Effects of Post-Anthesis Drought and Irrigation on Grain Yield, Canopy Temperature and 13C Discrimination in Common Wheat, Spelt, and Einkorn
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Examined Species and Cultivars, Sampling and Analysis
2.4. Plant Temperature
2.5. Statistical Analysis of Data
3. Results
3.1. Climatic Conditions during the Trial Period
3.2. Effect of Drought and Irrigation on Grain Yield
3.3. Effect of Drought and Irrigation on Canopy Temperature
3.4. The Effect of Drought and Irrigation on 13C Discrimination
4. Discussion
4.1. Grain Yield
4.2. Canopy Temperature
4.3. Grain 13C Discrimination
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tolasz, R.; Míková, T.; Valeriánová, A.; Voženílek, V. Climate Atlas of Czechia; Czech Hydrometeorological Institute: Prague, Czech Republic, 2007; ISBN 97880866901. [Google Scholar]
- Trnka, M.; Feng, S.; Semenov, M.A.; Olesen, J.E.; Kersebaum, K.C.; Rötter, R.P.; Semerádová, D.; Klem, K.; Huang, W.; Ruiz-Ramos, M.; et al. Mitigation Efforts Will Not Fully Alleviate the Increase in Water Scarcity Occurrence Probability in Wheat-Producing Areas. Sci. Adv. 2019, 5, eaau2406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffková, R.; Holub, J.; Fučík, P.; Rožnovský, J.; Novotný, I. Long-Term Water Balance of Selected Field Crops in Different Agricultural Regions of the Czech Republic Using FAO-56 and Soil Hydrological Approaches. Sustainability 2019, 11, 5243. [Google Scholar] [CrossRef] [Green Version]
- Středová, H.; Rožnovský, J.; Středa, T. Predisposition of Drought Occurrence in Selected Arid Areas of the Czech Republic. Contrib. Geophys. Geod. 2013, 43, 237–252. [Google Scholar] [CrossRef] [Green Version]
- Trnka, M.; Balek, J.; Brázdil, R.; Dubrovský, M.; Eitzinger, J.; Hlavinka, P.; Chuchma, F.; Možný, M.; Prášil, I.; Růžek, P.; et al. Observed Changes in the Agroclimatic Zones in the Czech Republic between 1961 and 2019. Plant Soil Environ. 2021, 67, 154–163. [Google Scholar] [CrossRef]
- Eurostat Crop Production in EU Standard Humidity. Available online: https://ec.europa.eu/eurostat/databrowser/view/apro_cpsh1/default/table?lang=en (accessed on 9 November 2022).
- Staff of the Czech Statistical Office. 13. Agriculture. In Statistical Yearbook of the Czech Republic 2021; Rojíček, M., Ed.; Czech Statistical Office: Prague, Czech Republic, 2021; pp. 382–412. ISBN 9788025031667. [Google Scholar]
- Dębiec, K. Drought in the Czech Republic—The Political, Economic and Social Consequences; Strzelczyk, T., Ed.; Centre for Eastern Studies (OSW report): Warsaw, Poland, 2021; ISBN 9788365827920. [Google Scholar]
- Trnka, M.; Rudolf, B.; Adam, V.; Petr, D.; Jiří, M.; Petr, Š.; Petr, H.; Ladislava, Ř.; Zdeněk, Ž. Droughts and Drought Management in the Czech Republic in a Changing Climate. In Drought and Water Crises: Integrating Science, Management, and Policy; CRC Press: Boca Raton, FL, USA, 2017; pp. 461–480. ISBN 9781315265551. [Google Scholar]
- Farooq, M.; Bramley, H.; Palta, J.A.; Siddique, K.H.M. Heat Stress in Wheat during Reproductive and Grain-Filling Phases. CRC Crit. Rev. Plant Sci. 2011, 30, 491–507. [Google Scholar] [CrossRef]
- Hlaváčová, M.; Klem, K.; Rapantová, B.; Novotná, K.; Urban, O.; Hlavinka, P.; Smutná, P.; Horáková, V.; Škarpa, P.; Pohanková, E.; et al. Interactive Effects of High Temperature and Drought Stress during Stem Elongation, Anthesis and Early Grain Filling on the Yield Formation and Photosynthesis of Winter Wheat. F. Crop. Res. 2018, 221, 182–195. [Google Scholar] [CrossRef]
- Rekowski, A.; Wimmer, M.A.; Tahmasebi, S.; Dier, M.; Kalmbach, S.; Hitzmann, B.; Zörb, C. Drought Stress during Anthesis Alters Grain Protein Composition and Improves Bread Quality in Field-Grown Iranian and German Wheat Genotypes. Appl. Sci. 2021, 11, 9782. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Ehleringer, J.R.; Hubick, K.T. Carbon Isotope Discrimination and Photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1989, 40, 503–537. [Google Scholar] [CrossRef]
- Pandey, A.; Khobra, R.; Mamrutha, H.M.; Wadhwa, Z.; Krishnappa, G.; Singh, G.; Singh, G.P. Elucidating the Drought Responsiveness in Wheat Genotypes. Sustainability 2022, 14, 3957. [Google Scholar] [CrossRef]
- Singh, S.K.; Barman, M.; Prasad, J.P.; Bahuguna, R.N. Phenotyping Diverse Wheat Genotypes under Terminal Heat Stress Reveal Canopy Temperature as Critical Determinant of Grain Yield. Plant Physiol. Rep. 2022, 27, 335–344. [Google Scholar] [CrossRef]
- Csákvári, E.; Halassy, M.; Enyedi, A.; Gyulai, F.; Berke, J. Is Einkorn Wheat (Triticum Monococcum L.) a Better Choice than Winter Wheat (Triticum Aestivum L.)? Wheat Quality Estimation for Sustainable Agriculture Using Vision-Based Digital Image Analysis. Sustainability 2021, 13, 12005. [Google Scholar] [CrossRef]
- Pandey, A.K.; Mishra, V.K.; Chand, R.; Navathe, S.; Budhlakoti, N.; Srinivasa, J.; Sharma, S.; Joshi, A.K. Crosses with Spelt Improve Tolerance of South Asian Spring Wheat to Spot Blotch, Terminal Heat Stress, and Their Combination. Sci. Rep. 2021, 11, 6017. [Google Scholar] [CrossRef] [PubMed]
- Kant, S.; Thoday-Kennedy, E.; Joshi, S.; Vakani, J.; Hughes, J.; Maphosa, L.; Sadler, A.; Menidis, M.; Slater, A.; Spangenberg, G. Automated Rainout Shelter’s Design for Well-Defined Water Stress Field Phenotyping of Crop Plants. Crop Sci. 2017, 57, 327–331. [Google Scholar] [CrossRef] [Green Version]
- Wimmerová, M.; Hlavinka, P.; Pohanková, E.; Kersebaum, K.C.; Trnka, M.; Klem, K.; Žalud, Z. Is Crop Growth Model Able to Reproduce Drought Stress Caused by Rain-out Shelters above Winter Wheat? Acta Univ. Agric. Silvic. Mendelianae Brun. 2018, 66, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Raimanová, I.; Svoboda, P.; Kurešová, G.; Haberle, J. The Effect of Different Post-Anthesis Water Supply on the Carbon Isotope Discrimination of Winter Wheat Grain. Plant, Soil Environ. 2016, 62, 329–334. [Google Scholar] [CrossRef] [Green Version]
- Thakur, V.; Rane, J.; Nankar, A.N. Comparative Analysis of Canopy Cooling in Wheat under High Temperature and Drought Stress. Agronomy 2022, 12, 978. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, 1998; ISBN 9251042195. [Google Scholar]
- Mehlich, A. Mehlich 3 Soil Test Extractant: A Modification of Mehlich 2 Extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Pask, A.J.D.; Reynolds, M.P. Breeding for Yield Potential Has Increased Deep Soil Water Extraction Capacity in Irrigated Wheat. Crop Sci. 2013, 53, 2090–2104. [Google Scholar] [CrossRef] [Green Version]
- Haberle, J.; Svoboda, P. Impacts of Use of Observed and Exponential Functions of Root Distribution in Soil on Water Utilization and Yield of Wheat, Simulated with a Crop Model. Arch. Agron. Soil Sci. 2014, 60, 1533–1542. [Google Scholar] [CrossRef]
- Svoboda, P.; Raimanová, I.; Duffková, R.; Fučík, P.; Kurešová, G.; Haberle, J. The Effects of Irrigation on Root Density Profiles of Potato, Celery, and Wheat. Agron. Res. 2020, 18, 567–578. [Google Scholar] [CrossRef]
- Fang, Y.; Du, Y.; Wang, J.; Wu, A.; Qiao, S.; Xu, B.; Zhang, S.; Siddique, K.H.M.; Chen, Y. Moderate Drought Stress Affected Root Growth and Grain Yield in Old, Modern and Newly Released Cultivars of Winter Wheat. Front. Plant Sci. 2017, 8, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foulkes, M.J.; Slafer, G.A.; Davies, W.J.; Berry, P.M.; Sylvester-Bradley, R.; Martre, P.; Calderini, D.F.; Griffiths, S.; Reynolds, M.P. Raising Yield Potential of Wheat. III. Optimizing Partitioning to Grain While Maintaining Lodging Resistance. J. Exp. Bot. 2011, 62, 469–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katimbo, A.; Rudnick, D.R.; DeJonge, K.C.; Lo, T.H.; Qiao, X.; Franz, T.E.; Nakabuye, H.N.; Duan, J. Crop Water Stress Index Computation Approaches and Their Sensitivity to Soil Water Dynamics. Agric. Water Manag. 2022, 266, 107575. [Google Scholar] [CrossRef]
- Anderegg, J.; Aasen, H.; Perich, G.; Roth, L.; Walter, A.; Hund, A. Temporal Trends in Canopy Temperature and Greenness Are Potential Indicators of Late-Season Drought Avoidance and Functional Stay-Green in Wheat. F. Crop. Res. 2021, 274, 108311. [Google Scholar] [CrossRef]
- Gautam, A.; Sai Prasad, S.V.; Jajoo, A.; Ambati, D. Canopy Temperature as a Selection Parameter for Grain Yield and Its Components in Durum Wheat under Terminal Heat Stress in Late Sown Conditions. Agric. Res. 2015, 4, 238–244. [Google Scholar] [CrossRef]
- Neukam, D.; Ahrends, H.; Luig, A.; Manderscheid, R.; Kage, H. Integrating Wheat Canopy Temperatures in Crop System Models. Agronomy 2016, 6, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Deery, D.M.; Rebetzke, G.J.; Jimenez-Berni, J.A.; Bovill, W.D.; James, R.A.; Condon, A.G.; Furbank, R.T.; Chapman, S.C.; Fischer, R.A. Evaluation of the Phenotypic Repeatability of Canopy Temperature in Wheat Using Continuous-Terrestrial and Airborne Measurements. Front. Plant Sci. 2019, 10, 1–19. [Google Scholar] [CrossRef]
- Coulouma, G.; Prevot, L.; Lagacherie, P. Carbon Isotope Discrimination as a Surrogate for Soil Available Water Capacity in Rainfed Areas: A Study in the Languedoc Vineyard Plain. Geoderma 2020, 362, 114121. [Google Scholar] [CrossRef]
- Bachiri, H.; Djebbar, R.; Mekliche, A.; Djenadi, C.; Ghanim, A.M.A. Carbon Isotope Discrimination as Physiological Marker to Select Tolerant Wheat Genotypes (Triticum Aestivum L.) under Water Limited Conditions. Am. J. Plant Physiol. 2018, 13, 1–7. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Huang, Z.; Zhu, Q.; Wang, L. Remobilization of Carbon Reserves Is Improved by Controlled Soil-Drying during Grain Filling of Wheat. Crop Sci. 2000, 40, 1645–1655. [Google Scholar] [CrossRef]
- Thapa, S.; Rudd, J.C.; Jessup, K.E.; Liu, S.; Baker, J.A.; Devkota, R.N.; Xue, Q. Middle Portion of the Wheat Culm Remobilizes More Carbon Reserve to Grains under Drought. J. Agron. Crop Sci. 2021, 208, 1–10. [Google Scholar] [CrossRef]
- Itam, M.; Mega, R.; Tadano, S.; Abdelrahman, M.; Matsunaga, S.; Yamasaki, Y.; Akashi, K.; Tsujimoto, H. Metabolic and Physiological Responses to Progressive Drought Stress in Bread Wheat. Sci. Rep. 2020, 10, 17189. [Google Scholar] [CrossRef] [PubMed]
- Vantyghem, M.; Merckx, R.; Stevens, B.; Hood-Nowotny, R.; Swennen, R.; Dercon, G. The Potential of Stable Carbon Isotope Ratios and Leaf Temperature as Proxies for Drought Stress in Banana under Field Conditions. Agric. Water Manag. 2022, 260, 107247. [Google Scholar] [CrossRef]
- Fischer, R.A.; Rees, D.; Sayre, K.D.; Lu, Z.M.; Condon, A.G.; Larque Saavedra, A. Wheat Yield Progress Associated with Higher Stomatal Conductance and Photosynthetic Rate, and Cooler Canopies. Crop Sci. 1998, 38, 1467–1475. [Google Scholar] [CrossRef]
- Garriga, M.; Romero-Bravo, S.; Estrada, F.; Méndez-Espinoza, A.M.; González-Martínez, L.; Matus, I.A.; Castillo, D.; Lobos, G.A.; Del Pozo, A. Estimating Carbon Isotope Discrimination and Grain Yield of Bread Wheat Grown under Water-Limited and Full Irrigation Conditions by Hyperspectral Canopy Reflectance and Multilinear Regression Analysis. Int. J. Remote Sens. 2021, 42, 2848–2871. [Google Scholar] [CrossRef]
- Royo, C.; Villegas, D.; Del Moral, L.G.; Elhani, S.; Aparicio, N.; Rharrabti, Y.; Araus, J.L. Comparative Performance of Carbon Isotope Discrimination and Canopy Temperature Depression as Predictors of Genotype Differences in Durum Wheat Yield in Spain. Aust. J. Agric. Res. 2002, 53, 561–569. [Google Scholar] [CrossRef]
Geographic Coordinates | Unit | 49°53′29″ N, 15°23′38″ E |
---|---|---|
Altitude | m a.s.l. | 340 |
Average temperature (1991−2020) | °C | 9.6 |
Average precipitation (1991−2020) | mm | 497.5 |
Available P, K, and Mg [23] | mg. kg −1 soil | |
Topsoil (0–30 cm) | 78, 284, 212 | |
Subsoil (30–50 cm) | 29, 180, 210 | |
Deep subsoil (50–130 cm) | 2.8, 156, 334 | |
pH/KCl (from top to deep subsoil) | - | 6.76, 7.14, 7.19 |
C org (from top to deep subsoil) | % | 1.47, 1.30, 1.07 |
N total (from top to deep subsoil) | % | 0.16, 0.11, 0.04 |
Soil texture | - | |
Topsoil (0–30 cm) | Silt loam | |
Subsoil (30–50 cm) | Silt loam | |
Deep subsoil (50–130 cm) | Silt clay loam, Clay loam | |
Field water capacity (laboratory) | Vol.% | 34.5–37.2 |
Wilting point (laboratory) | 15.7–16.2 | |
Maximum water volume observed at spring | Vol.% | |
Topsoil (0–30 cm) | 29.6 | |
Subsoil (30–50 cm) | 31.4 | |
Deep subsoil (50–130 cm) | 32.1 |
Cultivar | Ponticus | Butterfly | Rebel | Artix | Rumona | Rubiota |
---|---|---|---|---|---|---|
Baking quality | E | E | A | B–C | - | - |
Earliness | mid early | mid late | mid late | very early | mid late | mid late |
TGW | medium | high | medium | medium | medium | small |
Maintainer | Dr. Hermann Strube, DE | SELGEN, a.s., CZ | RAGT 2n, FR. | SELGEN, a.s., CZ | VÚRV, v.v.i, CZ | VÚRV, v.v.i, CZ |
Factor | 2018 | 2019 | 2020 | 2021 | ||
---|---|---|---|---|---|---|
Variant | <0.001 | <0.001 | <0.001 | <0.001 | ||
Wheat cultivar | <0.001 | <0.001 | <0.001 | <0.001 | ||
Variant × Wheat | <0.001 | <0.001 | 0.065 | 0.01 | ||
Variant | Cultivar | Yields (t.ha−1) | Cultivar | Yields (t.ha−1) | ||
C | Ponticus | 7.01 ± 0.32 b | 5.98 ± 0.29 b | Artix | 9.58 ± 0.64 a | 8.94 ± 0.58 ab |
Rebel | 7.03 ± 0.16b | 5.33 ± 0.39 b | Butterfly | 9.16 ± 0.51 ab | 8.67 ± 0.44 ab | |
Rubiota | 2.85 ± 0.12d | 1.01 ± 0.10 d | Rumona | 3.31 ± 0.35 d | 3.15 ± 0.53 c | |
S | Ponticus | 3.85 ± 0.07 c | 3.72 ± 0.23 c | Artix | 7.78 ± 0.73 bc | 6.41 ± 0.025 b |
Rebel | 4.12 ± 0.11 c | 3.57 ± 0.19 c | Butterfly | 6.23 ± 1.43 c | 6.27 ± 0.19 b | |
Rubiota | 2.46 ± 0.025 d | 0.86 ± 0.21 e | Rumona | 1.76 ± 0.14 e | 3.00 ± 0.14 c | |
IR | Ponticus | 7.50 ± 0.22ab | 7.12 ± 0.01 a | Artix | 9.38 ± 0.14 ab | 8.15 ± 0.40 ab |
Rebel | 8.19 ± 0.05 a | 7.39 ± 0.17 a | Butterfly | 9.71 ± 0.59 a | 9.00 ± 0.67 a | |
Rubiota | 3.70 ± 0.30 c | 1.16 ± 0.23 d | Rumona | 3.16 ± 0.22 de | 3.45 ± 0.19 c | |
Average data | ||||||
C | 5.63 ± 0.54 b | 4.11 ± 0.69 b | C | 7.35 ± 3.01 a | 6.92 ± 2.44 a | |
S | 3.48 ± 0.77 c | 2.72 ± 0.97c | S | 5.25 ± 2.61 b | 5.22 ± 1.57 b | |
IR | 6.46 ± 0.77 a | 5.22 ± 2.97 a | IR | 7.41 ± 2.86 a | 6.86 ± 2.67 a | |
Average data | ||||||
Ponticus | 6.12 ± 1.48 b | 5.61 ± 1.26 b | Artix | 8.91 ± 0.87 a | 7.83 ± 1.13 a | |
Rebel | 6.45 ± 1.51 c | 5.43 ± 1.38c | Butterfly | 8.37 ± 1.45 b | 7.98 ± 1.19 b | |
Rubiota | 3.0 ± 0.49 a | 1.01 ± 0.20 a | Rumona | 2.74 ± 0.69 a | 3.20 ± 0.42 a |
2018 | 2018 | 2019 | 2019 | 2020 | 2020 | 2021 | 2021 | |||
---|---|---|---|---|---|---|---|---|---|---|
BBCH | 71–73 | 75–79 | 77–81 | 79–82 | 73–76 | 76–83 | 69–72 | 75–81 | ||
Variant | <0.001 | 0.046 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Wheat cultivar | <0.001 | <0.001 | 0.28 | 0.47 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Variant × Wheat | 0.028 | 0.035 | <0.001 | <0.001 | 0.067 | 0.024 | <0.005 | <0.001 | ||
Variants | Cultivar | Canopy temperature (°C) | Cultivar | Canopy temperature (°C) | ||||||
C | Ponticus | 32.53 bc | 28.97 ab | 27.54 a | 31.26 ab | Artix | 24.40 c | 20.30 c | 25.88 b | 25.30 b |
Rebel | 32.70 bc | 29.54 a | 27.35 a | 31.70 a | Butterfly | 24.37 c | 20.36 c | 25.69 bc | 25.23 b | |
Rubiota | 31.23 c | 29.08 ab | 27.08 a | 31.98 a | Rumona | 23.32 c | 19.15 c | 26.10 b | 24.74 bc | |
S | Ponticus | 33.95 ab | 28.58 ab | 27.67 a | 31.29 ab | Artix | 28.08 a | 23.15 a | 26.28 b | 28.08 a |
Rebel | 36.05 a | 29.93 a | 27.70 a | 31.83 a | Butterfly | 26.36 b | 21.63 b | 25.47 bc | 25.74 b | |
Rubiota | 31.50 bc | 27.36 bc | 27.28 a | 31.88 a | Rumona | 25.20 bc | 21.84 ab | 27.55 a | 28.16 a | |
IR | Ponticus | 26.20 d | 25.97 c | 22.33 c | 25.58 c | Artix | 25.33 bc | 21.13 b | 24.43 cd | 25.46 bc |
Rebel | 26.90 d | 25.92 c | 21.33 c | 25.33 c | Butterfly | 24.85 bc | 20.73 bc | 24.65 cd | 23.69 c | |
Rubiota | 26.00 d | 26.33 c | 24.90 b | 30.08 b | Rumona | 24.23 c | 18.95 c | 24.08 d | 24.96 bc | |
Average data | ||||||||||
C | 32.15 b | 29.20 a | 27.32 a | 31.65 a | C | 24.03 c | 19.94 b | 25.89 b | 25.09 b | |
S | 33.83 a | 28.63 a | 27.55 a | 31.56 a | S | 26.55 a | 22.21 a | 26.43 a | 27.33 a | |
IR | 26.37 c | 26.07 b | 22.85 b | 27.00 b | IR | 24.8 b | 20.27 b | 24.38 c | 24.70 c | |
Average Data | ||||||||||
Ponticus | 30.89 b | 27.84 a | 25.85 a | 29.38 a | Artix | 26.01 a | 21.61 a | 25.53 a | 26.28 a | |
Rebel | 31.88 a | 28.47 a | 25.46 a | 29.62 a | Butterfly | 25.30 a | 20.89 ab | 26.27 a | 24.89 b | |
Rubiota | 29.58 c | 27.59 a | 26.42 a | 31.31 a | Rumona | 23.78 b | 20.09 b | 25.91 a | 25.96 ab |
2018 | 2019 | 2020 | 2021 | ||||||
---|---|---|---|---|---|---|---|---|---|
Yield vs. 13C discrimination | common wheat, spelt, eincorn | 0.98 ** | 0.97 ** | 0.98 ** | 0.86 * | ||||
0.98 | 0.99* | 0.86 * | 0.78 | ||||||
Term of | 1st | 2nd | 1st | 2nd | 1st | 2nd | 1st | 2nd | |
Yield vs. Canopy temperature | common wheat, spelt, eincorn | −0.81 * | −0.63 | −0.84 * | −0.84 | −0.68 | −0.62 | −0.39 | −0.75 |
−0.96 | −0.56 | −0.9 | −0.84 | −0.91 | −0.99 * | −0.99 * | −0.72 |
2018 | 2019 | 2020 | 2021 | |||
---|---|---|---|---|---|---|
ANOVA | Variant | <0.001 | <0.001 | <0.001 | <0.001 | |
Wheat cultivar | <0.001 | <0.001 | <0.001 | 0.008 | ||
Variant × Wheat | 0.264 | 0.101 | <0.001 | <0.001 | ||
Variant | Cultivar | Cultivar | ||||
C | Ponticus | 18.50 bc | 19.04 b | Artix | 20.75 bc | 21.04 ab |
Rebell | 18.93 ab | 18.90 b | Butterfly | 20.35 c | 20.67 b | |
Rubiota | 16.98 d | 17.64 c | Rumona | 19.58 d | 21.38 ab | |
S | Ponticus | 16.46 d | 17.58 c | Artix | 19.23 de | 19.97 d |
Rebell | 16.67 d | 16.91 cd | Butterfly | 18.64 e | 19.56 d | |
Rubiota | 15.06 e | 16.60 d | Rumona | 17.48 f | 18.95 e | |
IR | Ponticus | 19.76 ab | 20.87 a | Artix | 21.14 ab | 21.35 ab |
Rebell | 19.92 ab | 20.24 a | Butterfly | 20.61 c | 20.90 ab | |
Rubiota | 19.04 abc | 19.36 ab | Rumona | 21.23 ab | 21.47 a | |
Average data | ||||||
C | 18.14 b | 18.53 b | C | 20.23 b | 21.03 a | |
S | 16.06 c | 17.03 c | S | 18.45 c | 19.49 b | |
IR | 19.57 a | 20.16 a | IR | 20.99 a | 21.24 a | |
Average data | ||||||
Ponticus | 18.24 a | 19.16 a | Artix | 20.37 a | 20.79 a | |
Rebell | 18.51 a | 18.68 a | Butterfly | 19.87 b | 20.38 a | |
Rubiota | 17.03 b | 17.87 b | Rumona | 19.43 b | 20.60 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuresova, G.; Haberle, J.; Svoboda, P.; Wollnerova, J.; Moulik, M.; Chrpova, J.; Raimanova, I. Effects of Post-Anthesis Drought and Irrigation on Grain Yield, Canopy Temperature and 13C Discrimination in Common Wheat, Spelt, and Einkorn. Agronomy 2022, 12, 2941. https://doi.org/10.3390/agronomy12122941
Kuresova G, Haberle J, Svoboda P, Wollnerova J, Moulik M, Chrpova J, Raimanova I. Effects of Post-Anthesis Drought and Irrigation on Grain Yield, Canopy Temperature and 13C Discrimination in Common Wheat, Spelt, and Einkorn. Agronomy. 2022; 12(12):2941. https://doi.org/10.3390/agronomy12122941
Chicago/Turabian StyleKuresova, Gabriela, Jan Haberle, Pavel Svoboda, Jana Wollnerova, Michal Moulik, Jana Chrpova, and Ivana Raimanova. 2022. "Effects of Post-Anthesis Drought and Irrigation on Grain Yield, Canopy Temperature and 13C Discrimination in Common Wheat, Spelt, and Einkorn" Agronomy 12, no. 12: 2941. https://doi.org/10.3390/agronomy12122941
APA StyleKuresova, G., Haberle, J., Svoboda, P., Wollnerova, J., Moulik, M., Chrpova, J., & Raimanova, I. (2022). Effects of Post-Anthesis Drought and Irrigation on Grain Yield, Canopy Temperature and 13C Discrimination in Common Wheat, Spelt, and Einkorn. Agronomy, 12(12), 2941. https://doi.org/10.3390/agronomy12122941