil. Geoderma 2016, 267, 10–16. [Google Scholar] [CrossRef]
- Haug, R.T. Composting Systems, Thermodynamic Fundamentals, Kinetics of Inactivation, Feed Conditioning, Aeration Requirements and Odour Management. In The Practical Handbook of Compost Engineering, 1st ed.; Routledge: London, UK, 1993. [Google Scholar] [CrossRef]
- Steiner, C.; Sánchez-Monedero, M.; Kammann, C. Biochar as an Additive to Compost and Growing Media. In Biochar for Environmental Management: Science, Technology and Implementation; Routledge: London, UK, 2015; pp. 715–735. ISBN 978-0-415-70415-1. [Google Scholar]
- Fischer, D.; Glaser, B. Synergisms between Compost and Biochar for Sustainable Soil Amelioration. In Management of Organic Waste; InTech: Rijeka, Croatia, 2012; ISBN 978-953-307-925-7. [Google Scholar]
- Steiner, C. Soil Charcoal Amendments Maintain Soil Fertility and Establish Carbon Sink-Research and Prospects. In Soil Ecology Research Developments; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2007. [Google Scholar]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-Smart Soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spokas, K.A.; Koskinen, W.C.; Baker, J.M.; Reicosky, D.C. Impacts of Woodchip Biochar Additions on Greenhouse Gas Production and Sorption/Degradation of Two Herbicides in a Minnesota Soil. Chemosphere 2009, 77, 574–581. [Google Scholar] [CrossRef]
- WRB; IUSS; Schád, P.; van Huyssteen, C.; Micheli, E. World Reference Base for Soil Resources 2014, Update 2015; IUSS Working Group WRB: Pavia, Italy, 2015; ISBN E-ISBN 978-92-5-108370-3. [Google Scholar]
- Collier, S.; Ruark, M.; Oates, L.; Jokela, W.; Dell, C. Measurement of Greenhouse Gas Flux from Agricultural Soils Using Static Chambers. J. Vis. Exp. 2014, 90, e52110. [Google Scholar] [CrossRef] [Green Version]
- Alm, J.; Shurpali, N.; Tuittila, E.-S.; Laurila, T.; Maljanen, M.; Saarnio, S.; Minkkinen, K. Methods for Determining Emission Factors for the Use of Peat and Peatlands—Flux Measurements and Modelling. BOREAL Environ. Res. 2007, 12, 85–100. [Google Scholar]
- Parkin, T.B.; Venterea, R.T.; Hargreaves, S.K. Calculating the Detection Limits of Chamber-Based Soil Greenhouse Gas Flux Measurements. J. Environ. Qual. 2012, 41, 705–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metcalfe, D.B.; Meir, P.; Aragão, L.E.O.C.; Malhi, Y.; da Costa, A.C.L.; Braga, A.; Gonçalves, P.H.L.; de Athaydes, J.; de Almeida, S.S.; Williams, M. Factors Controlling Spatio-Temporal Variation in Carbon Dioxide Efflux from Surface Litter, Roots, and Soil Organic Matter at Four Rain Forest Sites in the Eastern Amazon. J. Geophys. Res. Biogeosci. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Schindlbacher, A.; Zechmeister-Boltenstern, S.; Butterbach-Bahl, K. Effects of Soil Moisture and Temperature on NO, NO2, and N2O Emissions from European Forest Soils. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Willibald, G.; Papen, H. Soil Core Method for Direct Simultaneous Determination of N2 and N2O Emissions from Forest Soils. Plant Soil 2002, 240, 105–116. [Google Scholar] [CrossRef]
- ÖNORM L 1083; Chemische Bodenuntersuchungen—Bestimmung der Acidität. Austrian Standards: Wien, Austria, 2006.
- ÖNORM L 1080; Chemical Analyses of Soils—Determination of Organic Carbon by Dry Combustion with and without Consideration of Carbonates. Austrian Standards: Wien, Austria, 2006.
- Hood-Nowotny, R.; Umana, N.H.-N.; Inselbacher, E.; Oswald-Lachouani, P.; Wanek, W. Alternative Methods for Measuring Inorganic, Organic, and Total Dissolved Nitrogen in Soil. Soil Sci. Soc. Am. J. 2010, 74, 1018–1027. [Google Scholar] [CrossRef]
- Schinner, F.; Sonnleitner, R. Methoden Der Bodenmikrobiologie Und -Biochemie. In Bodenökologie: Mikrobiologie und Bodenenzymatik Band I: Grundlagen, Klima, Vegetation und Bodentyp; Springer: Berlin/Heidelberg, Germany, 1996; pp. 237–259. ISBN 978-3-642-80175-4. [Google Scholar]
- Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A Protocol for Data Exploration to Avoid Common Statistical Problems. Methods Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
- Boeckx, P.; Van Cleemput, O. Estimates of N2O and CH4 Fluxes from Agricultural Lands in Various Regions in Europe. Nutr. Cycl. Agroecosyst. 2001, 60, 35–47. [Google Scholar] [CrossRef]
- Zhang, A.; Bian, R.; Pan, G.; Cui, L.; Hussain, Q.; Li, L.; Zheng, J.; Zheng, J.; Zhang, X.; Han, X.; et al. Effects of Biochar Amendment on Soil Quality, Crop Yield and Greenhouse Gas Emission in a Chinese Rice Paddy: A Field Study of 2 Consecutive Rice Growing Cycles. Field Crops Res. 2012, 127, 153–160. [Google Scholar] [CrossRef]
- Case, S.D.C.; McNamara, N.P.; Reay, D.S.; Whitaker, J. The Effect of Biochar Addition on N2O and CO2 Emissions from a Sandy Loam Soil—The Role of Soil Aeration. Soil Biol. Biochem. 2012, 51, 125–134. [Google Scholar] [CrossRef]
- Le Mer, J.; Roger, P. Production, Oxidation, Emission and Consumption of Methane by Soils: A Review. Eur. J. Soil Biol. 2001, 37, 25–50. [Google Scholar] [CrossRef]
- Hellebrand, H.J.; Kern, J.; Scholz, V. Long-Term Studies on Greenhouse Gas Fluxes during Cultivation of Energy Crops on Sandy Soils. Atmos. Environ. 2003, 37, 1635–1644. [Google Scholar] [CrossRef]
- Yu, L.; Tang, J.; Zhang, R.; Wu, Q.; Gong, M. Effects of Biochar Application on Soil Methane Emission at Different Soil Moisture Levels. Biol. Fertil. Soils 2013, 49, 119–128. [Google Scholar] [CrossRef]
- Zimmerman, A.R.; Gao, B.; Ahn, M.-Y. Positive and Negative Carbon Mineralization Priming Effects among a Variety of Biochar-Amended Soils. Soil Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Thomazini, A.; Spokas, K.; Hall, K.; Ippolito, J.; Lentz, R.; Novak, J. GHG Impacts of Biochar: Predictability for the Same Biochar. Agric. Ecosyst. Environ. 2015, 207, 183–191. [Google Scholar] [CrossRef]
- Novak, J.; Busscher, W.; Laird, D.; Ahmedna, M.; Watts, D.W.; Niandou, M. Impact of Biochar Amendment on Fertility of a Southeastern Coastal Plain Soil. Soil Sci. 2009, 174. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Durenkamp, M.; Nobili, M.D.; Lin, Q.; Brookes, P.C. Short Term Soil Priming Effects and the Mineralisation of Biochar Following Its Incorporation to Soils of Different pH. Soil Biol. Biochem. 2011, 43, 2304–2314. [Google Scholar] [CrossRef]
- Case, S.D.C.; McNamara, N.P.; Reay, D.S.; Whitaker, J. Can Biochar Reduce Soil Greenhouse Gas Emissions from a Miscanthus Bioenergy Crop? GCB Bioenergy 2014, 6, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, M.; Bird, M.I.; Wurster, C.; Saiz, G.; Goodrick, I.; Barta, J.; Capek, P.; Santruckova, H.; Smernik, R. Rapid Degradation of Pyrogenic Carbon. Glob. Change Biol. 2012, 18, 3306–3316. [Google Scholar] [CrossRef]
- Shah, A.; Lamers, M.; Streck, T. N2O and CO2 Emissions from South German Arable Soil after Amendment of Manures and Composts. Environ. Earth Sci. 2016, 75, 427. [Google Scholar] [CrossRef]
- Tallec, T.; Brut, A.; Joly, L.; Dumelié, N.; Serça, D.; Mordelet, P.; Claverie, N.; Legain, D.; Barrié, J.; Decarpenterie, T.; et al. N2O Flux Measurements over an Irrigated Maize Crop: A Comparison of Three Methods. Agric. For. Meteorol. 2019, 264, 56–72. [Google Scholar] [CrossRef]
- Barton, L.; Wolf, B.; Rowlings, D.; Scheer, C.; Kiese, R.; Grace, P.; Stefanova, K.; Butterbach-Bahl, K. Sampling Frequency Affects Estimates of Annual Nitrous Oxide Fluxes. Sci. Rep. 2015, 5, 15912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, J.; Liu, D.; Ding, W.; Yuan, J.; Lin, Y. Effects of Biochar on Nitrous Oxide and Nitric Oxide Emissions from Paddy Field during the Wheat Growth Season. J. Clean. Prod. 2015, 104, 52–58. [Google Scholar] [CrossRef]
- Ludwig, J.; Meixner, F.X.; Vogel, B.; Förstner, J. Soil-Air Exchange of Nitric Oxide: An Overview of Processes, Environmental Factors, and Modeling Studies. Biogeochemistry 2001, 52, 225–257. [Google Scholar] [CrossRef]
- Conrad, R. Microbiological and Biochemical Background of Production and Consumption of NO and N2O in Soil. In Trace Gas Exchange in Forest Ecosystems; Gasche, R., Papen, H., Rennenberg, H., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 3–33. ISBN 978-94-015-9856-9. [Google Scholar]
- Pilegaard, K. Processes Regulating Nitric Oxide Emissions from Soils. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130126. [Google Scholar] [CrossRef] [Green Version]
- Medinets, S.; Skiba, U.; Rennenberg, H.; Butterbach-Bahl, K. A Review of Soil NO Transformation: Associated Processes and Possible Physiological Significance on Organisms. Soil Biol. Biochem. 2015, 80, 92–117. [Google Scholar] [CrossRef] [Green Version]
- Ameloot, N.; Graber, E.R.; Verheijen, F.G.A.; De Neve, S. Interactions between Biochar Stability and Soil Organisms: Review and Research Needs. Eur. J. Soil Sci. 2013, 64, 379–390. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar Effects on Soil Biota—A Review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Ameloot, N.; De Neve, S.; Jegajeevagan, K.; Yildiz, G.; Buchan, D.; Funkuin, Y.N.; Prins, W.; Bouckaert, L.; Sleutel, S. Short-Term CO2 and N2O Emissions and Microbial Properties of Biochar Amended Sandy Loam Soils. Soil Biol. Biochem. 2013, 57, 401–410. [Google Scholar] [CrossRef]
- Treseder, K.K. Nitrogen Additions and Microbial Biomass: A Meta-Analysis of Ecosystem Studies. Ecol. Lett. 2008, 11, 1111–1120. [Google Scholar] [CrossRef]
- Birk, J.; Steiner, C.; Teixeira, W.; Zech, W.; Glaser, B. Microbial Response to Charcoal Amendments and Fertilization of a Highly Weathered Tropical Soil. In Amazonian Dark Earths: Wim Sombroek’s Vision; Springer: Dortrecht, The Netherlands, 2008; pp. 309–324. ISBN 978-1-4020-9030-1. [Google Scholar]
- Cuhel, J.; Simek, M.; Laughlin, R.J.; Bru, D.; Chèneby, D.; Watson, C.J.; Philippot, L. Insights into the Effect of Soil PH on N2O and N2 Emissions and Denitrifier Community Size and Activity. Appl. Environ. Microbiol. 2010, 76, 1870–1878. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Ullah, F.; Ahmad, R.; Ali Shah, S.U.; Khan, A.; Adnan, M. Response of Soil Proteobacteria to Biochar Amendment in Sustainable Agriculture- A Mini Review. J. Soil Plant Environ. 2022, 1, 16–30. [Google Scholar] [CrossRef]
- Scheer, C.; Wassmann, R.; Butterbach-Bahl, K.; Lamers, J.P.A.; Martius, C. The Relationship between N2O, NO, and N2 Fluxes from Fertilized and Irrigated Dryland Soils of the Aral Sea Basin, Uzbekistan. Plant Soil 2008, 314, 273. [Google Scholar] [CrossRef]
- Weier, K.L.; Doran, J.W.; Power, J.F.; Walters, D.T. Denitrification and the Dinitrogen/Nitrous Oxide Ratio as Affected by Soil Water, Available Carbon, and Nitrate. Soil Sci. Soc. Am. J. 1993, 57, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Fiedler, S.R.; Augustin, J.; Wrage-Mönnig, N.; Jurasinski, G.; Gusovius, B.; Glatzel, S. Potential Short-Term Losses of N2O and N2 from High Concentrations of Biogas Digestate in Arable Soils. Soil 2017, 3, 161–176. [Google Scholar] [CrossRef]
Code | Treatments 2013 | Treatments 2014 |
---|---|---|
K | No BC-compost + 350 kg N ha−1 | - |
T1 | 1% BC-compost | +1% BC-compost |
T2 | 0.5% BC-compost + 175 kg N ha−1 | +0.5% BC-compost + 175 kg N ha−1 |
T3 | 1% BC-compost + 350 kg N ha−1 | - |
Properties | BC-Compost Used for T1 | BC-Compost Used for T2 |
---|---|---|
Corg 1 [mg g−1] | 133.5 ± 10.4 | 93.9 ± 6.2 |
Ntot 2 [mg g−1] | 4.4 ± 0.1 | 5.6 ± 0.3 |
C:N | 30.5 ± 1.8 | 16.7 ± 0.3 |
pH | 7.6 ± 0.0 | 7.3 ± 0.0 |
NH4+ [μg N g−1 dw] | 14.9 ± 0.4 | 42.8 ± 4.9 |
NO3− [μg N g−1 dw] | 105 ± 4.2 | 3020 ± 108 |
Cmic [µg g−1 dw] | 1567 ± 35 | 844 ± 102 |
Nmic [µg g−1 dw] | 184 ± 5.1 | 87.5 ± 61 |
EC 3 [mS cm−1] | 2.5 | 31.7 |
CEC 4 [mmolc kg−1] | 222 | 665 |
Gas fluxes from pure BC-compost | ||
CH4 [μg C g−1 h−1] | 0.02 ± 0.01 a | 0.17 ± 0.03 b |
CO2 [mg C g−1 h−1] | 0.07 ± 0.01 a | 0.16 ± 0.01 b |
N2O [μg N g−1 h−1] | 3.47 ± 0.63 a | 1319 ± 101 b |
NO [μg N g−1 h−1] | 0.31 ± 0.04 a | 72 ± 2.1 b |
N2 [μg N g−1 h−1] | 23.9 ± 21 a | 338 ± 93 b |
Cumulative Soil GHG Emissions | K | T1 | T2 | T3 |
---|---|---|---|---|
CH4 [kg C ha−1] | 0.27 ± 0.56 a | 0.44 ± 0.50 a | 0.18 ± 0.37 a | 0.50 ± 0.61 a |
CO2 [t C ha−1] | 2.89 ± 1.14 a | 2.92 ± 1.25 a | 2.68 ± 1.05 a | 2.40 ± 0.95 a |
N2O [kg N ha−1] | 0.60 ± 0.48 a | 0.21 ± 0.11 b | 0.33 ± 0.19 b | 0.29 ± 0.16 b |
NO [kg N ha−1] | 0.27 ± 0.12 a | 0.18 ± 0.07 a | 0.43 ± 0.16 b | 0.30 ± 0.18 a |
Soil Properties | DAA a | K | T1 | T2 | T3 |
---|---|---|---|---|---|
Corg | −30 | 18.6 ± 0.5 a | 21.2 ± 2.1 a | 18.6 ± 0.7 a | 21.3 ± 2.8 a |
+1 to +125 | 18.5 ± 1.6 c | 32.9 ± 7.04 a | 22.6 ± 3.23 b | 20.4 ± 2.1 bc | |
Ntot | −30 | 1.8 ± 0.01 a | 1.9 ± 0.1 a | 1.8 ± 0.1 a | 2.0 ± 0.2 a |
+1 to +125 | 1.9 ± 0.1 c | 2.3 ± 0.2 a | 2.1 ± 0.2 b | 2.0 ± 0.2 bc | |
C:N | −30 | 10.1 ± 0.17 a | 11.2 ± 0.67 a | 10.1 ± 0.02 a | 10.9 ± 0.33 a |
+1 to +125 | 9.9 ± 0.5 c | 13.9 ± 1.5 a | 11.0 ± 0.7 b | 10.4 ± 0.4 c | |
pH | −30 | 6.1 ± 0.20 a | 6.4 ± 0.15 a | 6.2 ± 0.01 a | 6.2 ± 0.10 a |
+1 | 6.1 ± 0.18 c | 6.5 ± 0.04 a | 6.4 ± 0.16 ab | 6.2 ± 0.02 bc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maier, R.; Soja, G.; Friesl-Hanl, W.; Zechmeister-Boltenstern, S.; Michel, K.; Tatzber, M.; Kitzler, B. Biochar-Compost Additions Have Strong Short-Term Effects on Carbon and Nitrogen Emissions from an Agricultural Soil. Agronomy 2022, 12, 2959. https://doi.org/10.3390/agronomy12122959
Maier R, Soja G, Friesl-Hanl W, Zechmeister-Boltenstern S, Michel K, Tatzber M, Kitzler B. Biochar-Compost Additions Have Strong Short-Term Effects on Carbon and Nitrogen Emissions from an Agricultural Soil. Agronomy. 2022; 12(12):2959. https://doi.org/10.3390/agronomy12122959
Chicago/Turabian StyleMaier, Regine, Gerhard Soja, Wolfgang Friesl-Hanl, Sophie Zechmeister-Boltenstern, Kerstin Michel, Michael Tatzber, and Barbara Kitzler. 2022. "Biochar-Compost Additions Have Strong Short-Term Effects on Carbon and Nitrogen Emissions from an Agricultural Soil" Agronomy 12, no. 12: 2959. https://doi.org/10.3390/agronomy12122959
APA StyleMaier, R., Soja, G., Friesl-Hanl, W., Zechmeister-Boltenstern, S., Michel, K., Tatzber, M., & Kitzler, B. (2022). Biochar-Compost Additions Have Strong Short-Term Effects on Carbon and Nitrogen Emissions from an Agricultural Soil. Agronomy, 12(12), 2959. https://doi.org/10.3390/agronomy12122959